
A Visualization Tool for Analyzing the Suitability of Software
Libraries via Their Code Repositories
Casey Haber; Chartio; San Francisco, CA, USA; haber.casey@gmail.com
Robert Gove; Two Six Labs; Arlington, VA, USA; robert.gove@twosixlabs.com

Abstract
Code repositories are a common way to archive software

source code files. Understanding code repository content and his-
tory is important but can be difficult due to the complexity of code
repositories. Most available tools are designed for users who are
actively maintaining a code repository. In contrast, external de-
velopers need to assess the suitability of using a software library,
e.g. whether its code repository has a healthy level of mainte-
nance, and how much risk the external developers face if they de-
pend on that code in their own project. In this paper, we identify
six risks associated with using a software library, we derive seven
requirements for tools to assess these risks, and we contribute
two dashboard designs derived from these requirements. The first
dashboard is designed to assess a software library’s usage suit-
ability via its code repository, and the second dashboard visually
compares usage suitability information about multiple software
libraries’ code repositories. Using four popular libraries’ code
repositories, we show that these dashboards are effective for un-
derstanding and comparing key aspects of software library usage
suitability. We further compare our dashboard to a typical code
repository user interface and show that our dashboard is more
succinct and requires less work.

Introduction
Software developers often need to assess software libraries

to find one that is suitable to use in their projects. For example,
a team of software developers may look for a software library to
perform statistical calculations in their urban planning tool. This
team of developers could be termed external developers, in con-
trast with internal developers who are the ones developing the
statistical software library. Many tools help internal developers
understand the content and history of their own code repositories;
however, we believe that external developers’ needs largely have
not been met.

A primary concern for external developers is whether a
project is dependable and well-maintained and will continue to
be so. They must assess software libraries, packages, and tools
to determine which ones are suitable to be used as dependencies
in their own projects. For example, a developer writing a project
in Python may need to add a machine learning component, and
therefore needs to identify a Python machine learning library that
will be maintained for as long as required. Some of the data to
analyze a software library’s usage suitability exists in its code
repository—a common way to archive software source code files
and the changes made to them over time—but it is difficult to un-
derstand because the data is disaggregrated and high-dimensional.
To illustrate that software usage suitability analysis is not well
supported by existing tools, we present related work in the Back-

ground section and an example usage suitability analysis using an
existing tool in the Motivating Example section.

In this paper, we identify six risks associated with using a
software library, and we derive seven user requirements for tools
to analyze software library usage suitability. Although these risks
and requirements are not exhaustive for completely understanding
usage suitability, they are important and we believe they are not
adequately met by current tools. We contribute two dashboard de-
signs based on these requirements: (1) a usage suitability analysis
dashboard developed as an extension for the Chrome web browser
that displays inside GitHub1, and (2) a standalone tool for com-
paring usage suitability across multiple software libraries’ code
repositories. Furthermore, we propose to simplify the process of
software library usage suitability analysis by automatically pro-
cessing the code repository’s commit and issues data. Then our
dashboards, which are directly integrated into the code repository
user interface, display this information for the user.

In two example usage scenarios we demonstrate that our
dashboards can show detailed information about key indicators
of usage suitability. The first example uses our dashboard with
the code repository for Theano, a well-known machine learning
library. Theano was recently deprecated and serves as validation
of our analysis, which clearly shows that development has essen-
tially stopped. We compare this analysis to analysis conducted
using only GitHub’s code repository user interface and show that
using our dashboard we are able to develop richer insights more
easily. The second example uses the usage suitability compari-
son dashboard to identify the least risky software libraries out of
several related libraries. These usage scenarios demonstrate that
the dashboards are effective for understanding important aspects
of software library usage suitability.

Background
In version control systems, a code repository is an archive

of source code files and directories with metadata for the purpose
of tracking changes and coordinating work. Git is a common ex-
ample of a version control system, and GitHub is a popular host
for Git code repositories. For our research prototype, we use Git
and GitHub due to the popularity of the latter within the open
source community, but we acknowledge that a widely available
tool would need to support more platforms. Git tracks commits,
in which files, directories, and content can be added or removed.
Git also tracks which contributor authored a commit, and there-
fore who added or removed files and content. In addition to Git’s
functionality, GitHub also has functionality to open or close is-
sues for a repository. Each issue notes a bug, enhancement, idea,

1https://github.com

IS&T International Symposium on Electronic Imaging 2020
Visualization and Data Analysis 387-1

https://doi.org/10.2352/ISSN.2470-1173.2020.1.VDA-387
© 2020, Society for Imaging Science and Technology

or task related to the code in the repository.
SonarQube2 is a tool for analyzing source code quality, code

repository branches, and code repository pull requests. Plugins
for SonarQube add additional functionality, such as alternate anal-
ysis engines [6] or external analysis tools [7]. Other static analy-
sis tools such as FindBugs [1] or linters [12] identify a variety of
source code problems. Although these types of analyses are use-
ful, we argue they do not fully address the problem at hand. First,
they may not provide much insight into the maintenance and ac-
tivity of a project, which are important considerations for devel-
opment teams who are considering using the code as a library in
their own project. Second, these tools typically do not provide an
overview, but instead show a list or summary of identified prob-
lems. In contrast, our goal is to analyze the source code’s repos-
itory to gain additional insight into characteristics such as main-
tenance and activity, and to present this analysis in an overview
dashboard visualization.

Past research indicates that a repository’s data can reveal im-
portant information about its status and longevity [2, 5, 10, 14].
There are many papers on visually analyzing contributor net-
works [9, 11] and code dependencies [15–17] within code reposi-
tories. Storey et al. [13] survey visualization tools to analyze code
repositories. These tools are typically designed to support tasks
related to code exploration, project management, version control,
module management, artifact comparison, architectural compari-
son, team coordination, project release exploration, and code evo-
lution analysis. As summarized by Storey et al., the intended users
tend to be those directly involved in creating and maintaining the
code repository, i.e. people internal to the project. These are peo-
ple such as developers, managers, and testers. As a consequence,
the tools are designed to support the tasks and requirements of
those users, such as code comparison, code evolution analysis,
and team coordination. These tools are not designed to help ex-
ternal developers decide whether the code is suitable to use in
their own project.

In contrast, external developers are those who are not di-
rectly involved with creating or maintaining a code repository.
These are people who have different tasks and requirements than
internal developers. For example, external developers would be
considering using the software library in their own project. In that
case, they would wish to analyze the risks associated with adding
that software library to their own project, such as if the level of
activity of the code contributors is too low, if the library’s reposi-
tory is not well maintained, or if there is a single point of failure
among the contributors. In this paper we call this usage suitability
analysis. External developers will often have additional questions
about code quality and the quantity of documentation, but these
questions are relatively easy to answer using existing tools like
those described above. However, we are not aware of tools de-
veloped specifically to answer software library usage suitability
questions such as those relating to maintenance and contributor
dependability.

GitHub3 provides a few visualizations to support tasks re-
lated to understanding usage suitability. For example, GitHub has
a chart showing the number of commits to the code repository
per day and additional charts showing the number of commits

2https://www.sonarqube.org/
3https://github.com/

per day for each contributor. Although this can give an indica-
tion of overall activity on the project, the large number of charts
on many projects can make it difficult to understand the distribu-
tion of work, the contributors’ responsiveness to issues, and which
contributors are responsible for different semantic elements of the
project (e.g. the database or UI code). Furthermore, there is no
built-in mechanism for comparing multiple repositories.

Motivating Example: Analyzing Software Li-
brary Usage Suitability Using GitHub

This section describes a real scenario that helps illustrate the
need for specialized dashboards to analyze software library usage
suitability. In this scenario, we wish to analyze the usage suitabil-
ity of Theano4, a well known Python machine learning library.
Although we would be concerned with the quality of documenta-
tion and the number of available examples, judging these charac-
teristics is outside the scope of this paper, and we believe those
tasks are relatively well supported by existing tools. In this exam-
ple, we focus on analyzing the usage suitability of Theano with
respect to risks related to maintenance and contributor depend-
ability. Technology suitability is also important and will be dis-
cussed, but this can vary depending on the individuals and teams
who are considering adopting the software library.

First, we would like to understand whether Theano’s devel-
opers actively contribute to the project. On Theano’s GitHub
homepage (Fig. 1) we see the most recent commit was pushed
to the repository 14 days from the time of writing (i.e. Septem-
ber 13, 2019). After clicking on the commit to see its details, we
see that this was actually a pull request and that the changes in
the pull request were pushed 20 days ago. We also see a list of
the repository’s files and directories. The list of files and directo-
ries is too long to be visible all at once. After scrolling through
them, we found that most files were last changed one year ago or
more, two files in the root directory were changed in the past eight
months, and three directories have files that were changed in the
past 8 months. Clicking to see the list of commits, we count only
10 commits that were made in the last four months, and that the
commits were made from three developers. It is difficult to see the
trend in commit rates from the list, so we click the Insights button
to see the overall commit activity along with the commit activity
from each contributor (Fig. 2). We see that the activity ranged
from 2008 until the present (2019), but there was a sharp decline
in overall commits near the end of 2017. GitHub orders the list of
contributors by their number of commits. Scrolling through the
list of 100 contributors, we see that some of the top contributors
continue to push a small number of commits after 2017 (such as
the users nouiz and abergeron), but many other contributors com-
pletely stopped pushing commits before 2018, and in some cases
considerably earlier (e.g. the user goodfeli had little activity since
2012).

We might additionally wish to know whether the project re-
lies on a small number of contributors to do most of the work or
maintain a critical component. Since it appears that the developers
are no longer actively changing the code, this is a moot question.
However, if we were to try to answer the question of whether the
project relies on a small number of contributors, we would need
to filter the list of contributors to show only recently active con-

4https://github.com/Theano/Theano

387-2
IS&T International Symposium on Electronic Imaging 2020

Visualization and Data Analysis

Figure 1. The Theano software library’s GitHub repository homepage.

Figure 2. The GitHub page showing Theano’s contributors.

tributors and then manually compare the number of their recent
commits to estimate how many contributors are doing most of the
work. Determining whether a small number of contributors main-
tain a critical component is even more labor intensive: we would
need to click on each contributor in the list to see their commits,
and then examine each commit individually to try to see which
technologies and components those contributors are working on.

We would also like to know whether developers are still re-
sponding to issues from the community even if they are no longer
actively changing code. To analyze this, we open the Issues page.
We see that there are 559 open issues and 2,066 closed issues.
Manually counting, we see that 26 open issues were opened this
year, and after clicking to see the list of closed issues we count
eight issues that were closed in 2019. It is difficult to understand
the long-term trend, but it appears that issues are still being ad-
dressed, although more issues are being opened than being closed.
Assessing the long-term trend would require additional manual
effort to page through the list of open and closed issues.

Finally, to understand which technologies are used by the
project, GitHub provides a breakdown of programming languages
used in the project. These languages are inferred from file names
(e.g. __init__.py is a Python file). This means GitHub pro-
vides some information about programming languages used, but
not much additional information about technologies used (e.g.
whether the Python code connects to a database or makes sta-
tistical calculations). Theano’s code is primarily Python (94.2%),
with some code in C (5.0%), shell (0.4%), CUDA (0.4%), and a
small amount of code in other languages.

IS&T International Symposium on Electronic Imaging 2020
Visualization and Data Analysis 387-3

By searching the open web we find that in September 2017
it was publicly stated that Theano is deprecated and new devel-
opment will stop, but that minimal maintenance will continue for
some time.5 The timing of this announcement comes shortly after
the large spike in commit activity near the end of 2017, which is
right before the last major release of Theano in November 2017.
This is congruent with our analysis and corroborates our findings
that this project is not actively maintained.

We would also like to compare Theano to other Python ma-
chine learning libraries to see if they have less risk than Theano.
Making this comparison would largely require the same work we
performed to analyze Theano’s usage suitability, but for each li-
brary we wanted to compare to Theano. Doing this work would
require additional cognitive load to remember and compare all of
the acquired knowledge of each library [4], or we would need to
take notes using some external tool such as a notepad.

Design Requirements
From our own experience and conversations with five devel-

oper and manager collaborators (5–15 years of software engineer-
ing experience, primarily working in small teams), we found that
external developers and managers have an unmet need for under-
standing the usage suitability of a software library and comparing
the usage suitability of multiple software libraries. Some tools al-
ready support aspects of software library usage suitability analy-
sis, such as showing the number of commits over time or the pro-
gramming languages used by the software. However, we found
that several other aspects are not well supported. Specifically, we
found that assessing the following risks of using a software library
are not well supported by currently available tools:

1. Single Point of Failure. A software library may have a
small number of primary contributors for the project, or a
small number of primary contributors for important func-
tionality. This can result in a single point of failure where
the project or the important functionality is at risk of not be-
ing well maintained if those contributors leave the project.

2. Unresponsive to Community. If the software library de-
velopers are unresponsive to feature requests or bug reports
from the community, then the software library users may
have to perform extra work to patch the library for their own
needs.

3. Low Ratio of Contributors to Project Size. Large projects
with a small number of contributors may be more likely to
have components or functionality that is not being actively
maintained, or the software library developers may be less
responsive to feature requests or bug reports from commu-
nity members.

4. Inactive Developers. Projects with inactive developers are
less likely to be maintained, resulting in less responsiveness
to community requests and fewer releases of new software
library versions.

5. Project Decline. Due to technological advancement and
changes in the software library developers (such as a new
job or changing interests), older projects are more likely to
become outdated, deprecated, or inactive.

5https://groups.google.com/forum/#!msg/theano-users/
7Poq8BZutbY/rNCIfvAEAwAJ

6. Unsuitable Technology. The software library could use a
technology, such as a programming language or database,
that is unfamiliar to the external developers who wish to use
the software library. This can increase the amount of effort
to use the software library and increase the risk that the ex-
ternal developers will not be able to use the software library
to its full extent. Alternatively, the software library could
use another library or technology that is at risk of becoming
outdated, deprecated, or inactive, thereby posing a risk to
the software library under consideration.

Although assessing some of these risks is partially supported
by existing tools, we believe current support is inadequate. For ex-
ample, as discussed in Motivating Example section, GitHub will
show some of the programming languages used in a project, but
this is primarily determined by file extensions. This approach lim-
its accuracy—for example, .html files can contain a mixture of
HTML, CSS, and JavaScript code. Furthermore, the program-
ming language itself might not reveal fine grained information
about the technology used—for example, JavaScript code can be
frontend website code, backend website code, even code com-
pletely unrelated to websites.

We propose designing dashboards to help external develop-
ers assess these risks when analyzing the usage suitability of soft-
ware libraries. To do so, we translate these risks into the following
set of requirements that our dashboards should support:

1. Requirement: Survey Code Change Quantity.
Description: View the amount of code changes over time
from the top authors to understand the current level of pro-
ductivity, how productivity has changed over time, whether
primary contributors have become inactive, or whether the
project is old and could become outdated, deprecated, or in-
active because of age.
Risks addressed: Inactive Developers, Project Decline

2. Requirement: Changes in Code Content.
Description: Understand the changes in code content over
time to determine whether important parts of the repository
are still maintained.
Risks addressed: Project Decline

3. Requirement: Required Skills.
Description: Assess the technology used in the project to
determine whether the potential adopters have the required
skills to use the repository’s code.
Risks addressed: Unsuitable Technology

4. Requirement: Age of Project.
Description: Assess the age of the project to understand
the risk that development and support may end while the
adopter still needs the repository’s code.
Risks addressed: Project Decline

5. Requirement: Issues Backlog.
Description: Understand the issues backlog to get a high-
level understanding of the activity level of the contributors
and whether the repository contributors are responsive to
bug reports or feature requests from the community.
Risks addressed: Unresponsive to Community, Inactive
Developers, Project Decline

6. Requirement: Bus Factor.
Description: Assess the number of core developers over

387-4
IS&T International Symposium on Electronic Imaging 2020

Visualization and Data Analysis

time to determine the number of active core contributors,
whether there is a single point of failure among contributors,
and whether primary development has slowed or ended.
Risks addressed: Single Point of Failure, Inactive Devel-
opers, Project Decline

7. Requirement: Activity Relationships.
Description: View the number of core contributors and
the types of contributor activity to gauge whether there is
a small number of core contributors relative to the size of
the project.
Risks addressed: Single Point of Failure, Low Ratio of
Contributors to Project Size

We further identify two tasks performed by external devel-
opers who are looking for suitable software libraries to use:

1. Analyze an Individual Software Library. After external
developers identify a potential software library, they need to
assess it for the risks described above.

2. Compare Multiple Software Libraries. In some cases,
there are multiple potential software libraries that external
developers can use. In this case, the external developers
need to be able to compare multiple software libraries si-
multaneously to assess the relative risks of each.

System Design
We designed a visualization system to support the two use

cases described above: gain insight into the usage suitability risks
of a single software library, and to compare multiple software li-
braries to assess their relative risks. We considered these as sepa-
rate use cases, and therefore we designed one dashboard for each
task. These dashboards show semantic tags for code, commits
over time, total vs. closed issues, and changes in the core contrib-
utors over time.

We implemented these dashboards in a client-server web ap-
plication. To support the dashboards, the web application has
three main components: a data pipeline that ingests, processes,
and stores data in the database for each repository; a backend
server that interfaces with the database, processes the data further,
and sends data to the frontend; and two frontend user interfaces
that visualize the code repository data. All data is stored in a Post-
gres database with tables to store data for the tags, files, commits,
and issues. The following sections describe each component in
more detail.

Data Pipeline
The data pipeline fetches data from the given code repos-

itory’s master branch using git commands, and the data pipeline
fetches the GitHub issues using the GitHub API (Application Pro-
gramming Interface).

To support requirements 2 and 3 (Changes in Code Con-
tent and Required Skills), the data pipeline uses Gelman et al.’s
system [8] to generate a set of tags for each code file. These
are semantic tags learned from Stack Overflow, such as c++,
multithreading, or machine-learning. This system only
generates tags on a per-file basis. Because our tool focuses on
project-level analysis, we aggregate tags at the project level. To
do this we remove tags if the tag is not assigned to at least 5% of
all code files in the project.

Backend Server
The backend is a REST server run in Node.js. Upon re-

ceiving a request from a client for a repository’s data, the server
queries the database, processes the data, and then returns the re-
sulting data to the client. The data processing step performs two
primary operations. The first is to aggregate the commit data by
author, month, and commit identifier. The second is to calculate
the bus factor, which measures the risk to the project in terms of
the number of core contributors. Bus factor does not have a clear
mathematical definition, so this system uses the Augmented Pony
Factor6, which is a related concept that finds the fewest commit-
ters doing at least half of the work in a given month. It is defined
as ∑

P
n=1 Cn ≥ V/2 where P is the pony factor (which we call the

bus factor in this paper), Cn is the number of commits from com-
mitter n in the given month (sorted decreasing by number of com-
mits), and V is the total number of commits in the given month.

The repository’s issues data is passed directly to the frontend
to calculate running totals of the total number of issues and the
number of closed issues.

Dashboards
The frontend is displayed as one of two dashboards. The

first is a dashboard showing usage suitability metrics of a single
code repository (Fig. 3), which addresses the Analyze an Individ-
ual Software Library task. The second is a repository comparison
dashboard comparing multiple code repositories (Fig. 4), which
addresses the Compare Multiple Software Libraries task. The
components of each dashboard are built with React7 and D3 [3].

The usage suitability summary dashboard is built as an
extension for the Chrome web browser. When users visit the
webpage for a GitHub repository, the extension checks if the
repository has already been processed and stored in the Postgres
database. If it has, the extension then requests the repository’s
data from the backend, as described in the Backend Server sec-
tion. Finally, the extension draws the data in the visualization
components, and the components are inserted in the GitHub web-
page underneath the project statistics (see Fig. 3). We designed
this to address Requirement 7 (Activity Relationships) by making
these visualizations all visible at the same time to aid compari-
son of different types of activities. The dashboard has four main
components.

First, the Tags component (Fig. 3A) is a visual representation
of the tags generated for the repository’s files. It presents the most
common tags as well as the number of code files per tag. This pro-
vides insight to two major questions: “What is in this repository?”
and “What technologies are used in this project?” Additionally,
the tags inform users of the number of code files with different
content in this project. This addresses Requirement 3 (Required
Skills). This component serves as context and background knowl-
edge for the other components and it also serves as a legend for
the Total Commits area plot.

Second, the Total Commits component (Fig. 3B) provides
useful information about the number of commits and the com-
mit content over time. This component shows two area charts of
monthly commits, where each layer is colored by tag, showing

6https://ke4qqq.wordpress.com/2015/02/08/
pony-factor-math/

7https://reactjs.org/

IS&T International Symposium on Electronic Imaging 2020
Visualization and Data Analysis 387-5

Figure 3. The software library usage suitability dashboard is inserted into the GitHub UI for the given repository, which makes the information immediately

accessible to users viewing the repository. The dashboard contains: (A) a list of tags indicating the most common automatically identified content, (B) an area

chart showing commits over time for the top contributor and one for all other contributors broken down by tag, (C) a burn down chart showing the total number

of issues and the number of closed issues over time, and (D) the monthly bus factor. Components include tooltips (not shown) to provide additional context and

definitions (e.g. explaining how to read the issues burn down chart, or explaining what “bus factor” means).

how the content of commits has changed over time. This ad-
dresses Requirements 1, 2, and 4 (Survey Code Change Quan-
tity, Changes in Code Content, and Age of Project). One of the
two area charts is the contributor with the most total commits.
The second area chart is an aggregation of all other contributors
combined. This shows the relationship between the most pro-
lific contributor, who is often the lead developer, and the rest of
the contributors. Additionally, the relationship between top and
other contributors can indicate how much growth the project has
taken on since the first commit. Specifically, if the most prolific
contributor is committing much less than the other contributors
combined, this indicates the project has exited an initial stage of
development and now has a healthy number of contributors. On
the other hand, if the top contributor is the only one working on an
important section of the code (e.g. the database), then the project
would be at risk if the top contributor left the project.

Third, the Total vs. Closed Issues component (Fig. 3C) is
a line chart that shows the number of total issues and closed is-
sues at monthly intervals. The cross-hatching between the lines
is the focus of this visualization. This indicates whether or not a
project’s maintainers are keeping up with development and com-
munity requests. This is designed to address Requirement 4 (Is-
sues Backlog).

Fourth, the Bus Factor component (Fig. 3D) is presented as
a line chart showing the number of contributors responsible for
at least half of the commits on monthly intervals. This is calcu-
lated using the Bus Factor as described above. Any drops in the
bus factor from the previous month are represented in red while a
continuing or increasing factor is in gray. This is designed to sat-
isfy Requirement 5 (Bus Factor). While the Total Commits chart

indicates the total amount of work performed, as measured by
the number of commits, the Bus Factor chart shows us how con-
centrated this work is among the contributors. An increasing bus
factor indicates the project is gaining core developers; declines
tend to indicate the project is losing core developers. A bus factor
with many dips and spikes may indicate many irregular contribu-
tors; a smooth line may indicate more consistency among the top
contributors.

The usage suitability comparison dashboard (Fig. 4) is a
standalone web page and does not require any browser extensions.
It is configurable to show usage suitability summary dashboards
for selected groups of repositories. This is designed to compare a
group of similar or related repositories, such as Python machine-
learning libraries, to compare their content and contributor activ-
ity. This enables users to answer questions such as which repos-
itory has more active developers, which repository’s developers
are most responsive to issues, and which repository is most sensi-
tive to core developers leaving the project.

We developed these dashboards using an iterative process
where we gathered informal usability feedback from four pro-
grammer collaborators over several months. We incorporated
their feedback to improve the usability of the dashboard designs.

Example Usage Scenarios
To demonstrate the ability of these dashboards to gain help-

ful insight into the usage suitability of software libraries, we
present two example analyses. The first demonstrates software li-
brary usage suitability analysis of a single library, and the second
demonstrates using the usage suitability comparison dashboard to
compare the health of four libraries.

387-6
IS&T International Symposium on Electronic Imaging 2020

Visualization and Data Analysis

Analyzing the Usage Suitability of a Software Li-
brary

To demonstrate analysis using the usage suitability summary
dashboard, we select Theano, a popular machine learning library
for Python (see Fig. 3).

The Total Commits component shows an increasing number
of commits up until the end of 2017, when there is a sharp de-
crease in commits by all the other contributors. Importantly, the
number of commits is at its highest rate in the ending stage of this
project (Fig. 3E). The top author comes back to the project after
a long period of low development. Therefore, it appears that de-
velopment has stopped, but there was a strong effort to leave this
project in a finished state.

The Total vs. Closed Issues component indicates the
project’s lack of ongoing development. Changes in the number
of total issues and closed issues rapidly slow down in late 2017,
and we see a large gap in the number of total issues and closed
issues (the cross-hatched portion Fig. 3F). This occurs around the
final stage of development seen in the Total Commits graph. This
visualization also shows the long term growth of this project. The
number of total issues and closed issues increases, but the rate
sharply declines at the same time as commits decline.

The Bus Factor component highlights a weakness of this
project. The other visualizations indicate that this is a large
project with a history of growth, but the bus factor was around
two from 2008 to 2015. That is a span of seven years where there
were only two main contributors. That is not enough core devel-
opers for any sizable project, especially one that was intended to
be used in production scenarios by companies. Even during its
peak levels of development, the bus factor was only around five.
A bus factor of five could be considered decent in smaller scale
projects but is not a good sign on a project that has 2,484 forks
and over 28,000 commits. Since late 2017 the bus factor dropped
and oscillated between one and three, indicating a decline in core
developers that corresponds with the decline in commit and issues
activity.

Our analysis indicates that Theano is not in a healthy state:
changes to the code have almost stopped, few issues are being
opened or closed, and the number of primary developers is very
small.

Comparison to the GitHub Example Analysis
Comparing the analysis using our dashboard to the analysis

using the GitHub UI in the Motivating Example section, we are
able not only to develop the same insights, but also additional
insights, and with less work.

The code tags give us insight into the technology of the
project. The “python” tag indicates that a lot of files are in the
Python language, which mirrors what we see in GitHub’s pro-
gramming language details. The “theano” tag is self evident, but
the “tensorflow” tag reflects that Theano’s API is similar to Ten-
sorflow’s. Similarly, the “numpy” tag indicates that NumPy is a
technology often used with Theano. This are insights we could
not see from GitHub’s UI alone.

The dashboard’s Total Commits to Code component shows
similar information as GitHub’s list of contributors, but it shows
more fine-grained information about the number of commits re-
lated to each of the four tags. Furthermore, this information
is shown on the repository’s homepage, making the information

faster and easier to access than the list of contributors that is on a
separate page.

The Total vs. Closed Issues component also provides more
nuance than we saw using GitHub’s UI. In GitHub, we had to nav-
igate from the repository’s homepage to the Issues page, and from
there we had to manually read the dates of each issue in the list
to see how many issues were opened and closed this year. How-
ever, in the Total vs. Closed Issues component in our dashboard,
we were able to see more nuanced information about the rate of
change in the number of total vs. closed issues as well as the gap
between them–all without leaving the repository’s homepage.

Finally, the Bus Factor component enabled us to much more
easily understand whether the project relies on a small number
of developers. With GitHub’s UI, we had to scroll through the
long list of 100 contributors to try to see which are active during
any given period of time. But with the Bus Factor component
we see right away that the number of core developers decreased
substantially in late 2017, and has frequently dipped down to one
since then.

Having all of these components visible together also allows
us to visually correlate data we see in one component with data
we see in another.

Comparison to Ground Truth
By searching the open web we find that in September 2017

it was publicly stated that Theano is deprecated and new develop-
ment will stop.8 The timing of this announcement comes shortly
before the large spike in commit activity near the end of 2017,
which corresponds with the last major release of Theano. This
announcement also comes around the time we see a sharp decline
in the bus factor and the number of new issues. Therefore our
analysis reflects the reality that this project is deprecated and not
actively maintained, and in fact with our dashboard it is possible
to predict this outcome before the announcement because some
signs (e.g. the low bus factor and the widening gap between to-
tal and closed issues) are visible in the dashboard before the an-
nouncement was made.

It has been publicly stated that Theano is deprecated and new
development will stop, but even without the public announcement
it is easy to see that this is the case.

Using only GitHub’s default UI and visualizations we see
some of this trend, but with less nuance and less predictive sig-
nal. With GitHub’s default UI and visualization it was possible
to see that commit activity had sharply declined around the time
of Theano’s deprecation announcement. However, GitHub lacks
an ability to see trends in created and closed issues, so we are not
able to see that the number of new issues has declined and that an
increasing number of them remain open. This weakens our ability
to see the reduction in overall project activity by making it nearly
impossible to see this trend.

Comparing the Usage Suitability of Machine
Learning Libraries

For the usage suitability comparison dashboard, consider a
scenario where we need to identify a Python machine learning li-
brary that is actively maintained and shows signs of longevity. We

8https://groups.google.com/forum/#!msg/theano-users/
7Poq8BZutbY/rNCIfvAEAwAJ

IS&T International Symposium on Electronic Imaging 2020
Visualization and Data Analysis 387-7

Figure 4. The usage suitability comparison dashboard is composed of one instance of the usage suitability summary dashboard for each code repository being

compared. This example compares the usage suitability of four Python machine learning libraries. See the section “Comparing the Usage Suitability of Machine

Learning Libraries” for information on the callouts.

387-8
IS&T International Symposium on Electronic Imaging 2020

Visualization and Data Analysis

investigate four popular Python machine learning libraries: Ten-
sorflow, Keras, PyTorch, and Theano. We load their code reposi-
tories into the usage suitability comparison dashboard (see Fig. 4)
to compare them.

From the Total Commits charts, we can see that Theano is the
oldest project (Fig. 4A), and Keras is the second oldest (Fig. 4B).
TensorFlow and PyTorch are much newer and begin ramping up
in late 2016 and early 2017. The second thing that attracts our
attention is the status of issues across all projects. TensorFlow has
almost as many total issues as all the other repositories combined
(Fig. 4C). TensorFlow appears to do a better job of closing issues
than the other code repositories, which is demonstrated by the
narrow difference between the number of total issues and closed
issues (Fig. 4D). In 2017 we also see a sharp decrease in the rate
that Keras closes issues (Fig. 4E). This makes sense because in
late 2016 it was announced that Keras would become the default
API in TensorFlow9; correspondingly, we see a notable decline in
commits from the lead author, Francois Chollet, as he began to
shift his focus to TensorFlow.

Bus factor provides additional information. TensorFlow and
PyTorch have a similar bus factor growth rate and a large num-
ber of core contributors (Fig. 4F and G). In contrast, Keras and
Theano’s bus factor tends to be declining, and Theano’s bus fac-
tor is particularly low (Fig. 4H).

Based on this quick comparison, we would not select
Theano. Keras appears healthier than Theano but lacks signs of
longevity, which is consistent with what we know about Francois
Chollet’s shift in focus. Tensorflow or PyTorch both appear sub-
stantially healthier with no signs of a decline in activity, and we
would select both of them for a more detailed comparison (e.g.
functionality and API quality) to ensure compatibility with our
project.

Conclusion
In this paper, we identify six risks and derive seven require-

ments for external developers who wish to assess the usage suit-
ability of a software library. From these requirements, we devel-
oped two dashboards. The first dashboard visualizes three code
repository metrics related to software library usage suitability:
trends in commits to the repository, trends in the number of to-
tal issues and closes issues, and trends in the bus factor. The
second dashboard visualizes these metrics across multiple code
repositories so that external developers can easily compare mul-
tiple software libraries and identify the most suitable ones. We
demonstrated, with two example usage scenarios, that these dash-
boards are effective for analyzing a library’s usage suitability and
comparing the usage suitability of multiple libraries. In these sce-
narios, the Total Commits, Total vs. Closed Issues, and Bus Factor
visualizations proved to be the most useful; in these examples we
did not find major insights into the repositories’ usage suitabil-
ity by examining the semantic tags. We did find that this analy-
sis required substantially less manual counting, comparison, and
clicking compared to conducting this same analysis using a typi-
cal code repository’s user interface.

Future work could expand these dashboards. For example,
clicking the Total vs. Closed chart could show information about
which contributors are responding to issues. The dashboards

9https://www.fast.ai/2017/01/03/keras/

could also integrate other information, such as the number of core
contributors who work at the same organization. This prototype
dashboard could be directly integrated into a code repository’s UI
to avoid needing to install a browser plugin. Future work should
also evaluate these dashboards with users to better understand the
dashboards’ utility in practice.

Acknowledgment
We thank Ben Gelman, Michael Lack, Jessica Moore, Banjo

Obayomi, and David Slater for advice and feedback on this work.
This project was sponsored by the Air Force Research Lab-

oratory (AFRL) as part of the DARPA MUSE program.

References
[1] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler,

and J. Penix. Using static analysis to find bugs. IEEE soft-
ware, 25(5):22–29, 2008.

[2] T. Ball and S. G. Eick. Software visualization in the large.
Computer, 29(4):33–43, 1996.

[3] M. Bostock, V. Ogievetsky, and J. Heer. Data-Driven Docu-
ments. IEEE TVCG, 17(12):2301–2309, 2011.

[4] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings
in Information Visualization: Using Vision to Think. Morgan
Kaufmann, 1999.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data. IEEE TSE, 27(1):1–12, 2001.

[6] R. Ferenc, L. Langó, I. Siket, T. Gyimóthy, and T. Bakota.
Source meter sonar qube plug-in. In International Working
Conference on Source Code Analysis and Manipulation, pp.
77–82, 2014.

[7] J. Garcı́a-Munoz, M. Garcı́a-Valls, and J. Escribano-
Barreno. Improved metrics handling in sonarqube for soft-
ware quality monitoring. In International Conference on
Distributed Computing and Artificial Intelligence, pp. 463–
470, 2016.

[8] B. Gelman, B. Hoyle, J. Moore, J. Saxe, and D. Slater. A
language-agnostic model for semantic source code labeling.
In Proc. 1st Int. Workshop on Machine Learning and Soft-
ware Engineering in Symbiosis, pp. 36–44, 2018.

[9] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer. Visualiz-
ing collaboration and influence in the open-source software
community. In Proc. MSR, pp. 223–226, 2011.

[10] A. Hindle, D. M. German, and R. Holt. What do large com-
mits tell us?: a taxonomical study of large commits. In Proc.
MSR, pp. 99–108, 2008.

[11] A. Jermakovics, A. Sillitti, and G. Succi. Mining and visu-
alizing developer networks from version control systems. In
Proc. 4th CHASE, pp. 24–31, 2011.

[12] S. C. Johnson. Lint, a c program checker. Technical report,
Bell Laboratories, 1978.

[13] M.-A. D. Storey, D. Čubranić, and D. M. German. On the
use of visualization to support awareness of human activi-
ties in software development: a survey and a framework. In
Proc. ACM SOFTVIS, pp. 193–202, 2005.

[14] F. van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proc. 20th IEEE Int. Conf. on Software Maintenance, pp.
328–337, 2004.

IS&T International Symposium on Electronic Imaging 2020
Visualization and Data Analysis 387-9

[15] L. Šubelj and M. Bajec. Community structure of complex
software systems: Analysis and applications. Physica A
Stat. Mech. Appl., 390(16):2968–2975, 2011. doi: 10.1016/j
.physa.2011.03.036

[16] L. Šubelj and M. Bajec. Software systems through com-
plex networks science: Review, analysis and applications. In
Proc. KDD Workshop on Software Mining, pp. 9–16, 2012.

[17] L. Šubelj, S. Žitnik, N. Blagus, and M. Bajec. Node mix-
ing and group structure of complex software networks. Ad-
vances in Complex Systems, 17(7):1450022, 2014.

Author Biography
Casey Haber received a BS in Computer Science with a mi-

nor in Design from the University of San Francisco (2018). Re-
cently, he worked at Two Six Labs in Arlington, VA where he
worked as a designer, full-stack developer, and visualization spe-
cialist on government R&D programs. He is currently a Visual-
ization Engineer at Chartio.

Robert Gove received dual BS degrees in Computer Science
and Applied Mathematics from the University of North Carolina
at Greensboro (2009) and his MS in Computer Science from the
University of Maryland (2011). He has worked at Two Six Labs
(formerly Invincea Labs) in Arlington, VA since 2014. He has fo-
cused on applying data visualization techniques to cybersecurity
problems and building scalable graph visualization tools.

387-10
IS&T International Symposium on Electronic Imaging 2020

Visualization and Data Analysis

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

