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Abstract 

In this paper, we investigate person re-identification (re-ID) in 
a multi-camera network for surveillance applications. To this end, 
we create a Spatio-Temporal Multi-Camera model (ST-MC model), 
which exploits statistical data on a person’s entry/exit points in the 
multi-camera network, to predict in which camera view a person 
will re-appear. The created ST-MC model is used as a novel 
extension to the Multiple Granularity Network (MGN) [1], which is 
the current state of the art in person re-ID. Compared to existing 
approaches that are solely based on Convolutional Neural Networks 
(CNNs), our approach helps to improve the re-ID performance by 
considering not only appearance-based features of a person from a 
CNN, but also contextual information. The latter serves as scene 
understanding information complimentary to person re-ID. 
Experimental results show that for the DukeMTMC-reID dataset 
[2][3], introduction of our ST-MC model substantially increases the 
mean Average Precision (mAP) and Rank-1 score from 77.2% to 
84.1%, and from 88.6% to 96.2%, respectively. 

 
Index Terms— Scene understanding, person re-identification, 

spatial constraints, temporal constraints, context information 
DukeMTMC, DukeMTMC-reID, CNN. 

Introduction 
Nowadays, surveillance cameras are installed everywhere in 

cities, especially in public areas, such as shopping and city centers, 
bus and railway stations, campuses and airports. These cameras 
constitute networks offering wide spatial coverage. As an example, 
Fig. 1 shows a multi-camera network of a part of the Duke 
University campus. Multi-camera networks generally provide a 
plurality of videos that are used for surveillance or security 
purposes.  

When a surveillance operator would like to track a specific 
person across multiple camera field-of-views (FOVs), the operator 
needs to observe which camera FOV the person came from and 
which camera FOV he is going to. The accuracy of the observed 
result directly determines the success of the multi-camera tracking. 
Furthermore, this manual observation is extremely time-consuming. 
Hence, automated person re-identification (re-ID) is vital and 
preferred over manual search.  

Person re-ID is defined as a task in computer vision that aims 
to determine whether a specific person that enters the FOV of one 
camera has been previously detected in other cameras. In current 
research practice, plenty of labeled pedestrian images are cropped 
from the surveillance videos. These images are divided into a 
‘Query’ set and a ‘Gallery’ set, as shown in Fig. 2. These two sets 
are utilized as a validation dataset for the re-ID process. For each 
query sample, re-ID aims to find correspondences with the large 
gallery set, such that the query person can be identified.  

Person re-ID is an essential, yet still very challenging task. One 
of the main challenges is the variation in the appearance of a person 
over different cameras, since cameras may operate at different 
exposure settings, as well as under different lighting, illumination, 
weather, and daytime conditions. Moreover, the same person may 
wear completely different clothing on the next day, which restricts 
the applicability of re-ID. A second serious challenge is a difference 
in the person pose towards different cameras, since a person may be 
oriented to a camera frontally, sideways or even backwards. Thirdly, 
the captured pose of the same person may also be different. Since a 
person may run, walk, or move slowly, his pose also differs over 
time. Finally, low camera density in the surveilled area, as imposed 
by typical person re-ID use cases, leads to non-overlapping FOVs 
between these cameras and thus causes ambiguity in spatio-temporal 
relations.  

Face information is hard to be utilized in re-ID, since faces are 
not always visible in the camera view. Additionally, since the FOV 
of a typical surveillance camera is rather wide, the imaging quality 
of a visible face is insufficient in terms of resolution. Therefore, it is 
virtually impossible to extract discriminative features of a face.  

 
Figure 1. Top view of the multi-camera network setup of the Duke University 
campus, as used in the DukeMTMC dataset [2]. The blue stars indicate the 
position of the cameras. The colored regions illustrate the fields of view for 
every camera 

 
Figure 2. Example of Query images and Gallery images for the DukeMTMC-
reID [3] [2] dataset. For each person, the query images are randomly selected 
from each camera FOV. The remaining images are stored in the gallery set. 
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Existing work on person re-ID can be generally divided into 
non-contextual and contextual approaches [4]. From the deep 
learning concept which has emerged recently, non-contextual 
approaches have achieved success by applying convolutional neural 
networks (CNNs) on feature descriptor learning [5][6] and metric 
learning [7]. Consequently, non-contextual approaches solely rely 
on features that are learned from the sample images alone. On the 
other hand, the contextual approaches aim to also exploit the 
external contextual information, such as inter-camera relationships 
[8], and then implement re-ID based on that information. 

When considering re-ID algorithms in general, ideally a 
proposed match from the gallery should not only have high 
similarity in appearance to the query, but also satisfy the contextual 
requirements, such as spatio-temporal constraints. To illustrate this, 
consider the camera network, as shown in Fig. 1, and assume we 
have a query image from Camera 1 and a gallery image from Camera 
7, where the time difference between these two images is e.g. 5 
seconds and both images contain similarly dressed persons. Since 
we know it takes on average around 1 minute to travel from Camera 
1 directly to Camera 7, we conclude that this image pair cannot 
satisfy the spatio-temporal relationship. As a result, it is possible that 
a feature-based approach returns an incorrect match, but if we 
involve the contextual (timing) constraints, we can correct for this 
error. Therefore, a hybrid deployment of both contextual and non-
contextual approaches forms an attractive proposition.  

In this project, the re-ID performance is improved by 
increasing the matching score for correct candidates from 
neighboring cameras of the query camera. To achieve this, we focus 
on a hybrid deployment of (1) a contextual re-ID verification 
approach with a spatio-temporal multi-camera model, and (2) a non-
contextual CNN-based re-ID approach that adopts the multiple 
granularity network (MGN). First, we propose and experiment with 
several spatio-temporal model generation techniques. Second, we 
investigate the optimal ways of integrating the spatio-temporal 
multi-camera model into the re-ID process, which leads to improved 
re-identification performance. 

Related Work 
As described in the introduction, person re-ID research can be 

generally classified into non-contextual and contextual approaches.  
Non-contextual approaches mainly focus on finding powerful 

and discriminative feature descriptors using metric embedding. 
Originally, CNNs were trained to learn single global features 
[9][10][11][12][13][14]. Instead of learning a global feature from 

the entire image of a person sample, the works in [6][15][16][17] 
divide an image into a few local branches, to generate local features 
and then aggregates a global feature. During the training process, 
metric embeddings [7] are learned to ensure that the distances 
between the feature vectors of images of the same person are small, 
while those of different persons are large. 

Although these non-contextual approaches achieve high person 
re-ID performance [5][6][9], there is a potential improvement by 
also involving contextual constraints. Several research works have 
proven that the pre-known contextual constraints such as camera 
topology, are valuable for consideration [18][19]. 

Contextual approaches are employed to extract the contextual 
constraints and then implemented person re-ID based on those 
constraints. A few papers involve the human pose in re-ID, the 
contribution of [20] utilized change of poses to obtain metrics that 
match the appearances of a person in different poses. Furthermore, 
many researchers aim to find the spatio-temporal relationship 
between cameras [21][22]. Several works observed the entering and 
exiting events of people, and thereafter design the camera topology 
based on the measured event correlation [23][24]. Cho and Yoon 
exploited the feature that people walk at different speeds and 
proposed a distance-based camera topology network to implement 
re-ID [21].  

Although existing contextual approaches already report 
improving person re-ID performance, a proper spatio-temporal 
camera model allows to verify the re-ID candidates by employing 
the spatio-temporal statistics on the scene exit and entry events. 
Furthermore, the optimal ways of integrating the generated 
contextual model into the re-ID process are investigated. 

Our Approach 
In this section, we first introduce the generic re-ID training 

setup and datasets in Subsection A. Afterwards, we explain several 
frequently mentioned definitions in Subsection B. Then, the two 
main parts, such as the generation of the spatio-temporal multi-
camera model and the integration of the camera model into the re-
ID process (see in Fig. 3) are explained in the remaining subsections. 

A. Training setup 
A set of labeled pedestrian images, which are cropped from 

surveillance videos obtained from multiple cameras, is defined as 
the re-ID dataset. As shown in Fig. 4a, the re-ID dataset is typically 
divided into three sets, ‘Train’, ‘Query’ and ‘Gallery’. The ‘Train’ 

 
Figure 3. Structure of our approach. The query and gallery image will be sent to the CNN to calculate the visual similarity and their spatio-temporal (ST) 
information, such as entry/exit points. This information is supplied into our ST model for obtaining the ST score. The computed re-ID and ST scores are optimally 
combined in the integration phase, which returns the final similarity score for the query and gallery image. The two colored blocks indicate our additional modeling. 

095-2
IS&T International Symposium on Electronic Imaging 2020

Image Processing: Algorithms and Systems



 

set is used for re-ID model training, while the ‘Query’ and ‘Gallery’ 
sets are employed only for validation. The ‘Gallery’ set contains 
several images for each query person at different cameras. In other 
words, each query image has multiple candidates in the ‘Gallery’ 
set. To find the candidate ranking list of one query image, we need 
to calculate a score for each gallery image. A candidate with a higher 
score means that the candidate is more likely to be identical to the 
person in the query image.  

Since we have added an extra spatio-temporal model, the 
learning of the features of this supplementary model needs to be 
incorporated in our training procedure.  Therefore, a new data 
distribution is necessary (Fig. 4b) for our integration phase.  That is, 
in our first phase, a spatio-temporal model is trained to explore the 
spatio-temporal constraints and the Multiple Granularity Network 
(MGN) [1] is trained to obtain the (visual) discriminative features of 
people. Thereafter, in our integration phase, these parts are 
combined to refine the most likely matches that the CNN would 
have returned alone. Nevertheless, we have observed that if we 
utilize the ‘Train’ set for both the training and integration step, 
learning the weights for optimal integration failed because the CNN 
was already 100% effective on the ‘Train’ set, leaving insufficient 
data to tune the integration. Furthermore, we cannot use the ‘Query’ 
and ‘Gallery’ sets to investigate the weights, since these two sets can 
only be used for validation. Consequently, the ‘Train’ set is divided 
into a ‘Train new’, a ‘Train query’ and a ‘Train gallery’ set (Fig. 4b), 
where ‘Train new’ is used to train both the multi-camera model and 
the CNN, while the latter two sets are used to tune the integration. 

B. Frequently mentioned definitions 
Prior to proceeding to the spatio-temporal model, we explain 

important definitions. 

1) QG pair 
In our approach, we regard one query image and one gallery 

image as a query-gallery image pair (QG pair), see e.g. Fig. 5. 

2) QG path 
The camera IDs (CIDs) of the two images indicate a ‘QG path’ 

for the QG pair. In the example in Fig. 5, the CIDs of the query and 
gallery image are five and two, respectively. Thus, the QG path 
would be ‘Camera 2 to Camera 5 (c2→c5)’ or ‘c5→c2’. The choice 
of the direction is based on the next definition ‘Past (Future) QG 
pair’. 

3) Past (Future) QG pair 
A QG pair can be either a past pair or a future pair, as illustrated 

in Fig. 6. We define a QG pair as a ‘past pair’ when the gallery image 
is captured before the query image and vice versa for the ‘future 
pair’. We determine the direction of the indicated path based on the 

capturing times of the two images, as indicated by the frame time. 
The direction is important when choosing the correct algorithm to 
calculate the spatial confidence score, more details on this follow in 
Subsection C.  

4) Exit/Entry point of a person 
Considering that a person passed several camera FOVs, the 

image coordinates of the starting and ending points of his tracklet in 
each FOV are the entry and exit points for that person (see Fig. 9). 
We explore the entry/exit points of all people in both the query and 
gallery sets, to determine the spatio-temporal constraints. 

5) Spatial (Spatio-temporal) confidence scores 
Essentially, our spatio-temporal multi-camera model provides 

a proper source for computing a spatial confidence score and a 
spatio-temporal confidence score for each candidate QG pair in the 
‘Train new’ dataset. The spatial confidence score indicates the 
likelihood that the query person has walked via this specific path (in 
other words has been seen or will be seen in Camera X) as suggested 
by the currently considered QG pair. The spatio-temporal score 
indicates the likelihood of the camera-to-camera transition time of 
this QG path. 

Using these definitions, we proceed to the spatio-temporal 
multi-camera model. 

C. Generation and application of the spatio-
temporal multi-camera model 

As shown in the overview in Fig. 7, the spatio-temporal model 
is divided into a spatial part and a temporal part. In the spatial part, 
we first introduce the model generation approach (Approach C.1) 
and then its usage during inference (Approach C.2). Similarly for 
the temporal part, the modeling and inference is covered by 
Approach C.3 and Approach C.4, respectively.  

 
Figure 4. Illustration of re-ID data distributions. (a) Typical re-ID data 
distribution. (b) New re-ID distribution used in our hybrid approach.  
90% of the samples in ‘Train’ set are assigned in ‘Train new’, while ‘Train 
query’ and ‘Train gallery’ contain the remaining 10% of samples. 

 
Figure 5. Example of a QG pair. Naming rules for the bottom label are  
“person ID_camera ID_current frame time”. 

 
Figure 6. Illustration of a 'Past QG pair' and a 'Future QG pair'. In this 
example T1<T2<T3, thus Q𝐺𝐺1 is a past pair and the indicated Q𝐺𝐺1path is 
c2→c5. Future pair Q𝐺𝐺2 indicates a path c5→c2. 
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1) Generation of Spatial Model 
For each camera FOV, we plot the entry and exit points of all 

pedestrians (see the example of Fig. 9). To augment the training 
data, we assume that if a person travels from camera FOV A to B, 
then there is an additional travel path from camera FOV B to A with 
the interchanged entry/exit points. In other words, each point in Fig. 
9 indicates a bi-directional travel path. For example, a green point 
in Fig. 9 can be the entry point of a c2→c5 travel path, but also the 
exit point of path c5→c2. Observing all entry/exit points in each 
camera, we have found that the points with the same color are 
clustered around the same image area. This clustering indicates that 
people always cross a specific area when traveling between two 
specific cameras. Therefore, since we can obtain statistical data on 
the entry/exit point clustering by considering all persons in the 
‘Train new’ set, we are able to design the spatial model for that 
camera. 

In Fig. 8, the images ‘Query’ and ‘Gallery image 1’ are forming 
a QG pair example. For this past QG pair, 𝑄𝑄𝐺𝐺1, we need a spatial 
model that can use the image coordinates of the query’s entry point 
(‘Entry𝑄𝑄’ in Fig. 8) to provide the confidence score that the query 
person has been seen earlier by the camera of the gallery image, in 
this case Camera 2, i.e. P(Query last appeared in Camera 2 |𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄). 

Given the clustering nature of our entry/exit points, the function of 
our spatial model is comparable to a soft classifier. The soft 
classifier first estimates the class conditional probabilities and then 
uses the estimated probabilities to implement classification [25]. In 
our case, what we need are the intermediate results, which are the 
probabilities. Therefore, we have decided to adopt a soft classifier 
as our spatial model. We have tested several widely used classifiers, 
such as support vector machine (SVM) and random forest (RF), and 
finally selected the RF, since it proved to perform more accurately 
in our application. 

To train the spatial model, we first determine the entry/exit 
points of all persons in the ‘Train new’ set, in each camera FOV. In 
practice, technologies of person tracking in single-camera FOV are 
mature, so we assume that we utilize a perfect tracker, which means 
the tracker returns the starting and ending points of a single tracklet 
without error. Hence, the entry/exit points are extracted from the 
ground-truth table of the dataset. These points are used as labels that 
additionally annotate from which camera that person comes from (or 
goes to) directly. Next, due to the random nature of RF models, we 
use 90% of these labeled points to train several RF models [26] for 
each camera and the remaining 10% to select the best RF model for 
each camera. Consequently, our final spatial camera model is 
composed of eight different RF models, one for each camera in the 
dataset.  

Finally, each trained RF model contains T trees, as illustrated 
by Fig. 10 [27], where each tree will give different estimated class 

 
Figure 7. Overview of the generation and application of the spatio-temporal 
model. ‘Train new’ set is used to generate the spatio-temporal model, QG 
pairs from the ‘Train query’ and ‘Train gallery’ set are the inputs of the spatio-
temporal score calculation. 

 
Figure 8. Example of the trajectory of person ID 0001 (c2→c5→c6) and 0022 (in c2). In this example, 𝑄𝑄𝐺𝐺1 is a past pair (linked by the red dashed line), 𝑄𝑄𝐺𝐺2 is a 
future pair (linked by the yellow dashed line).  

 
Figure 9. Example of the entry/exit points in Camera 5. Coloring is used to 
label the entry/exit points for different paths. Red: travel path c1⟷c5. Green: 
travel path c2⟷c5. Cyan: travel path c3⟷c5. Blue: travel path c4⟷c5. 
Magenta: travel path c5⟷c5. Yellow: travel path c6⟷c5. Olive green: travel 
path c7⟷c5. Orange: travel path c8c5. 
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conditional probabilities. The output of each tree is combined by 
taking the average of these conditional probabilities, as specified by:  

p(𝑐𝑐|𝑣𝑣) =  
1
𝑇𝑇
�𝑝𝑝𝑡𝑡(𝑐𝑐|𝑣𝑣)
𝑇𝑇

𝑡𝑡=1

, (1) 

where parameter T is the number of trees and 𝑝𝑝𝑡𝑡(𝑐𝑐|𝑣𝑣) indicates the 
estimated conditional probability of the 𝐸𝐸𝑡𝑡ℎ tree that the entry/exit 
point (v) belongs to a specific camera ID (CID c). The next 
subsection will introduce the method to obtain the spatial confidence 
score as determined during inference, based on the trained spatial 
models. 

2) Calculation of Spatial Score 
The trained spatial camera model can now be used to obtain the 

spatial confidence score that a query person is entering to (or exiting 
from) a specific neighboring camera. The procedure to obtain the 
spatial confidence score is illustrated in Fig. 11. In this subsection, 
we will still consider 𝑄𝑄𝐺𝐺1 from Fig. 8 (i.e. ‘Query’ and ‘Gallery 
image 1’) as a QG pair example. 

From the ground-truth data of the DukeMTMC-reID dataset, 
all spatial and temporal information of the images can be 
determined, such as camera ID (CID), image coordinates of 
entry/exit points and frame times. The latter can be used to obtain 
an overall synchronized time for all images. However, the start time 
of each camera is different, so we need to add the corresponding 
start time to the frame time to obtain the synchronized time. 

To calculate the spatial confidence score, we first need to judge 
if the selected QG pair is a past pair or a future pair, as this affects 
the choice of feeding the entry or exit point to the spatial model. As 
shown in Fig. 8, a past pair (linked by the red dashed line) will utilize 
the entry point of the query image (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄) and the exit point of the 
gallery image (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺𝑋𝑋), while a future pair (linked by the yellow 
dashed line) will use 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺𝑋𝑋. 

Because of our 𝑄𝑄𝐺𝐺1 is a past pair, we feed 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺1 
to the trained spatial models to calculate two scores, as shown in Fig. 
11. The first score is the probability that the query person comes 
from Camera 2 (the CID of 𝐺𝐺1), thus the likelihood value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄 
leads to Camera 2. The second is the probability that the person of 
the gallery image goes to Camera 5 (the CID of 𝑄𝑄), so the likelihood 
value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺1  leads to Camera 5. The exact values of these scores 
are determined by applying Eqn. (1). If one of the two scores is zero, 
it means that the selected QG pair does not satisfy the spatial 
constraint, so we set the spatial confidence score to zero. This 
bidirectional check helps to filter out QG pairs, like 𝑄𝑄𝐺𝐺3 in Fig. 8, 
which have high ‘score1’ but ‘score2’ equal to zero. If both ‘score1’ 
and ‘score2’ are non-zero, we take the average and use that as the 
spatial confidence score of the considered QG pair. The averaging 
helps to compromise the result for those QG pairs having 
unbalanced scores (e.g., score1=0.5 and score2=0.99). This 
phenomenon happens in the mixture area (see bottom-right part of 
Fig. 9) where the same entry/exit area can lead to several other 
cameras. Our spatial model is a soft classifier and provides 
probabilities like 0.5 in the areas with high uncertainty. 

We calculate the spatial confidence score for every QG pair in 
the dataset. Only QG pairs that have a non-zero spatial confidence 
score will be used in computation of the spatio-temporal score. 

3) Generation of Temporal Model 
The temporal model is obtained by determining the distribution 

of camera-to-camera transition times for all travel paths, as 

introduced in Approach C.1. Fig. 12 shows two typical time 
distributions of two possible travel paths, where the distribution of 
Fig. 12.a can be represented by a single Gaussian distribution that is 
directly learned from the data. However, for the distribution in Fig. 
12.b, there are two possible single pedestrian roads between Camera 
2 and Camera 5 (see Fig. 13). In this case, we can obtain a more 
accurate travel time prediction if we separate between the two roads, 
as the walking distance of each road may be different. Hence, we 
now fit two Gaussian distributions for modeling the probabilities. 

To determine the number of spatial clusters of entry/exit points 
for each travel path, we deploy the density-based spatial clustering 

 
Figure 10. Example of the structure of random forest (RF). In this RF 
example, there are T trees in the forest, and each tree returns different class 
conditional probabilities. 

 
Figure 11. Example of obtaining the spatial score. By comparing 𝑇𝑇𝐸𝐸𝑇𝑇𝑇𝑇𝑄𝑄 and 
𝑇𝑇𝐸𝐸𝑇𝑇𝑇𝑇𝐺𝐺, we select the algorithm for the past pair. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄 and  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺 are 
supplied into spatial Model 5 and 2 separately, to calculate the probability that 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄 can lead to Camera 2 (Score 1) and the probability that 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺1 can 
lead to Camera 5 (Score 2). The spatial score is the average of Score 1 and 
Score 2. 
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algorithm (DBSCAN) [28]. So, for the mentioned example of Fig. 
13, DBSCAN allows us to detect that there are two roads between 
Camera 2 and Camera 5. In the remainder of the paper, we refer to 
these spatial clusters as ‘zones’. Thus, each QG path may have one 
or more query zones.  

Once we have fitted a Gaussian probability distribution to each 
zone, we have obtained the temporal model, which is a set of 
Gaussian parameters, for each possible pedestrian road. Fig. 14 
shows the obtained probabilistic temporal models of the examples 
in Fig. 12. In the multiple zone situation, a zone classifier is required 
to choose the correct time distribution. We investigated both RF and 

SVM algorithms to classify which zone the entry point of the query 
sample belongs. More details about this comparison will be 
explained in the Experiments and Results section. The next 
subsection explains application of the trained temporal models and 
calculation of the spatio-temporal confidence score during 
inference. 

4) Calculation of Spatio-temporal Score 
We utilize both the generated temporal model and the trained 

zone classifiers to obtain the temporal confidence score for a QG 
pair. Fig. 15 illustrates the procedure to obtain the spatio-temporal 
confidence score when evaluating the example QG pair. Essentially, 
the spatio-temporal score employs spatial condition information to 
select the useful temporal information. For this reason, the output of 
a temporal model is called a spatio-temporal score.  

The timestamp and entry/exit coordinates from the two images 
of the selected QG pair and its corresponding spatial score are used 
as input for the temporal part. We only consider QG pairs having a 
non-zero spatial confidence score, since only then the travel path as 
implied by the QG pair, is possible. Subsequently, if the currently 
considered travel path has multiple zones, we supply 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄 (or 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄) into the trained zone classifier to determine which zone and 
corresponding temporal model applies (e.g, the blue line of Fig. 15 
for the example QG pair). Once we have selected the correct 
temporal model for a QG pair, the spatio-temporal confidence score 
is simply the probability that corresponds to the time difference of 
the QG pair. In other words, we determine how likely the actual time 
difference between the entry/exit points of the currently evaluated 
QG pair is.  

Finally, if the query and the gallery image are from the same 
camera, we enforce the temporal confidence score to zero because 
the transition time under this situation is very diverse and there is 
thus no suitable time distribution. The above procedure is repeated 
to calculate the spatio-temporal confidence score for every QG pair, 
and the obtained spatio-temporal confidence scores are used as one 
of the inputs in the integration part. 

 
Figure 12. Examples of time distributions. (a) Time distribution for path 
‘Camera 3 to Camera 4’ (c3→c4). (b) Time distribution for path c2→c5. 

 
Figure 13. Illustration of two possible pedestrian roads for a single travel path. 
Red points in each camera FOV indicates the entry/exit points of these two 
roads. DBSCAN helps to determine that there are two spatial clusters (zones) 
of entry/exit points for path c2↔c5 in both Camera 5 and Camera 2. 

 
Figure 14. Example of obtained temporal models. (a) Temporal model for path 
c3→c4. (b) Temporal models for path c2→c5. 
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D. Integrating spatio-temporal model with CNN 
At this point we have obtained a spatio-temporal confidence 

score for each QG pair, so that we can integrate our spatio-temporal 
model and our CNN for visual similarity features. As such, a weight 
optimization procedure is required to combine the following three 
parameters: the re-ID confidence score from our fully trained MGN 
network (Parameter P1), the spatial confidence score (P2) and the 
spatio-temporal confidence score (P3). We investigate the following 
three different combination approaches to obtain the final similarity 
score for a single QG pair:  

 𝐹𝐹𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑠𝑠𝑐𝑐𝑠𝑠𝐸𝐸𝑇𝑇 𝑣𝑣1 = 𝑃𝑃1 ∗ 𝑤𝑤1 + 𝑃𝑃3 ∗ 𝑤𝑤3, (2) 
 𝐹𝐹𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑠𝑠𝑐𝑐𝑠𝑠𝐸𝐸𝑇𝑇 𝑣𝑣2 = 𝑃𝑃1 ∗ 𝑤𝑤1 + 𝑃𝑃2 ∗ 𝑤𝑤2 + 𝑃𝑃3 ∗ 𝑤𝑤3, (3) 
 𝐹𝐹𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑠𝑠𝑐𝑐𝑠𝑠𝐸𝐸𝑇𝑇 𝑣𝑣3 = 𝑃𝑃1 ∗ 𝑤𝑤1 + (𝑃𝑃2 ∗ 𝑃𝑃3 ∗ 𝑤𝑤4), (4) 

with weights w1-w4. Eqn. (2) is specifically considered since the 
optimal value for w2 proved to be very small. As shown in Approach 
A, we apply this weight optimization procedure on the ‘Train query’ 
and ‘Train gallery’ dataset. 

After ranking all gallery images (for one query at a time) using 
these final similarity scores, we evaluate the performance of each 
equation using three objectives. The first objective is to maximize 
the overall mean average precision (mAP). The second objective is 
inspired by the fact that for a few query samples, the spatio-temporal 
model reduces the AP score. Therefore, we determine the weights 
that maximize the sum of positive and negative mean changes of the 
AP. The final objective is that the optimal weights should also 
maximize the Rank-1 score. The optimal weights are thus obtained 
by solving: 

𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡  = (𝑇𝑇𝑚𝑚𝑃𝑃 + |𝑖𝑖𝑣𝑣𝑎𝑎(𝑚𝑚𝑃𝑃 ↑) + 𝑖𝑖𝑣𝑣𝑎𝑎(𝑚𝑚𝑃𝑃 ↓)| + 𝑅𝑅𝑖𝑖𝐸𝐸𝑅𝑅1)𝑤𝑤   
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , (5) 

which is a challenging nonlinear optimization problem. Parameters 
𝑖𝑖𝑣𝑣𝑎𝑎(𝑚𝑚𝑃𝑃 ↑) and 𝑖𝑖𝑣𝑣𝑎𝑎(𝑚𝑚𝑃𝑃 ↓) indicate the mean value of net positive 
and net negative change in AP (Obj. 2). Value 𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡 is the obtained 
optimal weight list.  

We tried to find the weights automatically by using the trust-
region-reflective algorithm [29], but the algorithm returns local 
minima for all non-zero weights. This is likely caused by the 
gradient of the provided cost surface being too small to start the 
algorithm. Therefore, we defined the optimal weights instead by 
creating a weights table between zero and unity, evaluated the 
performance for each setting and then manually identified the 
weights that satisfy Eqn. (5). Once the optimal set of weights is 
found, our approach will be validated using the ‘Query’ and 
‘Gallery’ dataset. 

Experiments and Results 
In this section, we describe our experimental results and 

validate the performance of our approach. The considered imagery 
originates from the DukeMTMC-reID dataset, since this is currently 
the only broadly used re-ID dataset that publishes the original 
camera output and separate ground truth of the sample data 
including pedestrians locations in the camera frames. 

The DukeMTMC-reID dataset originates from eight cameras 
in a network. After counting the number of transition events in the 
‘Train new’ set (see Fig. 16) we found that these eight cameras are 
not fully connected. In detail, there are some camera pairs that 
seldomly have transition events, which means that few people travel 
directly between these cameras without appearing in other cameras. 
Therefore, we decided to filter out the amount of considered pairs. 

We defined that two cameras are only linked if there are more than 
two transition events between these cameras. After filtering, we 
obtain 15 pairs of linked cameras, which simplifies the camera 
topology network, as shown in Fig. 17. 

We utilize the simplified camera topology network to generate 
our spatio-temporal multi-camera model based on the ‘Train new’ 
dataset. We start with training the spatial model. Since there are 
eight cameras in the DukeMTMC-reID dataset, we train eight 
different classifier models considering both RF and SVM (RF1 to 
RF8, and SVM1 to SVM8) to calculate the spatial confidence 

 
Figure 15. Example of obtaining the spatio-temporal confidence score. The 
temporal calculation is based on the computed spatial score. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑄𝑄 is fed 
into the zone classifier to choose the correct temporal model (blue or red time 
distribution), the spatio-temporal score is calculated by finding the probability 
corresponding to the time difference between the QG pair. 

 
Figure 16. The number of people that travel directly between two cameras. 
For example, the grid with the darkest green (first row, second column) 
indicates that 225-280 people walked via travel path c1↔c2. 

IS&T International Symposium on Electronic Imaging 2020
Image Processing: Algorithms and Systems 095-7



 

scores. After the spatial training phase, we proceed to the evaluation 
of these trained models. The accuracies of the trained classifier 
models are listed in Table 1. Overall, RF always outperforms SVM 
or obtains equal accuracy. Additionally, all RF models except RF1 
and RF5 show a near-optimal accuracy. The reason for these 
exceptions is that there are mixture areas in the corresponding 
Cameras 1 and 5, from which people go to multiple cameras. As an 
example, consider the bottom right part of Fig. 9. People that walk 
by following paths c5↔c2 or c5↔c1 will pass through that same 
area. Consequently, the uncertainty in these mixture areas is high, 
which increases the difficulty of providing proper classification 
probabilities. 

After the spatial model is computed, we can start calculating 
the temporal model. As given in Approach C, our temporal model is 
created by fitting multiple transition time distributions for the linked 
camera pairs, with example paths ‘c3→c4’ and ‘c2→c5’ shown in 
Fig. 14. To classify which ‘zone’ to use for a QG pair, in case there 
are multiple transition time distributions, we consider both RF and 
SVM zone classifiers. The results in Table 2 show that the RF and 
SVM zone classifier provide identical Rank-1 and mAP results on 
‘Train Query’ and ‘Train Gallery’. Therefore, we have added an 
experiment with a larger dataset, where training and test data were 
mixed. We are aware that this can make the results less reliable, but 
the experiment is interesting to consider some of the influence of 
larger datasets. Based on this, Table 3 shows that the RF and SVM 
zone classifiers perform differently on the official evaluation set. 
The reason is that a broader evaluation dataset offers higher 
diversity of data, which helps to explore the ignored difference. 
Besides this discussion, Table 1 shows that the RF classifier also 
outperforms the SVM classifier. Hence, in the remainder of the 
paper, we focus on the RF zone classifier based spatio-temporal 
model. 

Once the spatio-temporal multi-camera model is generated, we 
use it to obtain the spatio-temporal confidence score for each QG 
pair in ‘Train query’ and ‘Train gallery’ set. Fig. 18 visualizes the 
visual similarity- (CNN re-ID), the spatial-, and the spatio-temporal 
confidence scores. By this illustration, we notice that there are some 
imperfections in the visual similarity score (the grey parts in Fig. 
18a) and spatial score (see Fig. 18b), but not in the spatio-temporal 
scores (see Fig. 18c). This finding confirms that our spatio-temporal 

confidence scores can help to emphasize the more-likely correct 
matches.  

To combine the obtained re-ID confidence scores and the 
calculated spatio-temporal confidence scores properly, we follow 
the procedure explained in the Approach D section. Table 4 lists the 
computed optimal weights. Given these optimal weights, it is 
evident that integrating our spatio-temporal multi-camera model 
into the re-ID process is beneficial. However, we noticed that the 
optimal w2 for Eqn. (3) is very small, which means the spatial score 
(P2) has a low contribution to the total score. Furthermore, the result 
of an ablation study (Table 5) proves that the spatial score in the 
integration phase is redundant. That is, after abandoning the spatial 
score, the mAP and Rank-1 do not change, but we receive fewer 
samples where AP becomes lower, and there is a larger disparity 

 
Figure 17. After analyzing the number of transition events, the camera 
topology network has been simplified from a fully connected graph (left) to a 
graph with only 15 connections (right). 

Table 1: Accuracy (acc.) of the trained spatial models (RF and 
SVM classifiers) on the spatial model validation set (10% of the 
‘Train new’ dataset), where accuracy=𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐 𝒄𝒄𝒐𝒐𝒏𝒏𝒏𝒏𝒏𝒏𝒄𝒄𝒄𝒄 𝒑𝒑𝒏𝒏𝒏𝒏𝒑𝒑𝒑𝒑𝒄𝒄𝒄𝒄𝒑𝒑𝒐𝒐𝒏𝒏𝒑𝒑

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐 𝒗𝒗𝒗𝒗𝒗𝒗𝒑𝒑𝒑𝒑𝒗𝒗𝒄𝒄𝒑𝒑𝒐𝒐𝒏𝒏 𝒑𝒑𝒗𝒗𝒏𝒏𝒑𝒑𝒗𝒗𝒏𝒏𝒑𝒑 
 

Model Acc. 
(RF) 

Acc. 
(SVM) 

 Model  Acc. 
(RF) 

Acc. 
(SVM) 

Cam.1 84.2% 78.5%  Cam.5 85.4% 80.5% 
Cam.2 98.3% 98.3%  Cam.6 94.3% 94.3% 
Cam.3 100% 91.2%  Cam.7 94.7% 89.5% 
Cam.4 93.3% 93.3%  Cam.8 92.3% 92.3% 

 
Figure 18. Illustration of three kinds of confidence scores for every QG pair in the ‘Train query’ & ’Train gallery’ set. (a): “visual similarity score of the re-ID CNN”, 
where a point is dark if the current query (row index) and the current gallery image (column index) has high similarity. (the feature vector distance is small, hence 
it's dark); (b): “Spatial confidence scores”, where white means the current query and the current gallery image satisfies the spatial constraints. (c): “Spatio-temporal 
confidence scores”, where white means the current query and the current gallery image satisfies the spatio-temporal constraints. 
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between the mean value of the positive and negative changes of AP. 
Therefore, Eqn. (3) is not considered in the remainder of the paper.  

A. Re-ID Performance on the official evaluation set 
Previously, only the 3 newly created training sets were used, 

since these steps involve training of algorithms. With the model 
training completed, we validate our approach based on the ‘Query’ 
and ‘Gallery’ datasets. The mAP and Rank-1 scores on the 
DukeMTMC-reID dataset with and without applying our model are 
shown in Table 6. From the results, the score aggregation with 
Eqn. (2) performs better than the other weight aggregation approach. 
The reason is that Eqn. (4) involves the spatial score (P2), which 
actually lower the performance. Therefore, we decide to apply 
Eqn. (2) as our integration approach in calculating the final 
similarity score for a QG pair. The CMC curve is shown in Fig. 19. 
Consequently, our spatio-temporal multi-camera model improves 
the mAP and Rank-1 score by 7.4% and 7.8% respectively. 

B. Computational performance considerations 
Currently, the above algorithm takes around 6 hours with a 

Threadripper 1920X processor (12 cores, 24 threads, 3.5 GHz, 4.0 
GHz max clock frequency) to finish calculating the spatial-temporal 
confidence scores. To improve computational efficiency, the 
algorithm can be modified. Instead of calculating the spatio-
temporal score for every QG pair, we first rank the gallery images 
based on the CNN re-ID confidence scores and calculate the spatio-
temporal confidence score only for the top-N samples. As shown in 
Fig. 20 and Fig. 21, considering the top-400 ranked samples already 

lead to a similar re-ID performance as when all samples were 
included (see Table 6), but save 97.3% of the calculation time. 

C. Final Re-ID Performance on the official 
evaluation set 

In Subsection A, the utilized re-ID CNN is trained on the 
smaller ‘Train new’ set. To improve the re-ID performance further, 
we keep the obtained optimal weights, as shown in Table 4, but train 
a new CNN model on the full size ‘Train’ set. After obtaining its 
new visual similarity score, we utilize Eqn. (2) to combine the CNN 
model with the spatio-temporal model. As shown in Table 7, the 
mAP and Rank-1 score significantly improved, by 6.9% and 7.6%, 
respectively. Note that the gain is different due to the changed 
baseline. 

D.  Comparison with State-of-the-art 
We compare our approach with the top-performing state-of-

the-art methods in Table 8. To ensure a fair comparison, we omit 
post-processing such as re-ranking. When comparing the 
performances in Table 8, several interesting trends are visible. First, 
when comparing our performance with that of MGN [1], the large 
increase of performance by adding our novel spatio-temporal model 
becomes directly visible. Second, the performance of Parameter-

 
Figure 19. Effectiveness of our novel spatio-temporal model on DukeMTMC-
reID dataset. Blueline: CMC with only CNN. Redline: CMC with CNN + spatio-
temporal model. 

Table 2: Comparison of re-ID performance on ‘Train query’ and 
‘Train gallery’ dataset with spatial models (st) using the RF and 
SVM zone classifier. 

 Rank-1 mAP 
CNN + ST model (RF) 100% 92.7% 
CNN + ST model (SVM) 100% 92.7% 

 

Table 3: Experiment of Table 2 repeated on ‘query’ and ‘gallery’ 

 Rank-1 mAP 
CNN + ST model (RF) 95.1% 83.0% 
CNN + ST model (SVM) 94.9% 82.9% 

 
Figure 20. Influence on mAP and calculation time when calculating the spatio-
temporal confidence scores only for the N top-performing samples, according 
to the CNN. 

 
Figure 21. Influence on Rank-1 score and calculation time, when calculating 
the spatio-temporal confidence scores only for the N top-performing samples, 
according to the CNN. 
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Free Spatial Attention algorithm [12] actually shows the 
performance including re-ranking (without re-ranking is not clearly 
reported), which probably explains its high performance. However, 
even if its non-re-ranking score is higher than MGN, our model 
would benefit from its increased performance if we would change 
the adopted CNN. Finally, St-ReID [22] is also very interesting in 
this list, as this approach also studies spatio-temporal effects, but in 
a different way. Furthermore, in their approach, time differences 
between different roads when traveling between the same set of 
cameras was not considered.  

Summarizing, it is fair to conclude that our approach 
outperforms all state-of-the-art approaches by a large margin. This 
conclusion is mostly motivated by the Rank-1 performance, since 
we consider the Rank-1 score as most important if person re-ID is 
applied in practice (open set considerations, etc.). 

Discussion 
To design a spatio-temporal model, we initially planned to 

construct a full-fledged 3D multi-camera model by implementing 
camera calibration based on frames from the selected re-ID dataset 
(DukeMTMC-reID). This 3D multi-camera model would provide 
3D coordinates for all persons in the scenes. Based on these 3D 
coordinates of the query person and the candidates in the gallery, the 
spatio-temporal constraints can be precisely identified. However, 
we have found that constructing such a 3D multi-camera model for 
the DukeMTMC-reID dataset is not feasible due to the following 
reasons. First, not every camera FOV contains enough structural 
scenes, such as buildings, to provide straight lines in three 
orthogonal directions (as shown in Fig. 22). Second, it is difficult to 
estimate the height of pedestrians with a single camera per view. 
This information is required to find vanishing points and achieve 
camera calibration [31] [32]. Therefore, instead of defining a 3D 

multi-camera model, we have decided to construct the spatio-
temporal multi-camera topology model, as in Approach C. 

Conclusion 
In this paper, a spatio-temporal multi-camera model has been 

generated, mainly based on the entry/exit points (and timestamps) 
of pedestrians in the camera views. Our model determines how 
likely a query image and its candidates from the gallery satisfy the 
identified spatial and temporal constraints. We deploy Random 
Forest (RF) to train the spatial model on the DukeMTMC-reID 
dataset, while the fitted Gaussian probability distributions represent 
the temporal constraints. By empirical experiments, we have found 
the optimal way of integrating our novel spatio-temporal multi-
camera model with the MGN network. Experimental results show 
that for the DukeMTMC-reID dataset, after integrating the multi-
camera model, the mean average precision increases from 77.2% to 
84.1%, while the Rank-1 score augments from 88.6% to 96.2%. This 
result outperforms all current state of the art by a large margin.  
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Table 4: Optimal weights for the three integration approaches. 

 𝒘𝒘𝒘𝒘 𝒘𝒘𝒘𝒘 𝒘𝒘𝒘𝒘 𝒘𝒘𝒘𝒘 
Eqn. (2) 0.37 - 0.64 - 
Eqn. (3) 0.37 -0.0005 0.64 - 
Eqn. (4) 0.4 - - 1 

 

Table 5: Ablation study results of the spatial confidence score 

 CNN+ST+S CNN+ST 
mAP 92.7% 92.7% 
Rank-1 100% 100% 
N samples with AP↑ 92 85 
N samples with AP↓ 13 9 
Mean positive change of AP↑ +12.7% +13.7% 
Mean negative change of AP↓ -2.6% -3.7% 

Table 6: Comparison of the re-ID performance on DukeMTMC-
reID dataset with different spatio-temporal (ST) integration 
approaches. CNN is trained on ‘Train new’ dataset. 

 Rank-1 mAP 
CNN 87.3% 75.6% 
CNN + ST model (with Eqn. (2)) 95.1% 83.0% 
CNN + ST model (with Eqn. (4)) 95.0% 82.1% 

Table 7: Re-ID performance after integrating our spatio-
temporal model with the CNN trained on the ‘Train’ dataset. 

 Rank-1 mAP 
CNN 88.6% 77.2% 
CNN + ST model (Eqn. (2)) 96.2% 84.1% 

 

Table 8: Comparison to the state-of-the-art methods on the 
DukeMTMC-reID dataset. (Red and blue indicate best and 
second-best results respectively) 

Method Rank-1 mAP 
St-ReID [22] 94.0% 82.8% 
BoT Baseline [11] 86.4% 76.4% 
DG-Net [30] 86.6% 74.8% 
Parameter-Free Spatial Attention [12] 89.0% 85.9% 
ABD-Net [13] 89.0% 78.6% 
HPM [15] 86.6% 74.3% 
OSNet [16] 88.6% 73.5% 
PCB (RPP) [17] 83.3% 69.2% 
Incremental Learning [14] 80.0% 60.2% 
MGN [1] 88.7% 78.4% 
Ours 96.2% 84.1% 

 

  
Figure 22. Examples of camera FOV which contains not enough structured 
scenes to explore vanishing points in three orthogonal directions. 
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