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Abstract

The object sizes in images are diverse, therefore, capturing
multiple scale context information is essential for semantic seg-
mentation. Existing context aggregation methods such as pyra-
mid pooling module (PPM) and atrous spatial pyramid pooling
(ASPP) employ different pooling size or atrous rate, such that
multiple scale information is captured. However, the pooling sizes
and atrous rates are chosen empirically. Rethinking of ASPP
leads to our observation that learnable sampling locations of
the convolution operation can endow the network learnable field-
of-view, thus the ability of capturing object context information
adaptively. Following this observation, in this paper, we propose
an adaptive context encoding (ACE) module based on deformable
convolution operation where sampling locations of the convolu-
tion operation are learnable. Our ACE module can be embed-
ded into other Convolutional Neural Networks (CNNs) easily for
context aggregation. The effectiveness of the proposed module is
demonstrated on Pascal-Context and ADE20K datasets. Although
our proposed ACE only consists of three deformable convolution
blocks, it outperforms PPM and ASPP in terms of mean Inter-
section of Union (mloU) on both datasets. All the experimental
studies confirm that our proposed module is effective compared
to the state-of-the-art methods.

Introduction

Semantic segmentation is a pixel wise classification prob-
lem, where class prediction is assigned for each pixel of an image.
The development of deep learning brings semantic segmentation
into a new era. Starting from the Fully Convolutional Network
(FCN) [1], we have seen a rapid increase in the research field of
semantic segmentation based on Convolutional Neural Networks
(CNNBs) [2—4]. Those methods boost the field and push the state-
of-the-art performance on several semantic segmentation bench-
marks.

However, multiple scale objects context understanding is still
a challenging problem. Some approaches have been proposed to
handle this problem. Following similar criteria presented in [5],
we group those methods into three categories. First, image pyra-
mid based methods: the input image is decomposed to image
pyramid, then DCNN (Deep Convolutional Neural Network) is
applied separately to every resolution level of the image pyra-
mid input [6-8]. In this way, different scale objects are captured
from different level feature maps. Second, encoder-decoder based
methods: for encoder, convolution and pooling operations are ap-
plied hierarchically to extract features, then the spatial resolu-
tion is recovered in the decoder path by hierarchically applying
up-sampling and convolution operations. The most representa-
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tive architecture is U-Net [2] which has been achieving promis-
ing results in the medical image processing field. And many
other encoder-decoder based architectures [4,9—12]. Third, spa-
tial pyramid pooling strategy based approaches where the feature
maps are aggregated by pooling operations or by atrous convo-
lutions with multiple rates. The atrous spatial pyramid pooling
(ASPP) proposed in DeepLabs [3, 5] and the pyramid pooling
module (PPM) presented in PSPNet [13] are two representative
work of this group.

The performance of Deeplabs [5, 14] and PSPNet [13] on
some benchmarks shows the effectiveness of their pyramid pool-
ing module. However, the rates of ASPP and PPM are empirically
selected, which is not an image content adaptive encoding. In this
paper, our goal is to investigate if there is a way to aggregate the
feature maps adaptively.

Rethinking of ASPP and atrous convolution, we observed
that setting different values of the atrous rate of atrous con-
volution operation endows the network with multiple effective
fields-of-view, thus the ability of capturing multi-scale con-
text information. Therefore, if we can adaptively adjust the
field-of-view of the convolution operations in the aggregation
part, it would be possible for the network to aggregate contextual
information adaptively based on input.

Interestingly, Deformable Convolution Networks (DCN)
were proposed recently in [15, 16]. For deformable convolution,
the sampling locations are learnable, which can be highly inte-
grated into our purpose. Therefore, in this paper, we propose an
adaptive context encoding (ACE) module based on deformable
convolution. More precisely, we replace the ASPP module or
PPM by three deformable convolution blocks as shown in Fig-
ure 2 (b).

This idea is evaluated on Pascal-Context [17] and
ADE20K [18] datasets for semantic segmentation. We experi-
mentally demonstrate that our proposed method improves the seg-
mentation results consistently over the baseline methods: ASPP
and PPM. Notably, more robust performance is shown under dif-
ferent batch size settings during the training process. Moreover,
even though our goal is to find a better multi-scale aggregation
module compared to ASPP and PPM, our method achieves the
state-of-the-art on Pascal-Context dataset with 53.6% mloU and
promising results on ADE20K dataset with a final score of 0.5535.
Furthermore, our ACE module can be easily embedded into other
networks for further improvement.

The remainder of this paper is organized as follows. First,
we review the related work on semantic segmentation as well as
the highly relevant ASPP and PPM. Next, we describe our pro-
posed method. Then, the experimental results and analysis are
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presented. Finally, discussion and conclusions are drawn.

Related Work

Deep learning based semantic segmentation is rapidly devel-
oping and significant progress has already been achieved. DCNN
with pooling and convolution operations is invariant to local im-
age transformations, thus can extract abstractions of data hierar-
chically [3, 19]. On one hand, this ability is beneficial for high-
level vision tasks such as classification. On the other hand, it can
bound the performance of pixel wise dense prediction tasks where
spatial information is important [20]. Semantic segmentation thus
is challenging as it needs to perform classification and localization
simultaneously.

There are many works proposed to improve semantic seg-
mentation which can be briefly divided into two directions: Res-
olution Enlarging and Context Extraction.

Resolution Enlarging

Atrous convolution which is inspired by the atrous algo-
rithm [21] is claimed to be useful for extracting denser feature
maps and can further alleviate the detail information loss. Thus it
is widely used in semantic segmentation to enlarge the receptive-
field-of-view and extract denser feature maps [3, 14,22]. Besides,
encoder-decoder architectures employ decoder to up-sample the
feature maps and increase its resolution hierarchically and par-
tially recover some of the information loss of encoder [2,9, 23].
They will be introduced in the following paragraphs.

Atrous convolution based methods: Typically, for DCNN,
such as Resnet [24], the spatial resolution of the output feature
maps of the final layer is 32 times smaller compared to the res-
olution of input images, which is harmful to pixel wise tasks.
Atrous convolution is used to enlarge the receptive field while
preserving the resolution of the feature map. DeepLabs espe-
cially DeepLabv2 [3] and DeepLabv3 [5] are a series of meth-
ods that investigate atrous convolution for semantic segmenta-
tion and are considered as one of the state-of-the-art techniques.
Similar feature extraction DCNN backbone is also used in PSP-
Net [13], where the resolution of the final layer feature maps is
8 times smaller. Atrous convolution is an effective solution for
spatial information loss. However, the larger feature maps and
larger convolution kernels make the network computational de-
manding. Recently, in [22], Wu et al. proposed a Joint Pyramid
Up-sampling (JPU) module to reduce the memory and time con-
suming atrous convolutions, while keeping the ability of extract-
ing high resolution feature maps.

Encoder-Decoder based methods: In an encoder-decoder
network, the spatial resolution is gradually up-sampled at the de-
coder part. DeconvNet [25] uses deconvolutional layers [25] to
recover the resolution which can get full resolution final predic-
tion by a complex decoder part. U-Net [2] introduces skip con-
nections from encoder to decoder, thus the information from the
skip connection is used to compensate for the information loss.
RefineNet [9] elaborately design an up-sampling path to fuse low
level and high level features. DeepLabv3+ [14] employs both skip
connection and atrous convolution, thus reaching the state-of-the-
art performance on some benchmarks to date.
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Context Extraction

Scene context is important for extracting semantics. There
are many approaches proposed to extract useful context informa-
tion. Spatial pyramid pooling is proven to be effective for extract-
ing context information [3, 13,26]. Moreover, attention mecha-
nism is proposed to learn the object context map in [23]. In [27],
Peng er al. use convolution operations with large kernel size to
extract classification information. Among those approaches, the
spatial pyramid pooling based methods are popular. Spatial pyra-
mid pooling aims at extracting multiple scale context information
from feature maps. For semantic segmentation, pyramid pool-
ing module (PPM) [13] investigates pooling operation as a tool
for multiple scale context aggregation and atrous spatial pyramid
pooling (ASPP) [5] exploits atrous convolution for pyramid pool-
ing. These two modules will be described in detail as they are
highly related to the proposed approach.

Pyramid Pooling Module: Global Average Pooling (GAP)
is used to obtain global contextual prior in ParseNet [26] for se-
mantic segmentation. However, as pointed out in [ | 3], fusing one
feature map into one single value may cause information loss.
Thus, in [13], Zhao et al. propose to hierarchically apply pooling
operations with four scales as illustrated in Figure 1 (a), resulting
in feature maps with four levels of resolution. The coarsest level
is obtained by applying GAP on the feature maps and gives a sin-
gle vector output. For the other levels, the feature maps are first
divided into sub-regions, then a global pooling is applied to every
sub-region. The numbers of sub-region are set to 2 x 2, 3 x 3,
6 x 6 for each level respectively as illustrated in Figure 1 (a) [13].
This PPM can thus extract the information at different scales for
context aggregation.

Atrous Spatial Pyramid Pooling: ASPP module is first pro-
posed in [3] and further revised in [5]. In ASPP module, as shown
in Figure 1 (b), different atrous rates are used to extract multiple
scale information. Besides, to capture global context prior, simi-
lar to ParseNet [26] and PPM [13], GAP is applied. In summary,
one 1 x 1 convolution block and three 3 x 3 atrous convolution
blocks with different atrous rates (6, 12, 18 respectively), and one
GAP block are employed in parallel.

While DeepLabs and PSPNet reach the state-of-the-art per-
formance on different benchmarks when they are proposed, and
they still have influence on semantic segmentation, it is important
and interesting to investigate two following aspects: (1) It is ob-
served that the numbers of sub-region of PPM in PSPNet and the
atrous rates of ASPP module from Deeplabs are selected empiri-
cally. The choice of these parameters need to be adjusted accord-
ing to the application, such as in [28],2 x 2,3 x 3,5 x5, 6 x 6 sub-
regions are chosen for their RMP (Residual Multi-kernel Pooling)
module which is similar to PPM. It is essential to avoid choosing
those parameters empirically. (2) PPM and ASPP both extract the
context information by sampling from rigid rectangular regions
which contain pixels from different object categories. However,
for a certain pixel, the surrounding pixels which belong to the
same category should contribute more. As pointed out in [29],
Yuan and Wang hold similar opinion and they define object con-
text as the set of pixels which belongs to the same category. While
Yuan and Wang utilize self-attention [30] mechanism to exploit
context from pixels that from the same object class, in this work,
inspired by the original ASPP, we will investigate the possibil-
ity to aggregate multi-scale information by adjusting the field-of-
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Figure 1: (a) Pyramid pooling module (PPM) proposed in PSPNet [

DeepLabs [3,5].

view of the convolution operation adaptively.

Method

In this section, we will discuss our proposed ACE module in
detail. The most relevant atrous and deformable convolution oper-
ations are first introduced, then the ACE module and the network
architecture are demonstrated.

Convolution Operation

Atrous convolution is chosen as the tool for the context ag-
gregation module in ASPP [5]. For two dimensional signals such
as images, atrous convolution can be written as:

yli] =Y x[i+r-k]-wlk], )

kek

where y indicates the output after atrous convolution operation, i
is the location, x is the input signal, r is the atrous rate. K defines
the convolutional kernel, for example, for a 3 x 3 standard con-
volutional kernel, K = {(—1,—1),(—1,0),...,(0,1),(1,1)}. w[k]
denotes the weight of the k-th location, and k enumerates the lo-
cations in K. When r = 1, the equation stands for standard con-
volution. The value of r controls the sampling locations of atrous
convolution. In ASPP, different sizes of field-of-view are obtained
by setting different » values. This observation leads to our claim
that a learnable field-of-view can thus be obtained by learnable
sampling locations of the convolution operation.

It is interesting to notice that the recent proposed deformable
convolution [15, 16] meets our requirement where convolution
with learnable sampling locations is proposed. Dai et al. propose
Deformable Convolutional Networks (DCNv1) in [15] and Zhu et
al. propose a revised version (DCNv2) in [16]. Eq. 2 presents the
deformable convolution operation from DCNv1:

yli] = Z x[i+k+ Ak] - wlk], 2
keK

where Ak denotes offsets. The regular sampling locations k is then
augmented with the irregular offset Ak.

It is clearly observed that the main difference between Eq. 1
and Eq. 2 is that the sampling locations of atrous convolution are
always regular grid. For example, the sampling grid is square for
a 3 x 3 kernel, no matter what the value of atrous rate r is. But
the offset Ak is input dependent, without regular shape constraint.
Besides, compared to the manually set atrous rate r, the offset
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Ak is learned by the network. In [15], Zhu et al. further investi-
gate deformable convolution and find out that the spatial support
of the deformable convolution operation from DCNv1 can extend
beyond the pertinent region. Therefore, they propose DCNvV2 to
let the network better focus on relevant image content by intro-
ducing a modulation mechanism to manipulate the spatial support
region. This modulated deformable convolution can be expressed
as follows:

y[i] = Z x[i+k+ Ak] - wlk] - Amy, 3)
kek

where Amy, is the learnable modulation value with a range of [0,1].
This modulation value can further adjust the sampled pixel’s con-
tribution, thus the spatial support regions are adjusted better.

Therefore, in this work, we propose to employ the de-
formable convolution operation from DCNvV2 as the tool for con-
text aggregation.

Network Architecture

A brief illustration of context extraction based semantic seg-
mentation pipeline is depicted in Figure 2 (a). For a given input
image, convolution networks such as ResNet [24], Xception [31],
are applied to extract feature maps, then feature aggregation is
employed to extract context information. Based on the aggregated
feature information, the final prediction is made and up-sampled
to the original input spatial resolution.

In this paper, we only focus on feature aggregation part. Our
proposed ACE module is shown in Figure 2 (b). After feature ex-
traction, the input image is represented by feature maps with the
size of H x W x C where H and W are the height and width of the
feature maps respectively, and C indicates the number of feature
channels. In ACE module, three deformable convolution blocks
(DCB) are applied to aggregate the feature maps. Each block
is consists of “Deformable Convolution (DConv)— BN (Batch-
Norm) — ReLU (Rectified Linear Unit)” operations. The out-
puts size after each deformable convolution block are H x W x %,
HxW x %, and H x W x % separately. After the ACE module,
one 1 x 1 convolution operation is applied for the final segmen-
tation map prediction. Then the predicted result is up-sampled
by ‘bilinear’ up-sampling operation to the original image spatial
resolution directly.
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Figure 2: (a) A brief illustration of context extraction based semantic segmentation pipeline. (b) Proposed adaptive context aggregation

(ACE) module.

Experiment

In this section, we validate our proposed module on two pub-
lic datasets Pascal-Context [ 1 7] and ADE20K [18]. We first intro-
duce the implementation details. Then the experiment results are
presented and analyzed on these two datasets. The performance of
the proposed method is evaluated in terms of two common mea-
sures, namely pixel accuracy (pixAcc) and mean Intersection of
Union (mloU).

In order to illustrate the effectiveness of the proposed
method, we will compare it with ASPP and PPM. It is worth notic-
ing that DeepLabv3 and PSPNet utilize atrous convolution for fea-
ture extraction which is memory and time consuming. In [22],
Wau et al. propose a Joint Pyramid Up-sampling (JPU) module to
replace the heavy feature extraction module. Their method (Fast-
FCN) reduces more than three times the computation complexity
and reaches slightly better performance. As a result of the limited
computational resources we have, we adopt FastFCN’s feature ex-
traction part as the backbone for comparison. In other words, only
the feature aggregation (head) part is replaced with ASPP , PPM
and our proposed ACE module.

Implementation Details

The implementation is based on the PyTorch [32] implemen-
tation of FastFCN [22]' which is similar to [ ]2 and the imple-
mentation of Deformable ConvNets>*. For a fair comparison,
we adopt the original training strategy of FastFCN [22]. Specif-
ically, “poly” learning rate policy is used: Ir = baselr* (1 —
; mfl’fjt - )POV" where power = 0.9. The initial base learning rate
is set to 0.001 for batch size 16 for PASCAL-Context [17] and
0.01 for ADE20K [18]. Besides, it is adjusted relatively to batch
size value if other batch size is chosen: baselr_ad justed = % *
batch_size. The networks are trained for 80 epochs with SGD for
PASCAL-Context [17] and 120 epochs for ADE20K [18]. The
momentum is 0.9 and the weight decay is set to 0.0001. For
data augmentation, the image is randomly flipped and scaled be-
tween 0.5 to 2. Then the image is cropped to a fixed size (480

Uhttps://github.com/wuhuikai/FastFCN

Zhttps://github.com/zhanghang 1989/PyTorch-Encoding

3https://github.com/chengdazhi/Deformable-Convolution-V2-
PyTorch

“https://github.com/open-mmlab/mmdetection
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x 480). Pixel-wise cross-entropy loss and auxiliary loss as pre-
sented in [13,22] are used, the weight for auxiliary loss is set to
0.2.

Due to limited access to multi-GPUs computational re-
source, our experiment includes training on a single GeForce RTX
2080 GPU for small batch sizes and training on 4 x GeForce GTX
1080 GPUs for batch size 16.

Pascal-Context

Dataset: Pascal-Context dataset [17] is based on PASCAL
VOC 2010 with additional annotations that provides annotations
for the whole scene. Training images are 4,998 (pascal-train) and
testing images contain 5,105 images (pascal-val). Following the
prior work [3, 22, 33], the semantic labels we used in this paper
are the 59 categories with one background class.

Experimental Results: Table 1 illustrates the performance
on pascal-val of ASPP, PPM and the proposed ACE based Fast-
FCN [22]. We trained the models on different batch sizes: 4, 6
and 16. 6 is the maximum batch size for our single GPU. The
methods employ ResNet-50 [24] as backbone. The reported re-
sults are obtained for 59 classes without multi-scale evaluation.
All the methods are trained by our machine for fair comparison.
Obviously, our proposed ACE outperforms ASPP and PSP on all
the different batch sizes training settings. It’s worth mention-
ing that, ASPP based FastFCN’s accuracy influenced severely by
batch size, as also pointed out in the paper of Deeplabv3 [5]: train-
ing DeepLabv3 model with small batch size is inefficient. Note
that our proposed method not only reaches the best result, but
also shows its stable performance for different batch sizes. The
absolute improvements of mloU of ACE compared to ASPP are
4.45%, 2.83% and 1.31% for batch sizes 4, 6, 16 respectively.
And 2.39%, 1.04%, and 0.81% compared to PPM.

Table 2 illustrates the performance compared to the state-of-
the-art methods. For a fair comparison, the reported result of our
method is calculated with background class and multi-scale eval-
uation where the network prediction is averaged through multiple
scales as in [13,22,26,33]. The results of the other methods are
obtained from the corresponding papers. Our proposed method
achieves 53.6% mloU, which outperforms the previous methods.
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Batch Size Head pixAcc % mloU % Method pixAcc% | mloU%

ASPP 75.42 43.62 FCN [1] 71.32 29.39

4 PPM 75.58 45.68 SegNet [4] 71.00 21.64

Proposed 77.68 48.07 DilatedNet [35] 73.55 32.31

ASPP 77.19 46.53 CascadeNet [18] 74.52 34.90

6 PPM 77.45 48.32 RefineNet (Res152) [9] - 40.7

Proposed 78.35 49.36 PSPNet (Res101) [13] 81.39 43.29

ASPP 78.68 49.04 EncNet (Res101) [33] 81.69 44.65

16 PPM 78.41 49.54 FastFCN (Res101,EncNet)” [22] 80.99 44.34

Proposed 78.85 50.35 Proposed 81.07 43.81

* FastFCN backbone with EncNet head.
Table 1: Segmentation results on PASCAL-Context dataset
(pascal-val). Table 4: Segmentation results on ADE20K dataset (a-val) of the
state-of-the-art methods.
Method mloU %
FCN-8s [1] 37.8 Moreover, we fine-tune our trained model for another 20
ParseNet [26] 40.4 epochs on a-train a-val set with a smaller learning rate 0.001,
Piecewise [8] 433 then submit the a-rest set result to the evaluation website °>. Our
Deeplabv2 (Res101-COCO) [3] 45.7 method obtains 72.99% (pixAcc) and 37.71% (mloU) with a final
RefineNet (Res152) [9] 473 score of 0.5535 which is not the best but is an encouraging result.
PSPNet (Res101) [13] 47.8
EncNet (Res101) [33] 51.7 Discussion and Conclusion

DANEet (Res101) [34] 52.6 In summary, in this work, we revisited the atrous convolu-
FastFCN (Res101,EncNet)” [22] 53.1 tion operation and pyramid pooling modules and propose an ef-
Proposed (Res101) 53.6 fective feature aggregation method based on deformable convo-

* FastFCN backbone with EncNet head.

Table 2: Segmentation results on PASCAL-Context dataset
(pascal-val) of the state-of-the-art methods.

ADE20K

Dataset: ADE20K is used in ImageNet Scene parsing chal-
lenge 2016 and it contains 150 object categories. It is divided into
20k/2K/3K images for training (a-train), validation (a-val) and
testing (a-fest) respectively.

Experimental Results: Table 3 demonstrates the results for
a-val set without multi-scale evaluation. Note, one GeForce RTX
2080 GPU maximum can fit 4 batches, thus the results reported in
Table 3 are obtained on batch size 4 and ResNet-50 as backbone.
Our proposed method achieves the best result compared to ASPP
and PPM based FastFCN with an absolute improvement of 1.4%
and 0.71% for ASPP and PPM in terms of mloU.

Batch Size Head pixAcc % mloU %
ASPP 78.11 37.11
4 PPM 77.39 37.80
Proposed 78.62 38.51

Table 3: Segmentation results on ADE20K dataset (a-val).

In order to compare with the state-of-the-art methods, we
further train our model with ResNet-101 backbone on 4 x GeFore
1080 GPUs with batch size 16. Table 4 shows the obtained result
and results reported in the corresponding papers of the other ap-
proaches. The proposed method provides better results compared
to PSPNet with an absolute improvement of 0.52% of mloU. Enc-
Net achieves the best result. Except for the methodology itself,
some part of the performance gap could be from the training strat-
egy, such as EncNet is trained with an image size of 576 x576 and
our method is trained with 480x480.
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lution to extract multiple scale context adaptively for the final
segmentation map prediction. Based on the experimental vali-
dation, our method outperforms the ASPP module and PPM on
Pascal-Context and ADE20K datasets. Noticeably, although the
goal for this work is to propose a better multiple scale context
aggregation module, rather than to obtain the best results on the
benchmarks, our proposed approach achieves state-of-the-art re-
sult 53.6% mloU on Pascal-Conext and encouraging result 0.5535
on ADE20K.

All the experiments confirm that an adaptive context encod-
ing (ACE) module is benefit for semantic segmentation which de-
serves further research. In this work, we directly use deformable
convolution as the tool for ACE and simply cascaded three de-
formable convolution blocks, sophisticated design of the archi-
tecture is essential. We believe that further exploration of the us-
age and improvement of our feature aggregation idea is promising
and necessary in the design of an efficient semantic segmentation
approach.

Acknowledgment

The authors would like to acknowledge Junfeng Ge for the
support of computational resources. This work is funded by the
Research Council of Norway through project no. 247689 IQ-
MED: Image Quality enhancement in MEDical diagnosis, moni-
toring and treatment.

References
[1] J.Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.  1EEE, 2015, pp.
3431-3440.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-

Shttp://sceneparsing.csail.mit.edu/

027-5



[4]

[5]

[6

[7

—

[8

[t}

[9

—

[10]

(11]

(12]

[13

[14]

[15]

[16]

[17]

[18]

works for biomedical image segmentation,” in International Con-
ference on Medical Image Computing and Computer-assisted Inter-
vention. Springer, 2015, pp. 234-241.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 4, pp. 834-848, 2018.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 39, no. 12, pp. 2481-2495, 2017.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hier-
archical features for scene labeling,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 8, pp. 1915-1929,
2013.

P. H. Pinheiro and R. Collobert, “Recurrent convolutional neural net-
works for scene labeling,” in International Conference on Machine
Learning, 2014.

G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piece-
wise training of deep structured models for semantic segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 1EEE, 2016, pp. 3194-3203.

G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path re-
finement networks for high-resolution semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 1EEE, 2017, pp. 1925-1934.

M. Amirul Islam, M. Rochan, N. D. Bruce, and Y. Wang, “Gated
feedback refinement network for dense image labeling,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 1EEE, 2017, pp. 3751-3759.

A. Mohammed, S. Yildirim, I. Farup, M. Pedersen, and @. Hovde,
“Y-net: A deep convolutional neural network for polyp detection,”
arXiv preprint arXiv:1806.01907, 2018.

A. Mohammed, S. Yildirim, I. Farup, M. Pedersen, and @. Hovde,
“Streoscennet: surgical stereo robotic scene segmentation,” in Med-
ical Imaging 2019: Image-Guided Procedures, Robotic Interven-
tions, and Modeling, vol. 10951.
and Photonics, 2019, p. 109510P.
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene pars-
ing network,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1EEE, 2017, pp. 2881-2890.
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic

International Society for Optics

image segmentation,” in Proceedings of the European Conference
on Computer Vision. Springer, 2018, pp. 801-818.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “De-
formable convolutional networks,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision. 1EEE, 2017, pp. 764—
773.

X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More
deformable, better results,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 9308-9316.
A. Oliva and A. Torralba, “The role of context in object recognition,”
Trends in cognitive sciences, vol. 11, no. 12, pp. 520-527, 2007.

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,

0276

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

“Scene parsing through ade20k dataset,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1EEE,
2017, pp. 633-641.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proceedings of the European Conference on
Computer Vision. Springer, 2014, pp. 818-833.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Semantic image segmentation with deep convolutional nets
and fully connected crfs,” in International Conference on Learning
Representations, 2015.

S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yu, “Fastfcn: Rethink-
ing dilated convolution in the backbone for semantic segmentation,”
arXiv preprint arXiv:1903.11816, 2019.

C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning a
discriminative feature network for semantic segmentation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
IEEE, 2018, pp. 1857-1866.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-

Recognition.

age recognition,” in Proceedings of the IEEE Conference on Com-
IEEE, 2016, pp. 770-778.
H. Noh, S. Hong, and B. Han, “Learning deconvolution network for

puter Vision and Pattern Recognition.

semantic segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision. 1EEE, 2015, pp. 1520-1528.

W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider
to see better,” arXiv preprint arXiv:1506.04579, 2015.

C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel
matters—improve semantic segmentation by global convolutional
network,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 1EEE, 2017, pp. 1743-1751.
Z.Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao, T. Zhang, S. Gao,
and J. Liu, “Ce-net: Context encoder network for 2d medical image
segmentation,” [EEE transactions on medical imaging, 2019.

Y. Yuan and J. Wang, “Ocnet: Object context network for scene
parsing,” arXiv preprint arXiv:1809.00916, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998-6008.

F. Chollet, “Xception: Deep learning with depthwise separable con-
volutions,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 1EEE, 2017, pp. 1251-1258.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context encoding for semantic segmentation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 1EEE, 2018, pp. 7151-7160.

J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual atten-
tion network for scene segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1EEE,
2019, pp. 3146-3154.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in International Conference on Learning Represen-
tations, 2016.

IS&T Infernational Symposium on Electronic lmogin% 2020
Image Processing: Algorithms and

ystems



JOIN US AT THE NEXT El!

Electronic Imaging

IS&T International Symposium on
SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

e SHORT COURSES * EXHIBITS « DEMONSTRATION SESSION ¢ PLENARY TALKS
e INTERACTIVE PAPER SESSION ¢ SPECIAL EVENTS ¢ TECHNICAL SESSIONS -

www.electronicimaging.org

imaging.org




