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Abstract 
Traditional approach to collect mean opinion score (MOS) 

values for evaluation of full-reference image quality metrics has 
two serious drawbacks. The first drawback is a nonlinearity of 
MOS, only partially compensated by the use of rank order 
correlation coefficients in a further analysis. The second drawback 
are limitations on number of distortion types and distortion levels 
in image database imposed by a maximum allowed time to carry 
out an experiment. One of the largest of databases used for this 
purpose, TID2013, has almost reached these limitations, which 
makes an extension of TID2013 within the boundaries of this 
approach to be practically unfeasible. In this paper, a novel 
methodology to collect MOS values, with a possibility to infinitely 
increase a size of a database by adding new types of distortions, is 
proposed. For the proposed methodology, MOS values are 
collected for pairs of distortions, one of them being a signal 
dependent Gaussian noise. A technique of effective linearization 
and normalization of MOS is described. Extensive experiments for 
linearization of MOS values to extend TID2013 database are 
carried out. 

Keywords: image visual quality assessment, full-reference 
image visual quality metrics, human visual perception 

Introduction 
Full-reference image visual quality metrics are widely used at 

different stages of digital image processing: verification of new 
image enhancement methods (e.g. image denoising), image quality 
monitoring in lossy image compression and digital watermarking, 
etc. Large test image databases with mean opinion score values are 
used for assessing the correspondence between image quality 
metrics and human visual perception [1]. One of the largest 
available databases is TID2013, which contains 25 reference 
(distortion free) images and 3000 distorted images (24 types of 
distortions and 5 levels for each distortion) [2].  

To obtain MOS values for TID2013, about 1000 observers 
have been engaged. Each observer assessed visual quality of all 
distorted images for one reference image (from totally 120 
images). An average time of one experiment was about 17 minutes, 
near to a maximum allowed time for an experiment (30 minutes 
[3]). Because of the time restriction, it is unfeasible to collect MOS 
values for a next generation of TID2013 with significantly larger 
number of distortion types, since  in the case of a larger database 
(more distortion types or more levels of distortions), the time of 
one experiment will exceed an acceptable time limit. At the same 
time, it is possible to add to such a database more reference 
images, because experiments are performed for each reference 
image separately. In particular, the recently proposed KADID-10k 
database [4] includes the same number of distortions as TID2013, 
but 80 reference images instead 25 as in TID2013. However, to 
reach better representability of such image database for verification 

of visual quality metrics, one should extend number of different 
distortion types and levels of distortions, which is not possible for 
the methodology used in TID2013 and KADID-10k.  

Another drawback of existing methodology is a nonlinearity of 
the obtained MOS (MOS values obtained in [2] are in a non-linear 
scale since the distributions of visual quality of distorted images 
are non-uniform). Specifically, the same value of MOS may 
correspond to slightly different levels of visual quality for different 
reference images. Due to this, one cannot truly rely on root mean 
square error (RMSE) for estimation of correspondence between 
full-reference metric and MOS. In practice, both Spearman and 
Kendall rank order correlation coefficients [5] are used in such an 
analysis, but their values highly depend on overall number of test 
images and the number of noise levels. Moreover, it is difficult to 
use these MOS values for linearization of a given full-reference 
metric. Therefore, to make the TID2013 database expandable, we 
have to solve abovementioned problems. We solve these problems 
in this paper by proposing the following approach.  

For each reference image, a sequence of 20 calibration images 
distorted by signal dependent white Gaussian noise are created. 
Visual quality for the sequence of calibration images (SCI) has to 
vary from 100% for the first image (image is visually 
undistinguishable from the reference image) to 0% for the last 
image (image is practically invisible under the noise). 

We utilize the following two peculiarities of human visual 
system (HVS):  

• an increase of noise level is perceived as linear if a noise 
variance increases in a geometric progression; 

• image regions with higher dissimilarity (e.g., noise-like 
textures and fine details) have higher noise masking ability [6]. 

The formed SCI are used to obtain linearized MOS for other 
distorted images of the same reference image, e.g. for new types of 
distortions added to an existing test image database, whose MOS 
shall be linearized.  

This paper is organized as follows. In Section 2, psycho-visual 
experiments to analyze and ability of HVS to distinguish two 
levels of the noise are described. In Section 3, an algorithm of 
forming SCI is proposed. Section 4 describes experiments to obtain 
linearized MOS for TID2013, to add new types of distortions to the 
database and to merge two existing databases. Finally, Section 5, 
considers two examples, where obtained linearized MOS for 
TID2013 are applied for linearization of values of a full-reference 
image visual quality metric. 

Experimental estimation of sensitivity of HVS 
to additive white Gaussian noise 

Weber-Fechner law [7] states that the relationship between a 
stimulus and human perception is logarithmic. If a stimulus varies 
as a geometric progression, the corresponding human perception is 
altered in an arithmetic progression. Let us explore experimentally 
if this law works for perception of noise level (white Gaussian noise 
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in brightness color component in YCbCr color space) on images or 
not. 

For psycho-visual experiments, we have created two noisy 
versions (noises with variances σ12 and σ22) of a homogeneous test 
image, demonstrated them to an observer asking to decide which 
image has a higher level of noise. This experiment has been 
repeated for many observers and the obtained percentage of true 
decisions (choices) allows us to estimate the ability of HVS to 
distinguish noises with variances σ12 and σ22. 

We have carried out experiments setting σ12 = {16, 50, 100, 
200, 400}, and σ22 = {1.0625σ12, 1.125σ12, 1.25σ12, 1.5σ12} for all 
20 possible combinations of σ12 and σ22.  

Each observer during one experiment has been asked to make a 
decision on 60 pairs of images (3 times for each combination of σ12 
and σ22). Every time the new homogeneous image was used to 
create a new pair of noisy images, in order to prevent learning 
effects. We asked some observers to repeat the experiments for 
several times after a reasonable long break in between. Observers 
chose the most convenient distance between their eyes and a 
monitor.  

 
Figure 1. Main window of the designed software 

Fig. 1 shows the main window of the designed software. A 
total number of experiments was 94. Four results we have rejected 
as abnormal. Thus, 270 elementary decisions for each combination 
of σ12 and σ22 have been collected.  Next, we need to find a 
threshold T for the number of true decisions (D) which cannot be 
accidently obtained. If D is close to T, then people were unable to 
distinguish between noisy images with variances σ12 and σ22. The 
difference D-T corresponds to a confidence of observers in truly 
made decision, higher the difference – more confidence. 

If the decisions would be done accidentally (in a random 
manner), then the number of true decisions shall follow the 
Gaussian distribution with the mean level μ=135 (270/2) and a 
standard deviation σ=8.22. Setting an upper bound T for randomly 
obtained true decisions as μ + 3σ, for our experiments we obtain 
the threshold value T equal to 160.  

Fig. 2 shows curves of dependence between the number of true 
decisions and the difference σ22 - σ12. 

One can see that there are no obvious dependences. The 
difference 8 for σ12=16 is well distinguishable for HVS (234 true 
decisions from 270). At the same time, the difference 25 for 
σ12=400 is practically undistinguished (only 162 true decisions 
from 270). 

Let us analyze now the dependences between the number of 
true decisions and relative variance σ22/σ12 (see Fig. 3). 
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Figure 2. Dependence of the number of true decisions on the difference σ22-
σ12 
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Figure 3. Dependence of the number of true decisions on σ22/σ12 

Here, we can see a strong dependence (except two abnormal 
points for variances 100 and 200, and σ22/σ12=1.0625). Ability of 
HVS to distinguish noise levels as different is proportional to the 
value of σ22/σ12. Therefore, we have empirically demonstrated that 
the Weber–Fechner law works for perception of noise levels, too. 

The presence of two abnormal points in Fig. 3 can be 
explained by learning or adaptation of observers during 
experiments to peculiarities of test images and to noise levels 
(mostly, to noise level which is in the middle of the range of 
variances (see Fig. 4)). 

It is clearly seen that for σ12=100 the largest number of true 
decisions takes place. It is possible also that HVS, on the average, 
is more trained to distinguish middle levels of contrasts, 
brightness, noise levels corresponding to σ12=100. This will require 
an additional research. 

The analysis of dependences in Fig. 3 shows, that HVS 
distinguishes levels of noise well enough for σ22/σ12 exceeding 
1.25. For σ22/σ12=1.125, the number of true decisions is quite low 
(close to T). For σ22/σ12=1.0625, the number of true decisions is 
very low and is at the level of T. 

Thus, if one neglects some roughness in the methodology of 
experiments, it is possible to make the following conclusions. The 
lower bound of distinguishable σ22/σ12 is 6%. For lower σ22/σ12, the 
difference is practically undistinguishable. In other words, noise on 
an image region with variance σ12 is able to effectively mask other 
noise with variance not larger than 1/16 σ12. 
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Figure 4. Number of true decisions for each variance σ12 

 

This conclusion is very important, for example, for the task of 
lossy image compression, because it allows, for a given image 
region, to estimate a level of losses that are visually unperceived 
(undetected) for HVS.  

Forming distorted images with linearly 
decreased visual quality 

Distortions which are visible in images with homogeneous 
regions, are often invisible in highly textured images.  It depends 
on masking ability of image regions. For homogeneous regions, 
even noise with σ2=2 is distinguishable. At the same time, noise 
with σ2=100 can be invisible in images with contrast noise-like 
textures. 

Note that regions with a larger level of local energy not always 
have greater masking ability.  It was shown [6, 8, 9] that masking 
effect of image regions is proportional to dissimilarity 
(unpredictability) of these regions. This peculiarity of HVS is 
illustrated in Fig. 5. 

Fig. 5, a shows a noise-free image. Dissimilarity map (RMSE 
of block matching procedure [6]) for this image is shown in Fig. 4, 
b. Image in Fig. 5, c contains the map of values of local standard 
deviations (for local variances calculated in 5x5 sliding window).  

One can clearly see that unpredictability is higher for the right 
part of the image while local energies are much higher for the left 
part of the image. 

According to these maps, we added to the image in Fig. 5 a 
signal dependent noise.  Noise σ in image in Fig. 5, d for each 
pixel is directly proportional to RMSE in Fig. 5, b. Noise σ in 
image in Fig. 5, e for each pixel is directly proportional to standard 
deviations in Fig. 5, c. For both images, the overall variance is 
equal to 100. 

One can see that in the image in Fig 5, d the noise is located 
mostly on stone textures and is low visible.  For image in Fig 5, e, 
noise is mostly located on contrast but regular and well predictable 
textures in the left part of the image, and it is visually much higher. 
It is because HVS using neighbor textures is able to easily predict 
how the noise free textures should look. 

Taking into accounting this peculiarity of HVS allows us to 
make the following very important conclusion. Minimal visible 
level of noise for different image regions can be significantly 
different. To estimate this level, one should be able to estimate 
masking ability (dissimilarity) separately for each image pixel. 

  

   
a                                  b                                 c 

 
d 

 
e 

Figure 5. Illustration of masking ability of different regions 

Calculation of masking ability map of image pixels 
Let us calculate the map of pixels masking ability separately 

for each color component of a given image in YCbCr color space.  
As the first step, for a given image color component A, the 

dissimilarity map D is calculated (in a sliding window 5x5, search 
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zone 21x21, size of area excluded from searching 3x3) [8]). A fast 
Matlab code for calculation of the map is available at 
http://ponomarenko.info/flt.htm.  

Masking ability M(i,j) of a pixel with indexes i,j is calculated 
as 
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where 1/4 is the difference in variances providing confident 

perception of higher level of the noise (see conclusions in Section 
2), 3 is a variance of the noise which is clearly visible in image 
homogeneous regions. 

An example of calculated map M is given in Fig. 5, b (square 
root of values). HVS.  

Sequence of calibration images with a linear 
decrease of visual quality 

Let us (for a given reference image) create a SCI consisting of 
20 distorted images with a linear decrease of visual quality from 
100% to 0%.  

The first image in the SCI is distorted by an additive noise with 
σ=0.3 (such a noise is invisible). The 20th image is distorted by an 
additive noise with σ=500 (image distorted by such a high level of 
the noise will be impossible to perceive). Remaining 18 images are 
distorted by signal dependent noise, where σ for each pixel is 
calculated as: 

2),(),(),( −=σ LjiKjiMji , 

18
2

),(
500),(
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where i,j are pixel indexes, L is an index of an image in the 
SCI (2..19).  

Here, the coefficient K(i,j) defines a geometric progression for 
noise variances for the pixel and provides linearity of decreasing of 
visual quality. For homogeneous regions, K is equal to 1.77. For 
texture regions, K decreases depending on dissimilarity value of 
the region.   

Examples of SCI built for different reference images can be 
found in http://ponomarenko.info/mmsp2019.html. It is clearly 
seen that for any reference image we have the same scale of visual 
quality.  

Linearization of MOS of TID2013  
For each reference image of TID2013 a corresponding SCI 

was created. Each observer in correspondence with the 
methodology described in [2] carried out pair-wise sorting of SCI 
images with 120 distorted images of this reference image. The 
main window of the software is shown in Fig. 6. 

Each experiment takes, on the average, 5 minutes. Results of 
experiments for 427 observers are obtained. It is approximately 17 
observers for each reference image.  We have used the same 
methodology of calculation of MOS as in [2], rejecting 1% of 
results as abnormal.  

Finally, for each of 25 reference images, there are 20 MOS 
values for SCI images in the scale of MOS of TID2013. It allows 
(by a simple linear interpolation) to rearrange MOS of all 120 
distorted images of this reference image into a linear scale of 
visual quality of SCI images (0...10, where 0 is a minimal possible 
visual quality, 10 is a maximal possible visual quality). 

 
Figure 6. Main window of the designed software for carrying out experiments 
for linearization of MOS for TID2013 

Fig. 7 shows histograms of MOS values of TID2013 before 
and after linearization. As it is seen, distribution of values has 
changed significantly. 
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Figure 7. Histograms of MOS of TID2013 before and after the proposed 
linearization 

The linearized MOS values of TID2013 will be available at  
http://ponomarenko.info/tid2013.htm.   

Note that linearized MOS (due to linking to the fixed linear 
scale of visual quality) allows to add new reference images and 
new types of distortion to the test image database by small 
portions, step by step. Thus, the base becomes easily expandable.  

To add to the database, for example, a reference image B and N 
distorted images, the following experiment should be carried out. 
We have to create SCI for the image B. According to [2], MOS of 
these N+20 images will be obtained. For N<20 one experiment will 
take not more than 6-7 minutes. Finally, MOS of N distorted 
images will be converted into linear scale using the obtained MOS 
of SCI images. After this, the reference image and N distorted 
images with linearized MOS can be added to the database.  

Similar methodology may be used for a merger of existing 
databases into one larger database, which is able to provide more 
reliable metrics’ verification.  

Let us note that linearized MOS allows to calculate RMSE 
between linearized metrics and human perception (for TID2013 
only rank order correlation coefficients can be used). It is possible 
also to calculate weighted RMSE giving larger weights to 
distortions important for a practical task.  
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Linearization of metrics values  
Let us consider two examples of how metrics values can be 

linearized using linearized MOS of TID2013. 
Fig. 8 shows the results of fitting the values of widely used 

SSIM metric [10] to a linearized MOS of TID2013 using "cftools" 
of Matlab.   
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Figure 8. The results of fitting SSIM metric to linearized MOS of TID2013 

Linearized SSIM can be calculated as 
 

SSIMl = 4.947 SSIM11.11 + 3.977, (3) 
 
where 4.947, 11.11 and 3.977 are coefficients obtained as a 

result of the fitting. 
It is interesting that RMSE between linearized MOS of 

TID2013 and SSIMl is equal to 1.11. Taking into accounting that 
the difference in visual quality between SCI images is well 
distinguished, and the difference corresponds to 0.5 
(approximately) in the scale of linearized MOS, RMSE equal to 
1.11 means the possibility of an error in estimation of visual 
quality by SSIM on up to 4 grades of visual quality distinguished 
for human perception. 

Fig. 9 shows the results of fitting the values of PSNR-HMA 
metric [11] to a linearized MOS of TID2013. 

Linearized PSNR-HMA can be calculated as 
 
PSNR-HMAl = 0.2264 PSNR-HMA - 0.4754, (4) 

 
where coefficients 0.2264 and 0.4754 are obtained as a result 

of the fitting. Note, that the equation (4) is linear. This proves that 
mean square error in a logarithmic scale (the base for calculation 
of PSNR-like metrics) is almost linear for human perception. 
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Figure 9. Fitting PSNR-HMA metric to linearized MOS of TID2013 

RMSE between linearized MOS of TID2013 and PSNR-HMAl 
is equal to 1.15.  

Conclusions  
In the paper, we explored important peculiarities of HVS, in 

particular, its ability to distinguish difference in levels of white 
additive Gaussian noise in images. An effective algorithm of 
forming SCI providing sequence of images with linear changing of 
visual quality was proposed. Experiments by linearization of MOS 
for TID2013 test image database have been carried out. It was 
demonstrated that obtained results allow to add new types of 
distortions to the database as well as to linearize metric values.  
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