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Abstract 
In this paper, we propose a patch-based system to classify 

non-small cell lung cancer (NSCLC) diagnostic whole slide images 
(WSIs) into two major histopathological subtypes: 
adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). 
Classifying patients accurately is important for prognosis and 
therapy decisions. The proposed system was trained and tested on 
876 subtyped NSCLC gigapixel-resolution diagnostic WSIs from 
805 patients – 664 in the training set and 141 in the test set. The 
algorithm has modules for: 1) auto-generated tumor/non-tumor 
masking using a trained residual neural network (ResNet34), 2) 
cell-density map generation (based on color deconvolution, local 
drain segmentation, and watershed transformation), 3) patch-level 
feature extraction using a pre-trained ResNet34, 4) a tower of 
linear SVMs for different cell ranges, and 5) a majority voting 
module for aggregating subtype predictions in unseen testing 
WSIs. The proposed system was trained and tested on several WSI 
magnifications ranging from x4 to x40 with a best ROC AUC of 
0.95 and an accuracy of 0.86 in test samples. This fully-automated 
histopathology subtyping method outperforms similar published 
state-of-the-art methods for diagnostic WSIs. 

Introduction  
The most common form of lung cancer, non-small cell lung 

cancer (NSCLC), is further categorized into three major 
histopathological subtypes: ~40% Adenocarcinoma (LUAD), 
~30% squamous cell carcinoma (LUSC), and the rest is large cell 
(undifferentiated) carcinoma. Classifying patients accurately is 
important for prognosis and therapy decisions. Classification 
currently requires manual review of whole slide images (WSIs) by 
medically trained pathologists, and incurs significant delays and 
cost. Here we present an automated algorithm to differentiate 
LUAD and LUSC diagnostic WSIs. 

The problem of identifying lung cancer type from pathology 
images has been discussed extensively in recent years, and has 
been addressed most successfully using deep learning 
convolutional neural networks [1]. Most algorithms in literature 
such as those generated by Yu et al [2] and Coudray et al [3] were 
developed on images of fresh-frozen tissue sections [4]. These 
sections are primarily obtained to preserve molecular structures 
such as RNA that rapidly degrade, and are not representative of 
typical diagnostic workflows. In Yu, a feature selection process 
was performed on a set of engineered features (generated using 
CellProfiler software) to  describe ten dense patches of size 1000 x 
1000 px at x40 magnification (250µm2). Their algorithm achieved 
a receiver operating characteristic area under the curve (ROC 
AUC) of 0.75 using an SVM classifier with a Gaussian kernel. 
Coudray used a fully-trained Inception v3 deep network and 
achieved a state-of-the-art record performance with a ROC AUC 
of 0.95 when tested on frozen tissue WSIs from 137 LUAD and 
LUSC patients from TCGA [3]. The networks in Coudray were 

trained and tested on x5 and x20 magnifications with 1024µm2 and 
256µm2 patches, respectively.  

In contrast to frozen sections, formalin-fixed paraffin-
embedded (FFPE) biopsies are larger, and cellular morphology 
better preserved thus apparent in diagnostic WSIs. This allows the 
pathologist to examine multiple slides and different areas of 
sampled tissue to give a more accurate diagnosis [4]. The fidelity 
of morphology in diagnostic WSIs from FFPE sections has enabled 
use of cell identification/detection modules for cancer type 
classification as described in Vu et al [5]. They tested their 
algorithm on 32 diagnostic WSIs from TCGA (16 LUAD and 16 
LUSC cases) with two post-processing classification techniques. 
The authors trained a ResNet32 for patch-level classification then 
applied majority voting to achieve accuracy of 0.78. They also 
achieved accuracy of 0.81 by using a random forest regression 
model as a post processing technique for classification. 

In this paper, an image-based lung cancer subtyping method 
based on deep-learning feature vectors and cell-density maps is 
proposed for FFPE diagnostic WSIs (Figure 1). The results from 
our fully-automated histopathology subtyping method show that it 
outperforms similar published state-of-the-art methods for 
diagnostic WSIs. 

We first present a brief description of the proposed system 
below, then provide details of all core components of the proposed 
system, and finally we show experimental results and comparison 
of performance to other algorithms reported in the literature. 

The proposed system 

Figure 1. Block diagram of the automated adeno/squamous-cell NSCLC 
classifier. The classifier is based on tumor patches (represented by 1D vector 
in logits layer of pre-trained – ImageNet –  RedNet34) of pre-specified ranges 
of cell count used in tower of SVMs. 

A block diagram of the proposed adeno/squamous-cell 
NSCLC classification system is shown in Figure 1. In brief, the 
proposed system consists of the steps as follows. Input WSIs are 
first cropped into non-overlapping 100µm2 patches and tumor 
patches are identified using a trained tumor/non-tumor ResNet34 
module that detects and excludes stroma and adjacent non-tumor 
regions. Cell counts in all patches are generated using an image 
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segmentation module (generated by color deconvolution, local 
drain segmentation, and watershed transformation modules). Cell 
counts in tumor patches are then sorted into different ranges. 
Corresponding patches (represented by 1D vector in the logits 
layer of RedNet34) are assigned to SVM classifiers based on cell 
range. Finally, a majority-voting post processing technique is used 
to call input WSIs as LUAD or LUSC.  

Auto-generated tumor masking 
This module has two main steps. The first was development 

of ‘gold standard’ (ground truth) masks of tumor regions based on 
expert (pathologist) opinion and outlines. To assist pathologists 
manually annotating WSIs, we developed a few-shot (automated 
learning based on a limited number of examples) classification 
system where the human expert first initiates the masking process 
by selecting several tumor and adjacent non-tumor points in a 
given WSI. The masking system then groups patches similar to 
initial selections into the two groups: tumor and non-tumor 
regions. This process is iterated and refined as needed till the 
pathologist approves the final gold standard tumor mask. This 
process was applied to hundreds of diagnostic WSIs from TCGA.  

 H&E stained WSI Expert-guided gold-
standard tumor mask 

Deep-learning 
generated tumor 

mask 
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Figure 2. Assessment of trained tumor masks. Examples of deep-learning 
generated tumor masks based on the expert-guided system. 

The second step comprises the use of masks from the 
aforementioned expert-guided system (in addition to patched 
WSIs) to train a ResNet34 module that can auto-generate tumor 
masks for WSIs. This module operates similarly to the cancer 
region detection method described in Li et al [6].   

Applying this tumor/non-tumor masking module to unseen 
TCGA adeno- and squamous-cell NSCLC diagnostic WSIs, an 
average of 23.6K patches per image were found to contain tissue 
and of those 10.4K patches (44.1%) were classified as tumor by 
the masking module. Figure 2 shows two lung WSIs with gold 
standard and deep-learning generated tumor masks. 

Cell density maps 
In this module, a pre-processing step of hematoxylin and 

eosin (H&E) stain separation was applied to the input WSI. A local 
drain cell segmentation technique was applied to the H-channel, 
followed by watershed transformation for patch-based cell 
counting. Various methods for nuclei detection and cell 
segmentation are described in Irshad et al [7]. Figure 3 shows 
example 100µm2 patches from adeno and squamous-cell NSCLC 
where individual cells are shown with pseudo-colors. Cell counts 
are also given in the figure. 

Tower of SVMs 
A set of binary classifiers - linear SVMs here - were trained 

on 1D tumor patch representations from the logits layer of the 
residual neural network. For our system, we use ResNet34 that has 
been pre-trained on the ImageNet database. Cell counts of tumor 

patches in use guided 1D representations to different SVMs. The 
proposed tower of SVMs has twelve binary classifiers that target 
patches of 100µm2 with cell counts from 0 to 10 cells per patch, 10 
to 20 cells per patch, etc. up to >110 cells per patch.  
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Figure 3. Cell density maps generated by stain separation, local drain, and 
watershed transformation modules. 

Experimental results and discussion 
 The system was trained and tested on 876 subtyped NSCLC 
gigapixel-resolution diagnostic WSIs from 805 patients obtained 
from TCGA sources. Samples were randomly split into training 
(711 WSIs from 664 patients) and testing (165 WSIs from 141 
patients) sets. 

Our analysis of training data and the SVMs built is shown in 
Table 1, which lists training patch counts and patch-level SVM 
classification accuracy of all cell ranges. The total number of 
training patches used was 5,320K sampled from 711 training 
WSIs. This is about 7.48K tumor patches per training WSI. The 
table also shows that all classifiers are estimated with a sufficient 
number of samples (min = 169.26K and max = 737.35K train 
patches). Although the WSI level training data was 50.35% LUAD 
and 49.65% LUSC, this distribution was not found for some higher 
cell ranges. As seen in Table 1, ~60% of training patches with > 90 
cells per patch were squamous-cell NSCLC. To identify the cell 
count range that was most predictive of subtype, we compared 
accuracies using the lift metric, which takes into account the 
prevalence of the majority class to adjust for changes in label 
imbalances across ranges. We found SVMs at intermediate-to-high 
ranges (40 to 90 cells per patch) performed similarly with the 
highest in the 60 to 70 cells per patch range when compared to 
their own majority class size. Overall the weighted average 
accuracy of the proposed tower of SVMs on training patches was 
found to be 72.14%. 
Table 1. Tower of SVMs training patches and accuracy. 

Ranges 
of cell 
counts 

Training data % 
accuracy 
(training) 

Lift 100 µm2 
patches 

% 
LUAD  

% 
LUSC 

0 to 10 188.67K 48.08 51.92 73.08 1.41 
10 to 20 169.26K 52.95 47.05 71.93 1.36 
20 to 30 272.89K 54.70 45.30 70.86 1.30 
30 to 40 418.68K 54.29 45.71 70.72 1.30 
40 to 50 565.16K 52.72 47.28 70.75 1.34 
50 to 60 671.68K 51.27 48.73 71.39 1.39 
60 to 70 737.35K 49.80 50.20 71.75 1.43 
70 to 80 708.27K 48.09 51.91 72.08 1.39 
80 to 90 594.32K 45.40 54.60 72.67 1.33 

90 to 100 427.83K 41.99 58.01 73.68 1.27 
100 to 110 272.69K 38.19 61.81 75.61 1.22 

110 to 
MAX 293.26K 38.62 61.38 73.82 1.20 
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The proposed automated adeno/squamous-cell NSCLC 
classifier was tested on 165 test WSIs from 141 patients. The test 
WSIs included 94 LUAD and 71 LUSD cases. Notice that random 
separation of patents into training and testing sets generated data 
sets with slightly different data distributions. That is, training set 
had 50.35% LUAD and 49.65% LUSC WSIs while the test set had 
56.97% LUAD and 43.03% LUSC WSIs. 

Table 2 shows the performance of the proposed automated 
adeno/squamous-cell NSCLC classifier on training and test WSIs 
for different patch sizes. The ROC AUC statistic and accuracy 
(with >50% of tested patches belonging to assigned label) are used 
as performance metrics herein. The table also shows that the 
proposed classifier achieves better performance with larger patch 
size. 

  
17,478 tumor patches 

(93.90% LUAD) 
15,977 tumor patches 

(97.19% LUSC) 

  
33,556 tumor patches 

(86.54% LUAD) 
13,526 tumor patches 

(87.48% LUSC) 

  
9,090 tumor patches 

(78.76% LUAD) 
13,358 tumor patches 

(76.79% LUSC) 

  
24,363 tumor patches 

(68.56% LUAD) 
13,151 tumor patches 

(69.69% LUSC) 
(a) Correctly identified LUAD 

WSIs 
(b) Correctly identified LUSC 

WSIs 
Figure 4. Test WSIs with overlaid label maps. Yellow indicates a tumor region 
classified as LUAD, and blue indicates a tumor region classified as LUSC.  

Figure 4 shows classification results from the proposed 
system for two sets of WSIs from TCGA adeno (a) and squamous-
cell (b) NSCLC wherein images are overlaid with colored label 
maps. Yellow indicates a region classified as LUAD, blue 
indicates a region classified as LUSC, and non-tumor regions are 
not colored. The classification maps are for 100µm2 patches from 
test WSIs; total number of tumor patches and accuracy of 
identification are also shown. Example test WSIs with variety of 

accuracies are given in the figure. That is, starting from the top, the 
accuracy of correctly identified LUAD (Fig. 4a) and LUSC (Fig. 
4b) WSIs decreases.  
Table 2. Proposed automated adeno/squamous-cell NSCLC 
classifier performance on training and test WSIs for different 
patch sizes. 

Patch size 
in µm2  

711 train WSIs 
(50.35 % LUAD & 

49.65% LUSC) 

165 test WSIs 
(56.97% LUAD & 
43.03% LUSC) 

ROC AUC Accuracy ROC AUC Accuracy 
100 0.93 0.85 0.93 0.84 
200 0.94 0.85 0.93 0.85 
300 0.94 0.86 0.94 0.86 
1000 0.97 0.89 0.95 0.86 

Fig. 5 shows that accuracy increases with patch size. WSIs 
accurately classified as either LUAD (left) or LUSC (right) using 
larger patch sizes show low accuracy when using patches of only 
100µm2. If one uses a very large patch size of (for example) 4K x 
4K pixels at x40 magnification, a limitation is the reduced number 
of available patches to process and loss of resolution for further 
analyses such as intratumoral heterogeneity. 
 

(a) 100 µm2 

  
 10,733 tumor patches 

(50.97% LUAD) 
16,642 tumor patches 

(62.90% LUSC) 

(b) 200 µm2 

  
 2,677 tumor patches 

(54.61% LUAD) 
4,122 tumor patches 

(76.20% LUSC) 

(c) 300 µm2 

  
 1,190 tumor patches 

(59.92% LUAD) 
1,867 tumor patches 

(71.72% LUSC) 

(d) 1000 µm2 

  
 86 tumor patches 

(68.60% LUAD) 
151 tumor patches 

(79.47% LUSC) 
Figure 5. Larger patch size improved classification accuracy. Yellow indicates 
a region classified as LUAD and blue indicates a region classified as LUSC. 
Percentage accuracy is shown beneath each image.
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Table 3. Performance of the proposed classifier relative to state-of-the-art methods. Our algorithm showed comparative or better 
performance. 

 Train and test data Test 
patients Feature space Classifier 

Patch size Performance 
µm2 Pixels ROC AUC Accuracy 

Yu, K.-H. et al. 
(2016) [2] 

LUAD and LUSC  
frozen tissue WSIs  

from TCGA 
x 250 engineered 

features 

SVM with gaussian 
kernel 250 1K @ x40 0.75 x 

SVM with linear 
kernel 250 1K @ x40 0.70 x 

Coudray, N. et al. 
(2018) [3] 

LUAD and LUSC  
frozen tissue WSIs  

from TCGA 
N = 137 

Partially-trained Inception v3 256 512 @ x20 0.85 x 
Fully-trained Inception v3 256 512 @ x20 0.95 x 
Fully-trained Inception v3 1024 512 @ x5 0.94 x 

Vu, Q. et al. (2019)  
[5] 

LUAD and LUSC 
diagnostic WSIs  

from TCGA 
N = 32 

Fully-trained ResNet32  
with majority voting 128 256 @ x20 x 0.78 

Fully-trained ResNet32  
with random forest regression 128 256 @ x20 x 0.81 

Proposed 
algorithm 

LUAD and LUSC 
diagnostic WSIs  

from TCGA 
N = 141 

512 from 
ImageNet-based 

ResNet34 

Tower of 12 linear 
SVMs based on 

cell density 

100 400 @ x40 0.93 0.84 

200 800 @ x40 0.93 0.85 

300 1200 @ 
x40 0.94 0.86 

1000 4K @ x40 0.95 0.86 
         

Table 3 summarizes performance of the proposed classifier in 
comparison to other reported state-of-the-art methods. Yu et al [2] 
developed a methodology for patch selection based on stain 
density and used 250 engineered features to represent such patches 
in SVM classifiers. Their algorithm was trained and tested on 
LUAD and LUSC frozen tissue WSIs from TCGA with 0.70 and 
0.75 ROC AUC values for SVM with a Gaussian kernel and SVM 
with a linear kernel, respectively. This indicates that our deep-
learning system outperforms similar efforts that were based on 
CellProfiler (engineered) features. A set of deep-learning systems 
presented in Coudray [3] are also included in Table 3. These 
systems were also trained and tested on LUAD and LUSC frozen 
tissue WSIs from TCGA. They achieved a ROC AUC of 0.95 with 
a fully-trained Inception v3 classifier using a patch size of 256 
µm2. The number of patients in their test set (N = 137) was slightly 
lower than ours (N = 141). Finally, in a 2019 paper by Vu et al. 
[5], a LUAD vs. LUSC fully-trained ResNet32 classification 
scheme was described that was trained and tested on TCGA 
diagnostic WSIs. Their limited set of test WSIs (N = 32) shows a 
WSI-level classification accuracy of 0.81, its accuracy is thus 
inferior to that achieved by our automated adeno/squamous-cell 
NSCLC classifier (0.84 to 0.86 using classifiers with different 
patch sizes) on a much larger test set. In summary, Table 3 shows 
that the proposed algorithm was tested using a larger number of 
test patents (N = 141) and achieved comparative or better overall 
performance. 

Conclusions 
Herein, we report our development and validation of an 

adeno/squamous-cell NSCLC classification system for FFPE 
preserved tissue using patch-level cell count information and 
representation from pre-trained ResNet34 (ImageNet). This fully-
automated histopathology subtyping system outperforms similar 
published state-of-the-art methods for diagnostic WSIs. The 
system also generated maps of (tumor) regions-of-interest within 
WSIs, providing novel spatial information on tumor organization. 
Our results showed tumor patches of 100µm2 with 60 to 70 cells 
distinguished LUAD from LUSC better than other cell-density 
ranges. Moreover, the proposed  system showed LUSC WSIs have 

many tumor regions with high cell density in comparison to 
LUAD. The system also illustrated that cropping input WSI into 
larger patches for processing increased the overall 
adeno/squamous-cell NSCLC classification accuracy. 
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