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Abstract

At public space such as a zoo and sports facilities, the pres-
ence of fence often annoys tourists and professional photogra-
phers. There is a demand for a post-processing tool to produce a
non-occluded view from an image or video. This “de-fencing”
task is divided into two stages: one is to detect fence regions
and the other is to fill the missing part. For a decade or more,
various methods have been proposed for video-based de-fencing.
However, only a few single-image-based methods are proposed.
In this paper, we mainly focus on single-image fence removal.
Conventional approaches suffer from inaccurate and non-robust
fence detection and inpainting due to less content information. To
solve these problems, we combine novel methods based on a deep
convolutional neural network (CNN) and classical domain knowl-
edge in image processing. In the training process, we are required
to obtain both fence images and corresponding non-fence ground
truth images. Therefore, we synthesize natural fence image from
real images. Moreover, spacial filtering processing (e.g. a Lapla-
cian filter and a Gaussian filter) improves the performance of the
CNN for detecting and inpainting. Our proposed method can au-
tomatically detect a fence and generate a clean image without any
user input. Experimental results demonstrate that our method is
effective for a broad range of fence images.

Introduction

Image de-fencing, which means removing a fence from an
image, is an important problem. Public spaces which includes a
zoo and historical places have to install fences and barricades to
enclose the dangerous area. However, amateur and professional
photographers such as tourists, journalists and wild-animal lovers
are often annoyed by the fences. Fence removal methods are re-
quired in various situations. As we can easily access to image pro-
cessing software such as Photoshop, we are able to remove them
with our own hands. Nevertheless, that might be time-consuming
and require experience and skill. Image de-fencing is challenging
because real-world fences have various type of shapes, textures
and colors. In addition, although common fences have regular
structures, some fences have completely irregular shapes and are
sometimes partly distorted and broken. For this reason, robust
and automatic fence removal methods are required for variety of
applications.

As far as we know, Liu et al. [1] first propose an automatic
de-fencing algorithm. They detect fence regions based on the as-
sumption that most fences have a regular or near-regular repeat-
ing structure. After segmenting foreground and background, the
missing fence region is filled by a basic inpainting method [2].
Thus, the de-fencing task is divided into two phases, which are a
fence detection phase and a content recovery phase. According to
this separation approach, many methods have been proposed. Ex-
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(c) Pre-processed image

(d) De-fenced image

Figure 1: Sample image de-fencing results.

isting de-fencing methods are roughly categorized into two types
of methods: video-based methods and image-based methods. In
this paper, we focus on a single-image fence removal.

In video-based methods [3, 4, 5, 6, 7], multiple frames are
used to remove fence regions. For example, method [3] estimated
the global relative motion of background pixels by matching the
corresponding points using affine SIFT descriptor [8]. In static
captured videos, hidden part at a certain frame will become vis-
ible in another frame. Method [4] and [5] tackles not only static
scenes but also dynamic scenes. They introduce CNN (convolu-
tional neural networks) to find fence regions. The fence segmen-
tation task is solved by learning the relationship between fence
texel joints and non-fence texel joints. Their proposed algorithms
achieve great performance in video-based de-fencing. In addition
to RGB video-based methods, method [9] incorporates depth map
to enhance the estimated fence mask.

On the other hand, image-based de-fencing methods are
more challenging because we have less information to detect
fence regions and to fill-in the hidden part. Method [10] uses
multi-focus images to remove occluders. Foreground occlud-
ers can be removed by synthesizing an object focusing image,
an occluder focusing image and an image with flashlight. In
method [11], stereo-pair of fenced images are used to remove
fences. They compute disparity map corresponding to a pair
of images using CNN. As described above, these multi-image
methods are difficult for the need to prepare some images which
meet the desired conditions. Unlike these methods, there are few
single-image based de-fencing methods. Method [1] can auto-
matically find near-regular foreground with [12] and complete the
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Figure 2: Architectures of two networks.

missing region using texture-based inpainting [2]. This method
is improved by [13] based on online learning approach. It can be
stated that they make great progress in autonomous de-fencing.
However, their lattice detection approaches are not able to de-
tect irregular fences. Farid et al. [14] tackle this problem using
a color based fence estimation algorithm and a hybrid inpainting
algorithm. In spite that they can overcome weakness of existing
lattice detection methods, we are required to input several fence
pixels to predict fence regions.

In this paper, we propose a completely autonomous de-
fencing algorithm. Fig. 1 illustrates example results of our pro-
posed de-fencing network. By combining novel CNN methods
and classical image processing techniques, our proposed network
can detect fence regions and recover the hidden background. Ex-
perimental results demonstrate that ours outperforms other state-
of-the-arts on various real-world fence images. Furthermore,
since we identify this fence detection task as a regression prob-
lem, our proposed detection network can deal with irregular fence
patterns. Additionally, in the image completion phase, we create
synthetic fence images to train the network. Our learning-base ap-
proaches enable the network to be robust to a wide range of fence
images.

Supporting methods

A convolutional neural network (CNN) is one technique of
deep learning, which consists of an input and an output layer,
as well as multiple hidden layers. Recent studies have reported
that CNN-based methods achieve great success in image recogni-
tion and restoration. As numerous CNN architectures have been
proposed, we refer to two popular networks: U-Net [15] and
ResNet [16].

U-Net

In a CNN-based image classification task, while a convolu-
tion layer extracts the local features, a pooling layer ambiguates
the detail location information. The image classification requires
robustness to the object scale and the position aberration. On the
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other hand, a region segmentation task [17, 18, 15] needs to com-
bine the local features with global position information. The ar-
chitecture of U-Net [15] consists of a contracting path to capture
context and a symmetric expanding path that enables precise lo-
calization. Concatenating these captured context and precise lo-
cation results in success in image segmentation tasks. Fig. 2a
shows the revised version of U-Net. Compared to the original ar-
chitecture, ours has less layers and zero padding is added before
convolution to keep an output the same size as input.

ResNet

Residual leaning [16] of CNN overcomes the trade-off be-
tween training accuracy and the number of layers. As can be seen
ResNet in Fig. 2b, the network has a skip connection, in which the
output of the network is added to the input. That is based on the
assumption that learning the residual mapping is more simple than
directly learning mapping between the output and the input. This
Residual-learning-based approach can solve several CNN prob-
lems and succeed in several image restoration tasks [19, 20].

Proposed methodology

Our proposed network is divided into two phases as Fig. 3.
In the first phase, fence regions are automatically detected from
an image and the binary fence mask is generated. In the second
phase, the de-fenced image y is created from the fence image x
and the estimated fence mask m. We find that end-to-end network
which directly produces clean images from fence images does not
work well.

Fence detection

Our proposed fence detection network is based on U-Net
architecture[15]. However, in order to adapt U-Net to a fence
detection task, we improve the input data and the output data as
follows.

Fence detection methods are categorized into two ap-
proaches. Methods in one group use colors of a fence chain. In
an image, the range of the fence color is very limited. The sim-
ilar pixels are grouped and fence regions can be estimated using
the color pattern. It is experimentally found that those features
are not enough to classify fence regions in difficult cases. The
other methods find repeated elements from a given image. Neigh-
bor relationships are assigned among a set of interest points and
then similar interest points are collected. This regulatory-based
approach achieves good results but is yet ineffective in distorted
fence. For this reason, a fence detection task needs to extract
both global features and local features. The architecture of U-
Net is suitable to capture those sophisticated features. However,
even though we directly input an image to U-Net, it results in
overfitting. To solve this, we embed classical image processing
approaches. First of all, we add luminance channel of image as
input to prevent the fence detection network from strongly de-
pending on colors. The Y channel component is calculated by
Eq. 1, where x denotes a column vector of RGB fence image.

fr(x)=(0.299 0.587 0.114)x (1)

Then, edge detection filters make the U-Net robust to fence scale,
shape and color. After applying a Sobel filter and a Laplacian
filter, the filtered images and RGBY components are concatenated
before inputing to U-Net.
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Figure 3: Our proposed network framework. “X-sobel” and “Y-sobel” correspond a vertical Sobel filter and a horizontal Sobel filter, respectively. Also,
“Laplacian 4” means a four-nearest-neighbor Laplacian filter, and the same with “Laplacian 8”. In RemoveNet, two images are synthesized by

Eq. 4

There are other CNN-based fence detection approaches. Su-
pervised learning in Machine learning tasks can be classified into
two types: classification algorithms and regression algorithms.
Classification algorithms are used in case of a limited number
of outputs. For an example, in a classification algorithm that
identifies fence images, the output would be the prediction of ei-
ther “fence” or “not fence”. Many methods define fence joints in
which wires are crossed like the letter X as positive data. Negative
data is defined as non-joints which even includes a part of wire.
This approach is not enough for distorted fences and fences that
does not include chain nodes. Therefore, we adopt a regression-
based fence detection. We randomly crop patches from fence im-
ages to create fence image dataset as shown in Fig. 4. Since the
output data takes values between 0 and 1, the binary mask m is
produced by comparing against a threshold value. The network
parameters @p are learned by minimizing the following objective
function:

1 N

Ep(®p) === Y [lmy,— fp(x::®p)|I3, )
D D 2Nn§:1 D D)2

where n indicates an image index of a total of N patches.

Fence removal

The restoration of lost regions is a quite challenging task be-
cause the fence is spread out over entire image and occludes a
significant portion of the image. In this paper, we apply pre-
processing before inputting to the ResNet [16]. In order to fill
the hidden part by a fence, we predict an appropriate pixel from
known surrounding pixels. We use simplest inpainting method as
a pre-processing. Within a 11 x 11 window, by applying a Gaus-
sian filter, the central missing part is replaced by smoothed ver-
sion. In the window centered at (i, j.), a kernel of a Gaussian
filter at pixel (i, j) is defined as:

1 _i?+(-ic)?

g(i,j):%e 207 (l—m(i,j)), 3)
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(a) Sample fence patches

(b) Sample mask patches

Figure 4: Sample patches of our training dataset, which includes a wide
range of fence patches with different scale, orientation and lu-

minance.

where standard deviation is empirically set to ¢ = 2. Note that
fence regions do not have values and are not referenced in fil-
tering. By using a Gaussian filter %, the restored image % is
obtained by Eq. 4.

X=x0(1-m)+ Fgxom. 4)

where o denotes an element-wise multiplication operator. Final
de-fenced images are generated by the trained ResNet from pre-
processed images. This is based on the hypothesis that ResNet
recover high frequency domain of the missing portion. However,
it is difficult to get ground truth clean images from real-world
fence images. Hence, we create synthetic fence image in Eq. 5 to
train the network.

x=yo(l—m)+(c+n)om. 5)

Note that ¢ denotes color of the fence chain. Our dataset includes
5 colors of fence, which are dark gray, light gray, dark green,
light green, blown and white. For robustness, Gaussian noise n is
added on the colored fence. The objective function of the removal
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Figure 5: Comparison of fence detection on real-world fence images.
“Road” (top), “Lion” (middle) and “Prefab” (bottom).

fence network can be described as:
1 ¥ ) )
ER(®g) = 2N Z ¥, — fR(Zn, mu; OR)||3, 6
n=1

where @p indicates learned parameters including weights and bi-
ases.

Training dataset

We use different datasets in U-Net for detection and in
ResNet for restoration. To train U-Net, we collect 545 real-world
fence images and binary masks created by Du et al. [21]. From
these images, we cropped 128 x 128 x 3 patches. In order to in-
crease the amount of data for training improvement, the cropped
patches are randomly flipped, rotated, zoomed and brightened.
A total of 27088 patches are used for training our detection net-
work. In dataset for ResNet, we assemble 128 x 128 x 3 x 30944
patches. Fence images are created by combining fence mask
in [21] with the clean outdoor images UCID dataset [22] and from
the BSD dataset [23] used in [24].

Experimental results

To assess the performance of our proposed network, we
newly test on real-world fence images. At first, we compare
our fence detection performance to method [25]. Next, we com-
pare fence removal performance to some conventional meth-
ods [1, 13, 14]. Last, we introduce interesting results and the
limitation of our proposed method.

Parameter settings

Our proposed network have two phases for de-fencing. Each
network is trained by Caffe framework developed by Berkeley Al
Research (BAIR) and by community contributors. We start the
training with a base learning rate of ¢ = 0.001. The learning
rate is decaying as o(¢) = ap(1 + y¢)P, where ¥ = 0.0001 and
p=0.75.

In the first step, we train the revised U-Net as Fig. 2a to detect
fence regions from an image. Input data has eight channels that
include a RGB-Y image and the filtered images. In order to com-
bine local features and global features, we concatenate convolved

0264

features and downsampled one. Now, local features are the dif-
ference in gradient and global features are regular patterns of the
fence. Downsampling is processed in a max pooling layer with a
2 x 2 filter. Downsampled features are convolved with 3 x 3 filters
and a weight initializer Xavier [26]. To speed up the training time,
we train every mini batch of eight patches. It takes approximately
two hours to iterate calculation 10 thousands times.

In the second step, we use ResNet as Fig. 2b to restore the
missing regions behind the fence. Input data is the Gaussian fil-
tered RGB image and estimated binary fence mask. The convo-
lutional layers are empirically set to L = 20. The weight of 3 x 3
layer convolutional layers is started with Xavier initializer [26].
A total of 10 thousands iterations with a mini bath of 12 patches
run for about two and a half hours.

Fence detection evaluation

We compare the proposed fence detection algorithm to the
other lattice detection method [25] on dataset from [1] and our
test set. As a subjective comparison, Fig. 5 shows the visual
comparison on real-world fence images. Since method [25] finds
near regular structure, it suffers from distorted fence and drastic
changes of background. On the other hand, our proposed method
can detect even twisted part of fence on “Lion” and is unaffected
by steep change of scenery. Thus, experimental results indicate
that our proposed method is more robust to irregular pattern and
complex background.

De-fencing evaluation

In this section, we compare the proposed de-fencing method
with three state-of-the-arts [1, 13, 14]. Two of them [1, 13] use
a lattice detection approach to detect fence regions. In recovery
phase, method [1] and [13] adopt exemplar-based inpainting [2]
for a single-image. On the other hand, method [14] propose the
color-based fence detection and original hybrid inpainting algo-
rithm. The de-fenced results are shown in Fig. 6. It is observed
that method [1] and [14] fail to recover images with significant
textures preserved. On the contrary, method [13] achieves better
results than two conventional methods thanks to improved detec-
tion algorithm. However, unnatural artifacts remain upper right of
image “Duck” due to their inpainting algorithm. Our method is
able to precisely detect fence regions and to clearly fill the missing
portions.

Irregular occluders

In real world, fences and barricades have diverse shapes and
they are often occluded by other objects as bottom two of Fig.5. In
the image “Warning”, a signboard is hung on the fence. Although
ours can discern the difference between the signboard region and
fence regions, a part of fence is still remained. This is caused by
the similar fence color with the background. Finally, an irregular
shape of barricade in image “Garden” can be accurately detected
by our methods. It appears that this result can be caused by our
dataset which include diverse orientation and scale of fences.

Although our model achieves great performance on various
real-world images, there are limits in some cases. Since our train-
ing dataset contains not so many fence types, it is hard to recog-
nize certain types of fences. From the results in Fig. 8, it can be
stated that our method does not work well when images are taken
from a sharp angle and the fence shapes are unique. Nevertheless,
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(b) Liu et al
[1]

(a) Fence image

(c) Park et al

(d) Farid et al (e) Ours
[14]

Figure 6: Comparison of de-fencing on real-wold images. “Bird” (top) and “Duck” (bottom).
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Figure 7: Irregular situations. From top to bottom, “Tiger”, “Warning”
and “Garden”.

our trained network can partially detect fence regions. In order to
tackle these difficult situations, our dataset and framework have
room for improvement.

Conclusion

‘We have proposed an approach for de-fencing from a single-
image using novel deep learning techniques. Ours is not directly
removing fence regions but separating a fence detection task and
a context recovery task. In our fence detection network, we adopt
not only the U-Net architecture, but also combine the classical
edge detection filters. Moreover our original patch dataset enables
the network robust to irregular real-world fences. In our recov-
ery network, we use ResNet after applying a Gaussian filter with
the fence mask. The residual learning can restore missing part
and add high frequency components such as textures. In addition,
since we do not possess ground truth clean image corresponding
to the fence images, we newly synthesize fence image for train-
ing dataset. Experimental results demonstrate that our proposed
method achieves better performance for de-fencing than several
state-of-the-arts. However, it also has limitation in cases such as
images taken from a sharp angle.
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(a) Fence image (b) Estimated mask

Figure 8: Failure cases of fence detection.
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