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Abstract 
We consider hyperspectral phase/amplitude imaging from 

hyperspectral complex-valued noisy observations. Block-matching 
and grouping of similar patches are main instruments of the 
proposed algorithms. The search neighborhood for similar patches 
spans both the spectral and 2D spatial dimensions.  SVD analysis 
of 3D grouped patches is used for design of adaptive nonlocal 
bases. Simulation experiments demonstrate high efficiency of 
developed state-of-the-art algorithms. 
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Introduction 
Recently, hyperspectral imaging (HSI) is a hot topic in many 

application and research fields, such as earth surface remote 
sensing [1], medical and bio-medical sciences [2], etc. Typically, 
HIS retrieves a valuable information based on images obtained 
across a wide range of electromagnetic spectrum with hundreds to 
thousands of spectral channels. These images are two-dimensional 
(2D) and stacked together in 3D cubes, where (x,y) are spatial 
coordinates and the third coordinate is for the spectral channel, 
which usually is represented by wavelength λ. 

A flow of publications are targeted on HSI, and the sparsity 
concept is one of the leading instruments for the topic (e.g. [3]). 
However, these papers are mainly restricted to real-valued data. 

The complex domain HSI makes a special class of the 
hyperspectral problems since variables of interest are complex-
valued and both phase and amplitude have to be reconstructed. It is 
a very promising technique which doubles amount of retrieved 
information in comparison with the real-valued HSI, since 
measured hyperspectral cubes are complex-valued, i.e. each of 2D 
images for each wavelength is complex-valued having 2D phase 
and amplitude.  

The complex-valued data cubes may appear as the Fourier 
transform of observed real-valued variables (e.g. [4]) or as direct 
measurements of real and imaginary parts of complex-valued 
parameters. For instance, in magnetic resonance imaging (MRI) 
and functional magnetic resonance imaging (fMRI), images or 
voxel measurements are complex-valued (e.g.[5]). 

Recently, hyperspectral (HS) holography has been developed, 
which, additionally to the conventional holography, is able to 
recover a spectrally resolved phase information (e.g. [6, 7]). 

An important point in HSI is that the corresponding HS cubes 
are derived usually from indirect observations as solutions of 
inverse problems, what leads to serious noise amplification. A 
sliding window averaging along the wavelength dimension is used 
routinely for noise suppression (e.g. [6,7]), but this approach may 
result in oversmoothing of estimated signals. Application of more 
sophisticated algorithms with separate filtering of phase and 
amplitude for each wavelengths has appeared as a more efficient 
instrument in HSI [8]. 

 
Novel effective denoising algorithms taking into consideration 

phase/amplitude correlation between and within slices of HS cubes 
are proposed and studied in [9, 10]. In these algorithms, the 
observed noisy complex-valued 3D cubes are analyzed based on 
SVD. A small number of eigenimages obtained in this analysis are 
filtered by Complex Domain Block-Matching Three Dimension 
(CDBM3D) filters [11-13], which are a complex domain 
development of the well known sparsity based BM3D techniques 
[14]. The filtered eigenimages allow to reconstruct the filtered 3D 
cubes.   

A different approach to denoising of 3D cubes is proposed in 
this paper based on the sparsity techniques developed for complex 
domain data.  It is an extension for complex domain of the BM3D 
video-filtering (VBM3D) [15]. A structure of the proposed 
algorithms is quite similar to the structure of the CDBM3D filters 
[11-13] with the main difference concerning the grouping of 
similar 2D patches.  

We realize this grouping by 3D block-matching, a procedure 
that tests the similarity inside the reference block as well as 
between the reference block and blocks that belong to a search 
neighborhood. Given the nature of hyperspectral data, the search 
neighborhood is a 3D domain that spans both the spectral and 2D 
spatial dimensions.  

Note that in CDBM3D, the grouping is restricted to 2D spatial 
dimension.  

We demonstrate the visual and numerical advantage of the new 
algorithms with respect to CDBM3D as well as the much more 
advanced algorithms developed in [9] specifically for HSI.  This 
advantage is gained at the price of more demanding computations. 

Problem formulation 
Let NxMxU C⊂λ),( be a slice N x M on x (x is given on N x M 

integer grid) of a complex-valued hyperspectral cube provided a 
fixed wavelength λ, and }),,({)( Λ⊂λλ=Λ xUxQ , 

Λ⊂Λ
NxMxLQ C be the whole cube composed of the set of the 

wavelength slices Λ with number of the individual wavelengths LΛ. 
The total size of the cube is N x M x LΛ pixels. The third 

dimension rows of QΛ (x) contain LΛ spectral observations 
corresponding to the scene with fixed a coordinate x. Then, the 
noisy HS observations with the additive noise may be written as: 

 
)()()( xxQxZ ΛΛΛ ε+= , (1) 

  
where ZΛ, QΛ, Λ⊂εΛ

NxMxLC  represent noisy HS data, clean HS 
and additive noise, respectively. 

Accordingly to the notation for the clean image, the noisycube 
can be represented as }),,({)( Λ∈λλ=Λ xZxZ , Λ⊂Λ

NxMxLZ C  
with the slices Z(x, λ). 
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Figure 1. The flowchart of the proposed complex domain algorithms 

The denoising problem is formulated as a reconstruction of 
unknown QΛ(x) from the given noisy ZΛ (x). 

The properties of the clean HS cube QΛ (x) and the noise εΛ(x,  
y) are essential for the algorithm development. 

The following three assumptions are basic hereafter. 
1) Similarity of the HS slices U(x, λ) for close values of λ 

follows from the fact that usually the slides U(x, λ) are slowly 
varying on λ. 

2) Sparsity of 2D images U(x, λ) as functions of x means that 
there are bases such that U(x, λ) can be represented with a small 
number of atoms. It is one of the natural and fundamental 
assumptions for design of modern image processing algorithms. 
The sparsity for complex-valued images is quite different from the 
standard formulation of this concept for real-valued signals. The 
complex-valued variables can be defined by any of two pairs: 
amplitude/phase or real/imaginary values and elements of these 
pairs usually are correlated [11]. Thus, the sparsity can be 
introduced for different variables: directly for complex-valued or 
for the real-valued pairs: amplitude/phase or real/imaginary. 

3) The noise εΛ(x) is zero mean circular Gaussian. 

Proposed algorithms 
The concept of non-local grouping and collaborative filtering 

is extensively studied (e.g. in [14], [11], [12], [13]. In this section, 
we provide a brief overview of the basic steps of this concept in 
connection with the proposed filtering of the 3D cube data 
composed from multiple slices.  

The first step of the algorithm is ’grouping’. For each pixel of 
the slice, called the reference pixel, we define a small 2D square 
patch (block), reference slice (block), and look for similar patches 
inside the slice of the reference patch and within other neighboring 
slices. The similar 2D patches are stacked together and form 3D 
arrays-groups. It defines the abbreviation BM3D where 3D stands 
for the dimension of groups.  

The second step is ’collaborative’ filtering. We are looking for 
the best adaptive bases for sparse representation of the groups. The 
High-Order SVD (HOSVD) is used for the group analysis, which 
gives the orthonormal transforms of the grouped data. The filtering 
of the groups is produced in the transform domains defined by 
these orthonormal transforms. The small coefficients of these 
transforms are thresholded (put to zero), i.e. the hard-thresholding 
procedure. The soft thresholding can be used at this step. The 
inverse transform applied to the filtered transform domain groups 
returns the filtered image domain groups.  

The collaborative filtering is produced successively taking all 
pixels of the cube as the reference pixels. Thus, it can be reference 

pixels and patches from all slices. Of course, computationally, it 
can be too demanding. To be realistic, we take the reference pixels 
and the reference slices with some steps, similar as it is done in 
BM3D implementations.  

The third step is ’aggregation’. The patches collected in the 
filtered groups are returned to their original positions, where from 
they were taken for this group. As a result, for each pixel of the 
cube we gain multiple estimates obtained due to the reference 
patches from the slide where this pixel is located as well as due to 
the reference patches from other slices.  

The aggregation defines the pixel-wise estimate as a weighted 
mean of all estimates available for this pixel. As the thresholding is 
used for filtering, this estimate is called the final thresholding 
estimate. In this way, the estimates for all slices are tightly 
connected with each other.  

The proposed algorithm similar to the standard BM3D as in 
[14] is composed from two stages. The first one is the thresholding 
stage by the name of the used filtering.  

The second stage differs by the filtering procedure produced in 
the HOSVD transform domain. Instead of the thresholding, we use 
the Wiener filtering also produced in the transform domain and the 
stage is called the Wiener filtering stage.  

The algorithm flowchart, composed from the two successive 
stages of thresholding and Wiener filtering, is shown in Fig.1.  

The variety of the CDBM3D algorithms are presented in 
Complex Domain Image Denoising (CDID) Toolbox in [13] is 
defined by different sparsity models in complex domain:  

(I) Straightforward complex domain sparsity treating variables 
as complex-valued;  

(II) Sparsity imposed of real and imaginary parts of complex-
valued variables;  

(III) Sparsity imposed on amplitude and phase of 
complexvalued variables.  

HOSVD is applied for analysis and synthesis of grouped data. 
This is 3D HOSVD for the sparsity model I and 4D HOSVD for 
the sparsity models II and III.  

All these three sparsity models are used in our algorithms for 
HSI. Thus, a variety of the algorithms for HSI are presented and 
studied in this paper.  

The structural image Fig.1 looks identical to the flowchart in 
[11], [13] but as it is already mentioned above the algorithms in 
this paper are different by the grouping rules, selecting similar 
patches not only in the reference slice of HS data but in the 
neighboring slices different by spectral coordinate, as well as by 
the aggregation of estimates obtained after processing different 3D 
groups. 
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Figure 3. Channel #25 of test image: a) true phase, b) true amplitude, c) noisy phase, σ=0.5, SNRφ = 0.7 dB, d) noisy amplitude, e) BM4D, SNRφ = 13.3 dB, f) 
CCF, SNRφ = 16.2 dB, g) ImRe-BM3D WI, SNRφ = 19.6 dB, h) ImRe-BM3D IT, SNRφ = 20.9 dB 

The input/output link given by the proposed algorithms can be 
presented in the form: 

 
)}({3)(ˆ xZDCCDBMxQ ΛΛ = , (2) 

  
where CCDBM3D stands for Cube Complex Domain Block-
Matching 3D filter, )(ˆ xQΛ is an estimate of the true cube QΛ(x) 
and ZΛ(x) is a cube of noisy observations. 

 

 
Figure 2. Maximum phase-value for spectral channels of the cameraman 
phase test-image 

The accuracy analysis produced for the CCDBM3D algorithms 
proves that the best results are obtained by the sparsity model II 
using real and imaginary parts of random variables for the analysis 
and synthesis procedures. In the following tests we shown 
CCDBM3D results obtained by the algorithm using real/imaginary 
sparsity modeling.  

We compare two versions of this algorithm:  
(1) Implemented according to the flowchart Fig.1 with Wiener 

filtering (ImRe-BM3D WI);  

(2) Iterative version of this algorithm (ImRe-BM3D IT), see 
[13].  

As the state-of-the-art counterpart algorithm, we use the recent 
Complex domain Cube Filter (CCF) based on SVD analysis of the 
total cube of HS observations and CDBM3D filtering in the 
reduced size SVD eigenspaces [9].  

For comparison, we show also the results obtained by the 
BM4D algorithm what is an extension of the BM3D filter to 
volumetric data (BM4D) [16]. In our problem, the volumetric data 
means 3D HS cube. This algorithm implements the grouping and 
collaborative filtering paradigm, where mutually similar 3D-
dimensional patches are stacked together in a 4D groups jointly 
filtered in transform domain contrary to 3D groups implemented in 
BM3D.  

BM4D is the state-of-art algorithm for real-valued HS data. In 
our tests, we apply it for denoising of phase of 3D HS cube 
complex-valued observations. 

Comparative analysis for simulated HS data 
Simulation experiments are produced for the complex-valued 

HS cube of a transparent phase object. The phase delay of this 
object is described by the equation:  

 

)1(),(2),( −
λ

π=ϕ λλ nyxhyx , (3) 

  
where λ is a wavelength of a laser radiation going through the 

object, nλ is the refractive index of an object material and h(x, y) is 
a thickness of the object.  

We model the HS cube for this object by 40 slices uniformly 
covering the wavelength interval Λ = [427…707] nm. The 
MATLAB cameraman test-image is used for h(x, y) to model a 
phase-delay of the object. It is scaled in such way that the phase 
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delay maximal for each slice belongs to the interval [0 … 0.4] 
radians (see Fig. 2).  

The amplitude of the object transfer function (object 
transparency) varying in (x, y) is inverse proportional to the object 
thickness h(x, y) scaled with the minimal value equal to 1, and the 
mean value equal to 10. About this kind of varying amplitude 
modeling see [11, 13]. The amplitude is the same for all spectral 
slices of HS data.  

The amplitude and phase images for the spectral channel #25, 
λ = 595 nm, as examples of phase and amplitude, are shown on the 
Fig. 3.  

Noisy images are formed by adding noise to real and 
imaginary components of each channel according to Eq.(1). One 
should note that this noise is additive to amplitude and signal 
depended for observed phase (the noise variance is inversely 
proportional to amplitude). The goal of our analysis is phase 
imaging, i.e. quality restoration of the true phase ' from the noisy 
data comparing the algorithms. For the interferometric phase, the 
accuracy of phase restoration is measured by the signal-to-noise 
ratio (SNR): 

 

][
)ˆ(

log10 2
200

2
200

10 dB
W

SNR
ϕ−ϕ

ϕ−ϕ
=ϕ , (4) 

  
where 0ϕ̂ and 0ϕ  are the phase reconstruction and the true phase, 
respectively; 0ϕ  is mean level of the true phase; the phase 
wrapping operator W is used in order to eliminate erroneous phase 
shifts multiple to 2π. 

The phase denoising results for channel #25, σ = 0.5, are 
shown in Fig. 3. The BM4D algorithm working directly in the 
phase domain does not take into account signal dependent nature 
of the noise. As a result, some areas of phase images are 
oversmoothed while others contain quite visible residual noise. 
Numerically, BM4D is worst with the smallest SNRφ. The best 
accuracy is demonstrated by the proposed ImRe-BM3D IT and 
ImRe-BM3D WI algorithms with a slightly better result for the 
iterative ImRe-BM3D IT. These algorithms significantly 
outperform CCF by about 3 dB.  

Let SNRφ(k, m) be a set of SNRφ calculated for Kk ∈ , 
Mm∈  , where K and M denote the sets of the algorithms and 40 

spectral channels, respectively. 
The best algorithm for each channel is defined as 
 

),(max)( mkSNRmmSNR
Kk

ϕ
∈

ϕ = . (5) 
  
We compare the algorithms with respect to these best results 

using differences between the corresponding SNRs: 
 

)(),(),( mmSNRmkSNRmkSNR ϕϕϕ −=∆ . (6) 
  
Box-plots of ΔSNRφ(k,m) being depicted for each algorithm 

(each k) gives comparative statistics for evaluation of the 
algorithm’s performance for all channels (all m). 

Box-plots on the Fig. 4 show ΔSNRφ for σ = 1. It is clearly 
seen that for all channels the best results are provided by ImRe-
BM3D IT, which outperforms ImRe-BM3D WI on 1 dB, CCF on 4 
dB, BM4D on 8 dB as compared with the median, middle (’red’) 
lines in the boxes. 

 
Figure 4. Box-plots for the compared algorithms, σ = 1 

 
Figure 5. Box-plots for the compared algorithms, σ = 0.5 

 

 
Figure 6. Box-plots for the compared algorithms, σ = 0.25 

 
Fig. 5 and Fig. 6 show box-plots for σ = 0.5 and σ = 0.25. The 

best algorithm is the same, however, with smaller σ the gap 
between SNRφ for the different algorithms is decreased. 

Comparative analysis for measured data 
The object of study is a transparent binary phase mask 

manufactured for lensless imaging. Phase and amplitude transfer 
functions of this object, shown in Fig. 7, have been measured in 
our experiments using off-axis interferometry for three 
wavelengths λ = 402 nm, λ = 532 nm and λ = 643 nm. Five 
additional measurements for λ = [407, 412, 417, 422, 527] nm are 
obtained numerically by interpolation. We treat these data as a true 
HS complex-valued cube QΛ(x) of 8 spectral channels.  

Fig. 8 shows maximum values of phase for each of the 
channels. One can see that there is a large phase deviations 
between the channels 5, 6 and 7, 8.  

The noisy data corresponding to this object are generated 
according to Eq. (1) and used for comparison of the algorithms.  
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Figure 7. Three spectral images of the binary phase mask: a) phase (above) and amplitude (bellow) for λ = 402 nm, b) phase and amplitude for λ = 532 nm, 
c) phase and amplitude for λ = 643 nm 

The large deviations in phase noticed above make denoising 
difficult as neighbouring slices of the HS cube may be too different 
for joint using in block-matching denoising.  

 

 
Figure 8. Maximum phase value for channels of the test image 

The denoising results as SNRφ curves are shown on the Fig. 9 
for σ = 0.06. It is clearly seen that CCF fails on the channels 6, 7 
and 8, and the best results are achieved by the proposed two 
algorithms. 

 

 
Figure 9. SNRφ for compared algorithms, σ = 0.06. 

Finally, box-plots for all channels and all noise standard 
deviations (σ = 0.03, 0.06, 0.15, 0.3) are shown on Fig. 10. 

The best accuracy is provided by ImRe-BM3D WI slightly 
outperforming ImRe-BM3D IT. BM4D is behind them in average 
on 0.5 dB. CCF provides significantly lower values of SNRφ. 
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Figure 10. Box-plots for all channels and all noise standard deviations σ = 
{0.03, 0.06, 0.15, 0.3} 

Conclusions  
In this paper, we present the novel algorithms for denoising of 

HS complex-valued observations. In simulation experiments, the 
algorithms demonstrate the state-of-the-art performance visually 
and numerically mainly owing to the novel block-matching of 
similar patches and SVD analysis/synthesis based joint modeling 
of real and imaginary parts of complex-valued variables. The 
MATLAB demo-version of the CCDBM3D algorithms is publicly 
available on http://www.cs.tut.fi/sgn/imaging/sparse/ccdbm3d.zip. 
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