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Abstract 
Due to a limited bit-depth representation of pixel values and 

lossy compression methods, an image may exhibit annoying 

banding or false-contouring artifact. Existing banding-removal 

approaches mainly include low pass filtering, dithering and re-

quantization. In this paper, we propose an image debanding 

method that iteratively improves the image using a content-

adaptive spatial filter. The filter uses adaptive span based on local 

width of the band and operates on 1D sparse pixel-window. The 

input image is filtered in each direction i.e. vertical, horizontal and 

two diagonals sequentially while offering parallel processing in 

each direction. The iterative framework gradually improves the 

quality of filtered image until it converges to the final output. 

Experimental results show that our proposed method is effective in 

debanding images. 

Introduction 
Banding is a major visual artifact that exhibits in the form of 

visible “bands” in an image and such bands often change with time 

creating significant annoyance to viewers [1-3]. When such images 

are displayed as a video, banding becomes visually more annoying 

due to the “shifting” effect of bands/false contours in various 

regions of video. It causes poor subjective scores and mediocre 

viewing experience. Figure 1 shows an example of banding in the 

sky region. 

 

 
FIGURE 1: BANDING ARTIFACT IN IMAGE: AN EXAMPLE 

 

Banding can happen as a result of several factors [1]. During 

content-capture, the camera pipeline may not provide enough bit-

depth to store sensor output. Post processing methods can reduce 

bit-depth of the image signal while storing/transmitting it to the 

next stage. Poor image compression often exacerbates the existing 

false-contouring artifacts. It becomes important to remove these 

bands or “deband” such images in a variety of image/video 

processing applications. 

 

Many of image debanding approaches consist of the use of 

1D/2D spatial filters. While others employ a more recent 

convolutional neural network (CNN)-type of methods. While it is a 

well-studied topic, challenges still remain due to the computational 

allowance for processing, latency and implementation-complexity 

constraints. A fixed-span low-pass filter may not be suitable for all 

content considering varying width of bands. Thus, it is important to 

design a content-adaptive filter. Multiple directions e.g. vertical, 

horizontal and diagonal need to be filtered to do image debanding. 

One filtering operation an image may not be enough to remove 

banding. Thus, we investigate multiple iterations of the multi-

directional adaptive filter to improve the debanded image quality. 

 

In this paper, we propose an iterative multiple-scan adaptive 

sparse filter for effective and efficient image debanding. Our main 

contributions are: 

 A 1D adaptive sparse filter (ASF) in which parameters 

are tuned based on local signal properties is presented. 

Adaptive tuning of the filter-size according to the signal 

is quite effective in breaking down the steps (or bands). 

 For debanding images i.e. 2D signals, a Multiple-scan 

ASF (MASF) is proposed. The key idea is to apply the 

1D filter, sequentially along vertical (columns), 

horizontal (rows) and the two diagonals’ direction, to the 

image pixels to achieve debanding in those directions. 

 We also propose an iterative MASF (I-MASF) 

framework that employs MASF iteratively to an image 

until a stopping criterion is met. The main motivation is 

to successively deband the image until no further 

significant improvement is possible. 

In the next section, we present an overview of existing image 

debanding approaches. 

Related Work 
In the past couple of decades, many approaches have been 

proposed for reducing or removing false contouring or banding 

artifact for a range of applications. Majority of the applications are 

consumer electronics such as television or other display devices [2-

6]. There have been some efforts to reduce banding from medical 

imaging as well, mainly due to its impact on the detection and 

diagnosis [7].  

 

Generally, banding detection and reduction using spatial 

filtering is the most popular approach. Adding noise/dither to 

reduce the visibility of bands, is another approach. Many methods 

use either one of these approaches or some combination of them. 

In [2], authors present a method for detecting and segmenting flat-

region in the image to do bit-depth extension for removing false 

contours. A multi-scale method is proposed to first determine the 

presence and scale of banding using a likelihood score, followed 

by probabilistic dithering that reduces the visibility of banding [3]. 

A dithering-based method that uses Curved Markov-Gaussian 

noise, is proposed in [4]. However, the noise can often get 

annoying to viewers, especially when the level of noise is high. In 

another method, the dithering approach is employed to adjust each 

pixel value to break down the contouring bands, considering   the   

gradient smoothness and block boundary smoothness with 

neighboring blocks [5]. Another approach consists of three steps 

[6]. The first step is to employ directional segmentation around a 

pixel and measure that how likely it has smooth area within the 

image. Then, an adaptive low pass filtering (LPF) is applied on the 

support region for its center pixel. Lastly, spatial dithering is 

applied to mask remaining banding.  In [8], banding detection is 
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done as a first step using a sign-based gradient approach. However, 

it reportedly fails in several cases of combinations of gradients. 

The iterative method used here to find filter size at each pixel is 

computationally costly. A frequency analysis is proposed to detect 

smooth areas followed by applying local filters [9]. A banding 

detection method for print systems is proposed in [10]. While it 

presents some very related ideas to banding detection on screen, 

the intent here is just to analyze the print quality of content. 

Another method categorizes an image into three parts: smooth 

area, “slow-change” area and texture area using classification 

methods [11]. Yet, it is restricted to just detection of the artifact, 

while not actually debanding the images. In [12], authors propose a 

false contour detection method that estimates the number of 

potential perceptually visible false contours in the decoded high 

dynamic range (HDR) image and iteratively adjusts the dynamic 

range compression parameters to prevent or reduce the number of 

false contours. Whereas in [13], a banding-alleviating inverse tone-

mapping method is proposed. Here, the tone-curve is modified 

such that the resulting HDR image is banding-free. However, these 

methods are specific to HDR applications.  

 

A pre-processing approach is re-quantization [14]. But this is 

useful only when we have the original signal. An edge-aware 

sparse filter is proposed for debanding inverse tone-mapped HDR 

images [15] as a hardware-efficient solution. While the sparse filter 

design is cost-efficient, it uses tone-curve information for 

determining the threshold of the filter, while other filter parameters 

such as filter span, are empirically set to fixed values. The fixed-

span sparse filter from [15] has a drawback because a longer filter 

span is needed for effective smoothing of the wider bands, but it is 

not suited in case of narrower bands with non-monotonic trend.   

 

Our proposed 1D filter determines the filter span adaptively 

based on the band properties computed based on pixel values to 

effectively smooth the 1D signal. Secondly, for debanding an 

image i.e. a 2D signal, directional 1D filters applied sequentially 

are useful. Vertical and horizontal filtering is not sufficient to 

remove bands at more angles. Thus, in addition to the two 

Cartesian directions, we propose using diagonal filtering for an 

improved performance. More angles can be possibly used to 

serially remove banding in other directions, but are 

computationally expensive. Thirdly, the filtered output image can 

still contain banding. Thus, we propose using an iterative 

framework to filter the output of the previous iteration to improve 

debanding performance, until a stopping criterion is met. Our 

proposed method is adaptive to image properties, effective in 

considerably reducing banding and parallel-processing friendly for 

efficient implementations. 

Our Proposed Method 
In this Section, we describe our proposed image debanding 

method. The proposed basic filtering unit is a 1D sparse filter that 

draws motivation from [15]. We present our content-dependent 1D 

ASF that consists of scanning bands to record signal properties and 

application of sparse filter with variable tap-distance. This 1D ASF 

is then applied to an image in various directions such as horizontal, 

vertical and diagonals to filter image-pixels. We call this filter as 

multi-scan ASF (MASF). For images with severe banding, an 

iterative MASF (I-MASF) is proposed to gradually reduce the 

banding.  

 

1D Sparse Filter 
We use the basic 5-tap 1D sparse filter proposed in [15]. As 

shown in Figure 2, the 1D sparse filter uses pixels placed at 

specific distances from the center pixel 𝑠[k], which is to-be 

filtered. More specifically, the locations of pixels to be used in 

filtering 𝑠[k] are 𝑠[k ± 𝑞], 𝑠[𝑘 ± 2𝑞], 𝑠[𝑘 ± (2𝑞 + 𝑒)]. By 

design, 𝑒 = ⌊
(𝑞−1)

2
⌋, where  𝑞 is a parameter specifying the pixels 

involved in filtering the pixel 𝑠[𝑘] and ⌊. ⌋ is floor operation. 
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FIGURE 2: 1D SPARSE FILTER FOR SIGNAL SMOOTHING 

 

We first compute the difference between pixel values of each 

non-center pixel with the center pixel 𝑠[𝑘]. In total 6 such 

differences are computed for each of the 6 non-center pixels, we 

denote them as 𝐷𝑘
(𝑖)

, where 𝑖 =  {−3, −2, −1,1,2,3} as shown in 

Figure 2. 

 

The maximum absolute pixel difference 𝐷𝑘
(𝑚𝑎𝑥)

is: 

𝐷𝑘
(𝑚𝑎𝑥)

= max (|𝐷𝑘
(𝑖)

|) , 𝑖 =  {−3, −2, −1,1,2,3} 

 

If 𝐷𝑘
(𝑚𝑎𝑥)

≤ 𝑇ℎ, we assign the central pixel, the average of 5 pixel-

values: 𝑠[k], 𝑠[k ± 𝑞], 𝑠[𝑘 ± 2𝑞]. Let 𝑠′[k] be the filtered output. 

Therefore, 

if (𝐷𝑘
(𝑚𝑎𝑥)

≤ 𝑇ℎ) 

 

𝑠′[𝑘] =
𝑠[k − 2𝑞] +  𝑠[k − 𝑞] + 𝑠[k] +  𝑠[k + 𝑞] +   𝑠[𝑘 + 2𝑞]

5
 

else 

                                       𝑠′[𝑘] = 𝑠[𝑘] 
 

Evidently, this is a conditional sparse filter that uses 𝑇ℎ, or 

threshold for filtering as a parameter controlling the 

debanding/smoothing performance.  

 

If the above sparse filter is used with a fixed q (and 

resultingly, a fixed span of the filter) on entire image, the results 

are dependent on the selection of 𝑞. Regions of images with wide 

bands typically need a larger 𝑞 to remove bands. If we increase 𝑞 

too much, parts of images tend to get over-smoothed which is also 

undesirable. On the other hand, a smaller 𝑞 will result in less 

effective debanding capability. Consequently, tuning 𝑞 adaptively 

based on local pixel parameters can significantly improve the 

picture quality. In our experiments to determine the optimal 𝑞, a 

test image with uniformly spaced “bands” with width 𝑊 was used 

as input to the sparse filtering algorithm. We found that the 

smoothest output (uniform and small steps after filtering) is using 
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𝑞 = 𝑚 [
𝑊

5
], where 𝑚 is a positive integer constant and [. ] is 

rounding operation. In other words, the distance between 

neighboring samples should be a multiple of (
𝑊

5
).  The tunable 

parameter is 𝑊, which is tunable for each pixel and depends on the 

input 1D data. 

Content-Adaptive Sparse Filter (ASF) 
We propose adaptive distance (q) sparse filtering for effective 

debanding performance. Figure 3 shows the workflow of our 

proposed method using three steps. 

 

Analyze Pixels to 

Obtain Band Properties

Compute Adaptive 

Filter Distance

Apply 1D Sparse Filter

Input 1D 

Pixel Buffer

Filtered 1D 

Pixel Buffer  
 

FIGURE 3: PROPOSED 1D ADAPTIVE SPARSE FILTER: 

A FLOWCHART 

 

The input is 1D single channel (e.g. luma of YCbCr) pixel array 

(or buffer). Let 𝑃 be the total number of luma pixels. 

 

[A] Analyze Pixels to Obtain Band Properties: In the first scan 

along one dimension, each pixel value is compared to its neighbors 

to record band properties. We define “band” as a group of 

neighboring pixels having the same value. Assume we have 𝑁 

such groups, and each of which has a start and an end pixel index 

to indicate the location of the band, the pixel value (e.g. luma 

codeword) and the number of pixels or width 𝑊 of the band. Let  

(𝑏𝑗
𝑠𝑡𝑎𝑟𝑡, 𝑏𝑗

𝑒𝑛𝑑) be the start and end pixel indices and 𝛼𝑗  be the pixel 

value of all pixels belonging to the j’th band of the pixel buffer. 

The number of pixels in the j’th band 𝑛𝑗 = 𝑏𝑗
𝑒𝑛𝑑 − 𝑏𝑗

𝑠𝑡𝑎𝑟𝑡 + 1. 

 

Then, we refine the band properties to conditionally merge stray 

pixels to be a part of band. This also allows merging of two sizably 

wide neighboring bands but separated by just a small number of 

pixels whose values are very close but not the same as either of 

bands. Therefore, if all the following conditions are satisfied 

𝑛𝑗+1 <  𝑛𝑡𝑜𝑙 , |𝛼𝑗 − 𝛼𝑗+1| ≤ 𝛼𝑡𝑜𝑙 , 𝛼𝑗 =  𝛼𝑗+2, we merge the j’th, 

(j+1)’th and (j+2)’th bands. We use 𝑛𝑡𝑜𝑙 = 5, 𝛼𝑡𝑜𝑙 = 1 for 1080p 

original 10-bit SDR images on 48”~65”. To apply this for 8-bit-

to10 bit converted images, we should use 𝛼𝑡𝑜𝑙 = 2(10−8) = 4, to 

allow one 8-bit codeword tolerance. Figure 4 shows an illustration 

of this Step [A]. Bands 1, 2, and 3 are merged in this example. 

 

[B] Compute Adaptive Filter Distance: In this step, we assign 

the required distance, 𝑞𝑗, for filtering each pixel in the j’th band. 

Based on our empirical analysis, we assign 𝑞𝑗 = 𝑚 [
𝑛𝑗

5
]. Step [B] is 

illustrated in Figure 4, where 𝑞𝑗 is assigned for each 𝑗’th band. 

 

 
FIGURE 4: PROPOSED 1D ADAPTIVE SPARSE FILTER:  

AN ILLUSTRATION (𝑚 = 𝟏) 

 

[C] Apply 1D Sparse Filter: 1D sparse filter is applied on each 

pixel using its respective distance parameter q. Figure 4 shows an 

illustration of this as Step [C] applied to an example pixel.  

 

Multi-Scan ASF (MASF)  
It is observed that banding artifact in 2-D image can appear in 

different directions along different angles. To produce effective 

visual debanding outcome, we propose a multiple-scan approach in 

which we scan image vertically, taking each column of image, then 

horizontally (taking each row of image) and diagonally. The 

debanding operation in each direction will be done sequentially. 

 

In each direction, we apply the 1D ASF separately on each 

column, row or diagonal-set of pixels. This also enables parallel 

processing to speed up the implementation.  Figure 5 depicts 

MASF workflow. 
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Iterative MASF (I-MASF) Framework 
In a few extreme cases, generally due to poor compression in 

the dark regions, there is still visible banding after one complete 

iteration of MASF algorithm. One way to address this is to 

increase the Th parameter of ASF. But it can remove necessary 

details such as texture/edges etc. Alternatively, if we run MASF on 

the output of the MASF, we see images getting smoother, reducing 

banding further. The key idea is that running MASF iteratively 

may help reduce banding in those extremely poor-quality images. 

Thus, we propose an iterative MASF algorithm (I-MASF) which 

runs MASF repetitively under some operating conditions. 

 

The proposed I-MASF is shown in Figure 6. 

 

 
 

FIGURE 6: PROPOSED ITERATIVE MASF FLOWCHART 

 

 

 

We begin the I-MASF with the input image 𝐼𝑜𝑟𝑖𝑔  (Y-

channel). We then initialize input image 𝐼𝑖𝑛   = 𝐼𝑜𝑟𝑖𝑔 and Th to an 

initial value (say, Th = 16). After MASF, we get 𝐼𝑜𝑢𝑡 as the output 

image of that iteration. Let P is total number of pixels in the image. 

Let 𝐼𝑖𝑛(𝑖) and 𝐼𝑜𝑢𝑡(𝑖) be the i’th luma pixel value of input and 

resulting image of MASF in the current iteration. Then, we 

compute 𝜃, the average sum of absolute difference (SAD) per pixel 

between 𝐼𝑖𝑛 and 𝐼𝑜𝑢𝑡 of the current iteration.  

𝜃 =
1

𝑃
∑|𝐼𝑜𝑢𝑡(𝑖) − 𝐼𝑖𝑛(𝑖)|

∀ 𝑖

 

The average SAD helps determine whether the stopping criteria is 

satisfied or not. We reduce the threshold (Th) parameter by half 

and floor the value to integer.  

 

Stopping criteria: the iterative process is terminated when either 

of the following two conditions is first met: 

 𝜃 < Θ: where Θ is a parameter stating the stopping 

average SAD per pixel, usually of a small value 

indicating a visually negligible change in pixel value.  

 Th = 0:  We stop the process because when Th = 0, it is 

equivalent to no pixel change after filtering.  

Either (or both) of meeting the above stopping criteria indicates 

that no further processing will make image much better. Generally, 

Θ = 0.1/0.2 is reasonable based on our experiments. 

 

If the stopping criteria is not satisfied, we apply another iteration of 

MASF filter on 𝐼𝑜𝑢𝑡 from previous iteration (thus 𝐼𝑖𝑛   = 𝐼𝑜𝑢𝑡) with 

the updated threshold Th to continue the iterative process. 

Experimental Results 
       The proposed debanding method was implemented in C and 

tested using several single images and 230 short video clips. The 

images were coded using YUV 420 10-bit format and were of 

dimensions 720p, 1080p, 2160p, representing a wide range of 

content. Many of them contain banding in a variety of codeword 

range and of different severities. We used commercially available 

televisions to conduct subjective evaluation of our proposed image 

debanding method.  
 

Figure 7 (a) shows an image from movie content. We observe 

the image contains banding in the highlight, mainly the bright sun 

region. Figure 7 (b) shows the result of our proposed debanding 

Initialize Filtering 

Threshold (Th)

Apply MASF using Th

Compute θ using 

Iin and Iout

Iin = Iorig

Original Input Image (Iorig)

Debanded Output 

Image (Iout)

Is θ < Θ  ?  Th  =  floor (Th/2)

Yes

No

Is Th = 0 ?  

Yes

No

Iin = Iout

Iout

FIGURE 5: MULTI-SCAN ADAPTIVE SPARSE FILTERING FOR IMAGE DEBANDING (FLOW DIAGRAM) 
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method. This image took only one instance of I-MASF to converge 

i.e. satisfy our stopping criterion. The resulting image shows 

banding-free image. 

 

 
(a) Original Image 

 

 
(b) Debanding Result (Proposed Method) 

 

FIGURE 7: EXAMPLE I 

 

A more illustrative example is shown in Figure 8. Here, the 

original image in Figure 8 (a) presents banding in the sky/sun 

region. Figure 8 (b) shows the result of first iteration of I-MASF 

where the luma SAD between the original and output image is 

1.71/pixel. It can be observed that this image still contains visible 

banding and needs further processing for banding-free outcome. 

Since our stopping criterion is not satisfied with this SAD value, I-

MASF continued with another iteration to further deband the 

image from Figure 8 (b). The result of second iteration is shown in 

Figure 8 (c) that produced the luma SAD 0.14/pixel. Since the 

stopping criterion (Θ = 0.2) is met, the image in Figure 8 (c) is 

declared as output which presented a visually pleasing image. 

 

Whereas, Figure 9 (a) shows a user-generated content (UGC), 

captured with a mobile phone camera. It contains obviously 

banding in the sky region. The video containing this frame is more 

annoying since the bands shift in successive frames. Here, our 

proposed method applied two iterations of I-MASF before 

converging to the output image shown in Figure 9 (b). It can be 

observed that the result is free of banding and visually pleasing. 

Therefore, our proposed I-MASF method can produce debanded 

images that are visually more pleasing. 

 

  
(a) Original Image 

 

 
(b) Debanding Result: Iteration 1 (Avg. SAD = 1.71/pixel) 

 

 
(c) Final Debanding Result: Iteration 2 (Avg. SAD = 0.14/pixel) 

 

FIGURE 8: EXAMPLE II 

 

Conclusion and Future Work 
In this paper, we presented an iterative image debanding 

method that successively improves the image using a content-

adaptive spatial filter. The input image is filtered in each direction 

i.e. vertical, horizontal and two diagonals. Multiple iterations of 

this directional filtering are employed to improve image quality. 

Experimental results show that our proposed method is effective in 

debanding images from a wide variety of content. In future, we 

plan to study more directions for applying 1D ASF on an image 

and also employ our method to chroma channels. 
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(a) Original Image 

 

 
(b) Debanding Result (Proposed Method) 

 

FIGURE 9: EXAMPLE III 
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