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Abstract
Without sunlight, imaging devices typically depend on var-

ious artificial light sources. However, scenes captured with the
artificial light sources often violate the assumptions employed
in color constancy algorithms. These violations of the scenes,
such as non-uniformity or multiple light sources, could disturb
the computer vision algorithms. In this paper, complex illumina-
tion of multiple artificial light sources is decomposed into each
illumination by considering the sensor responses and the spec-
trum of the artificial light sources, and the fundamental color
constancy algorithms (e.g., gray-world, gray-edge, etc.) are im-
proved by employing the estimated illumination energy. The pro-
posed method effectively improves the conventional methods, and
the results of the proposed algorithms are demonstrated using the
images captured under laboratory settings for measuring the ac-
curacy of the color representation.

Introduction
Demand of digital imaging devices is rapidly increasing, and

various imaging systems have been utilized for many purposes.
Recently, computer vision algorithms are applied to many fields,
such as object recognition and tracking, image retrieval, or feature
extraction. The digital camera, the eye of the vision algorithms,
basically depends on light sources for capturing the scene. Espe-
cially at night, various artificial light sources have been employed
as active illumination sources for the imaging device. However,
real world images have huge variations of the illumination con-
ditions. Human vision has the tendency to correct for the effects
of the illumination color, but the digital cameras do not have a
mechanism to estimate the illumination source [1]. The ability
to account for the color of the light source is called color con-
stancy [2].

Most of the digital images are generated by the combination
of illumination sources and the reflection or absorption of the en-
ergy from objects in the scene being imaged. The light energy
captured by the imaging sensor is usually represented as below:

fx =

 fR
fG
fB

=
∫

ν

s(λ )I(λ )L(x,λ )dλ , (1)

where fx is often called pixel values with the coordinate x, fR, fG,
and fB denote the color channels of a single pixel, s = [sR sG sB]

T

denotes the spectral sensitivity functions of the imaging device,
I(λ ) indicates the illumination or the energy of light sources,
L(x,λ ) indicates the reflectance of the scene, and ν is the visible
band. In the literature, the illumination is regarded as a function
with respect to the wavelength λ , but in real world images, the
illumination should be considered as the function with respect to
both coordinate x and wavelength λ . Therefore, the illumination
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Figure 1. Problem of the complex illumination. (a) Test image captured

based on the laboratory setting under two different illumination sources.

5500K fluorescent and 6500K LED lighting were used; (b) Output of the gray-

edge algorithm [4]. The colors of the color checker were not inappropriately

estimated; (c) Output of the proposed color constancy algorithm. The gray-

edge algorithm was improved by adopting the proposed illumination estima-

tion algorithm.

condition should be modeled based on the spatially variant system
so the illumination should be rewritten as I(x,λ ).

For the accurate observation of colors, the color stimulus,
which is clearly the product of the reflectance and the illumina-
tion, should incorporate the spatially variant illumination [3]. In
general, estimating the illumination of a single image is consid-
ered an ill-posed problem, and by considering the spatially vary-
ing illumination, the problem becomes more complicated. Nev-
ertheless, the spatially varying function I(x,λ ) should be adopted
for increasing the performance of the computational color con-
stancy algorithms. Figure 1 demonstrates the problem will be
covered. The scenes obtained under spatially variant illumina-
tion conditions will be analyzed based on (1), which is called the
Lambertian model. Note that in Figure 1 (b), without adopting
the spatially varying functional for the illumination, the neutral
patches marked by the white rectangles in the color checkers look
reddish after the color constancy algorithm [4].

The non-uniform distribution of the illumination energy and
the multiple light sources with various color temperatures cannot
be incorporated by the computational color constancy algorithms,
such as gray-world [5], max-RGB [6], shade of gray [7], and gray-
edge [4]. Most of the color constancy algorithms adopt the simple
Lambertian model of (1), and their assumptions about the spa-
tially invariant illumination (i.e., uniform illumination condition)
should be modified for accommodating the illumination condi-
tions of multiple light sources. The pixel value with the Lamber-
tian model considering the spatially varying illumination condi-
tions can be represented as follows,

fx =
∫

ν

s(λ )I(x,λ )L(x,λ )dλ , (2)

where I(x,λ ) indicates the illumination condition with multiple
light sources. Based on the linearity of the light energy (which is
demonstrated in Figure 2, the spatially varying illumination could

IS&T International Symposium on Electronic Imaging 2020
Image Processing: Algorithms and Systems 135-1

https://doi.org/10.2352/ISSN.2470-1173.2020.10.IPAS-135
© 2020, Society for Imaging Science and Technology



be regarded as a linear sum of each light energy from the illumi-
nants, i.e., I(x,λ ) = ∑t It(x,λ ), and t denotes the artificial light
source, such as LED lighting.

In this paper, the spectral sensitivity functions of each band
(R,G,B) are employed to estimate the illumination to solve the
problems of spatially varying illumination. Provided the spec-
trums of light sources are available as prior information, the re-
sponse of imaging sensors to the artificial illumination would be
predictable.

Related Work
The proposed method analyzes illumination conditions of

the multiple light sources using the characteristic of a charge-
coupled device (CCD). Each artificial light source could be spec-
ified by the response to the CCD, which has its own spectral sen-
sitivity function. Therefore, to implement the proposed method,
the sensor’s responses to the light sources should be investigated
beforehand.

Sensor response to the artificial light source
The observed illumination of a single image usually obtained

by low-pass filtering [8], because spatial smoothness is assumed
in the filed of the illumination. We also estimate the illumination
components by convolving the observed image with the Gaussian
blur kernel. The energy of the artificial light source α , obtained
after the low-pass filtering, can be written as below:

e(α,x) =

eα,R
eα,G
eα,B

=
∫

ν

s(λ )Iα (x,λ )dλ , (3)

where e(α,x) indicates the color of the light source α (note that
α denotes the artificial illuminants such as LED, fluorescent, or
incandescent lighting.).

The spectrum of the widely used artificial light sources can
be measured by spectrometers. The CCD could be also used to
evaluate the characteristic of the artificial light sources by utiliz-
ing the spectral sensitivity functions s(λ ). Figure 2 demonstrates
that the linearity of the sensor and that the sensor response to the
certain light source is fixed even under the condition in which
multiple light sources are simultaneously employed. The experi-
ment of Figure 2 shows that each artificial light source possesses
its own spectral response. The CCD, which counts the photons,
linearly measures the energy of R, G, and B bands, and the energy
could be approximated as below:

e(α,x) ≈ eα (x)

µ(α,R)
µ(α,G)

µ(α,B)

= eα (x)µα , (4)

where µα is a response ratio of each band denoting the captured
energy filtered by s, and eα (x) is the total amount of energy from
the light source α in the visible band, i.e.,

eα (x) =
∫

ν

Iα (x,λ )dλ . (5)

The energy of a single light source α , i.e., eα (x), is a function
with respect to x for modeling the spatially variant illumination
and means the energy captured on a single pixel of x.
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Figure 2. Color checker under LED lighting. Top: Color checker under

3100K. 3100K LEDs are perceived as yellowish white; Mid: Color checker

under 6500K. 6500K LEDs are perceived as bluish white; Bottom: Color

checker under 3100K and 6500K. This illumination condition employs the

above light sources at the same time. The color patches in the white rectan-

gles are visualized. The measured pixel values (R, G, B) under the multiple

light sources could be approximated as the sum of the values (R′+R′′, G′+G′′,

B′+B′′) under the independent light source. In the case of chromatic patches,

similar tendencies are observed.

Our experiments were conducted under light sources denoted
by the color temperature as 3100K, 5500K, and 6500K. We used
two types of light sources, LED of 3100K and 6500K and fluo-
rescent bulb of 5500K. Each artificial light sources lit the color
checker in the darkroom. The response ratio µs (|µ| = 1) are
measured on the achromatic patch as in Figure 2. The response
ratio µs, which are the spectral characteristics of light sources, are
obtained in our experiments as below:

µ3100K = [0.442,0.380,0.178]T,

µ5500K = [0.363,0.426,0.211]T,

µ6500K = [0.235,0.396,0.369]T.

(6)

The set of µs are used as a dictionary in our method. Various
information about the artificial illuminations enables our method
to estimate the illumination condition precisely.

Proposed method
Our derivation for the illumination estimation departs from

the illumination condition of two light sources denoted by α and
β , respectively. Note that the proposed method can estimate the il-
lumination with up to three light sources because typical imaging
devices use the Bayer color filter array employing three bands [9].
Our methods can be extended by accommodating the wide band
which contains invisible light waves (e.g., infrared) or by employ-
ing other color filter arrays (e.g., RGBW color filter array).
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Figure 3. Visualized solution of (9). The images in the top row are the

decomposed illumination, and the images in the bottom row are the captured

under the single artificial light source independently for comparison.

Illumination estimation
The illumination I(x,λ ) can be substituted for the sum of the

artificial illuminantion to incorporate the multiple light sources as
mentioned in the previous section. The triplets for the illumina-
tion color under two light sources, (Iα and Iβ ) can be represented
as below:

ex =

eR
eG
eB

=
∫

ν

s(λ )(Iα (x,λ )+ Iβ (x,λ ))dλ . (7)

The distributive property of the integral can be applied right-hand
side of (7) to accommodate the characteristics of the CCD. The
observed illumination color can be rewritten utilizing (3) and (4)
as below:

ex ≈ eα (x)µα + eβ (x)µβ , (8)

where µα and µβ are from the set of response ratios.
The observed illumination color is represented as a linear

combination of the artificial light sources with prior information
µα and µβ , and (8) can be converted into the matrix form, i.e.,

ex ≈ [µα |µβ ]

[
eα (x)
eβ (x)

]
= Mêx, (9)

where êx denotes the artificial illumination to be estimated. The
matrix M can be inversed by various methods such as the least
squares approximation. The images of the top row in Figure 3
demonstrate the visualized solution of (9) which can be obtained
as below:

êx = M†ex, (10)

where M† denotes the inverse matrix of M. The solution of (9) is
the estimated energy of each light source. Light from the multiple
illuminants is decomposed by (10) in which the components of êx
mean the decomposed light energy captured in a single pixel.

Improving color constancy algorithms
The conventional methods could be improved by utilizing

the decomposed illumination êx. To estimate the spatially vari-
ant illumiation, the input image is decomposed into two signals.
The decomposed signal fα , which is the region affected by the
illuminant α , is obtained as follows:

fα = f⊗ eα

(eα + eβ )
, (11)

where f is the input image, ⊗ is the componentwise product, and
eα the signal consists of eα (x). The decomposed signal of the
illuminant β is obtained in the same manner. To estimate the illu-
mination condition, fα and fβ , which are regarded as decomposed
layers, act as an input of the color constancy algorithm indepen-
dently.

By employing the decomposed signal of (11) as input sig-
nals, the assumptions of the static methods of the conventional
color constancy algorithms can incorporate the spatially varying
illumination conditions. The assumption of the edge-based algo-
rithm [4] with our estimation method is represented as follows:

∫ ∣∣∣∂ nLζ (x,λ )
∣∣∣dx∫

xn = g(λ ) = k, (12)

where Lζ denotes the reflectance components affected by the sin-
gle illumination and ζ ∈ {α,β}. Similarly, assumptions of other
conventional methods can solve the problems due to the complex
illumination conditions by employing the decomposed signals.

Experimental Results
Computational color constancy algorithms

Differences in illumination cause the imaging devices to
measure object colors to be biased toward the color of the light
source [10]. The color constancy algorithms, separated in three
groups: static, gamut-based, and learning-based methods, correct
for the effects of the color of light [1]. In this paper, the static
methods are improved by considering the sensor response men-
tioned in the previous section. The static methods are simpler and
faster than other groups, but vulnerable to the illumination condi-
tions with non-uniform multiple light sources as demonstrated in
Figure 1.

The static methods are explained by a single framework in-
corporating the gray-world and gray-edge hypotheses [4]. The
framework is written as below:

(
∫ ∣∣∣∣∂ nfσ (x)

∂xn

∣∣∣∣p)1/p = ken,p,σ , (13)

where fσ = f ∗Gσ is the convolution of an input image with a
Gaussian filter with a parameter σ , p is the Minkowski-norm
(for detail, refer to [1, 4, 10]). Various algorithms are represented
by the symbol (n, p,σ ), and gray-world [5] with (0,1,0), max-
RGB [6] with (0,∞,0), shade of gray [7] with (0,7,0), and gray-
edge [4] with (1,7,4) are improved. The improved algorithms are
represented based on (13) as bellow:

(
∫ ∣∣∣∣∂ fα

σ (x)
∂xn

∣∣∣∣p)1/p+(
∫ ∣∣∣∣∣∂ fβ

σ (x)
∂xn

∣∣∣∣∣
p

)1/p = ken,p,σ
α + len,p,σ

β
, (14)

where eα and eβ are colors of the artificial light sources.

Measurements
Several experiments were conducted to measure the perfor-

mance of the improved algorithm, in comparison with the corre-
sponding original algorithm. Figure 4 shows the final results. The
algorithms adopting the proposed illumination estimation show
more accurate values on the color checker in terms of the angu-
lar error. The images used in our experiments contain the color
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Figure 4. Experimental results of various algorithms. (a) Top: input image illuminated by multiple light sources, 6500K (left-hand side) and 5500K (right-hand

side). Bottom: results of the illumination decomposition; (b) Top: gray-world. Bottom: improved gray-world; (c) Top: max-RGB. Bottom: improved max-RGB; (d)

Top: shade of gray. Bottom: improved shade of gray; (e) Top: gray-edge. Bottom: improved gray edge.

checker, and the achromatic patches were utilized to evaluate the
performance. For the objective assessment, the angular error is
represented as below:

angular error = cos−1(ṽo · ṽr), (15)

where ṽo is a normalized vector derived from the observed achro-
matic patches, and ṽr a normalized reference vector. Table 1
demonstrates the angular errors measured based on the obtained
results. In most cases, the improved versions recorded lower val-
ues which mean more accurate estimation.

Table 1: Measured angular errors form the test images. The
proposed algorithms are marked with (i) which means im-
proved by the proposed illumination estimation method.

image1 image2 image3

Input 18.9 15.7 13.3

Gray world [5] 11.8 8.6 6.7

Gray world(i) 11.6 8.8 6.5

Max-RGB [6] 24.4 17.6 7.8

Max-RGB(i) 18.2 11.3 9.8

SoG [7] 18.0 17.6 10.3

SoG(i) 10.6 14.0 9.2

Gray edge [4] 22.2 21.4 9.7

Gray edge(i) 10.4 17.3 8.9

Conclusion
The illumination estimation method to improve the computa-

tional color constancy algorithms is proposed utilizing the sensor
response to the artificial illumination. Based on the prior infor-
mation, the conventional methods with the low complexity are
improved. The improvement scheme can be applied to not only

the color constancy but also other algorithms (e.g., contrast en-
hancement or auto focusing algorithm) that are suffering from the
aforementioned illumination conditions.
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