
Journal of Imaging Science and Technology R© 62(6): 060404-1–060404-14, 2018.
c© Society for Imaging Science and Technology 2018

Digital Circuit Methods to Correct and Filter Noise of
Nonlinear CMOS Image Sensors

Maikon Nascimento, Jing Li, and Dileepan Joseph
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

E-mail: dil.joseph@ualberta.ca

Abstract. Nonlinear complementary metal-oxide semiconductor
(CMOS) image sensors (CISs), such as logarithmic (log) and
linear–logarithmic (linlog) sensors, achieve high/wide dynamic
ranges in single exposures at video frame rates. As with linear CISs,
fixed pattern noise (FPN) correction and salt-and-pepper noise
(SPN) filtering are required to achieve high image quality. This paper
presents a method to generate digital integrated circuits, suitable
for any monotonic nonlinear CIS, to correct FPN in hard real time.
It also presents a method to generate digital integrated circuits,
suitable for any monochromatic nonlinear CIS, to filter SPN in hard
real time. The methods are validated by implementing and testing
generated circuits using field-programmable gate array (FPGA)
tools from both Xilinx and Altera. Generated circuits are shown to
be efficient, in terms of logic elements, memory bits, and power
consumption. Scalability of the methods to full high-definition (FHD)
video processing is also demonstrated. In particular, FPN correction
and SPN filtering of over 140 megapixels per second are feasible, in
hard real time, irrespective of the degree of nonlinearity. c© 2018
Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2018.62.6.060404]

1. INTRODUCTION
In a review paper, Kim [1] of Samsung has explained the
importance of high dynamic range (HDR) imaging and
examined several wide dynamic range (WDR) technolo-
gies, based on complementary metal-oxide semiconductor
(CMOS) image sensors (CISs), to achieve it. While ‘‘dual-
exposed or multiframe-capturing WDR sensors... will fill
the role of real WDR sensors for a while,’’ he concludes
that ‘‘the ultimate goal of WDR sensor technology is to
physically extend the dynamic range of a sensor, based on
pixel technology,’’ mainly to avoid ‘‘motion artifacts such as
the ghost effect.’’

As for WDR ‘‘pixel technology,’’ Kim prefers the linear–
logarithmic (linlog) sensor, a nonlinear CIS with a response
that transitions from linear, in dim lighting, to logarithmic
(log), in bright lighting. Whereas fixed pattern noise (FPN)
does degrade the raw image quality of linear sensors [2], the
degradation is worse with log and linlog sensors due to their
nonlinearity [3, 4]. Moreover, because of ‘‘the variation of
a knee point’’ (Kim’s words), the degree of nonlinearity is
greater in linlog sensors, compared to log sensors.

An image sensor is a matrix of pixel sensors, so ‘‘sensor’’
has two context-sensitive meanings in this paper. Because

Received June 29, 2018; accepted for publication Nov. 5, 2018; published
online Dec. 5, 2018. Associate Editor: Yeong-Ho Ha.
1062-3701/2018/62(6)/060404/14/$25.00

perfect uniformity is impossible inCMOS fabrication, FPN is
caused by time-independent sensor variations from pixel to
pixel [5]. The response of a linear sensor is given by an offset
and a gain. Offset variation is usually corrected by analog
circuits, implementing correlated double sampling (CDS),
integrated on the same chip [2], i.e., the linear CIS. Gain
variation is usually corrected by digital circuits, using stored
data obtained via calibration, integrated with other functions
on a second chip [6], i.e., an image signal processor (ISP).

As for circuit-based nonlinear FPN correction, literature
has addressed: analog circuits to correct offset variation
only of both log and linlog sensors [7, 8]; mixed-signal
circuits to correct both offset and gain variation of linlog
sensors [9]; and digital circuits to correct offset, gain, and bias
variation of log sensors [10]. Some authors are motivated to
avoid calibration or use self-calibration [7–9]. Other authors,
like us, are motivated to achieve the highest image quality
possible and so, as with linear sensors, adopt calibration [10].

This work contributes, validates, and evaluates amethod
to generate digital circuits, suitable for ISP integration, to
correct all FPN variation, in hard real time, of ‘‘arbitrary’’
sensors. Hard real time means that processing occurs strictly
in sync with a clock signal, in this case the same clock that
drives CIS readout. An ‘‘arbitrary’’ sensor is one where the
response is defined by a monotonic (non)linear function,
which need not be specified, having parameters that can
vary from pixel to pixel. This includes linear, log, and linlog
sensors.

This work also contributes, validates, and evaluates
a method to generate digital circuits, suitable for ISP
integration, to filter salt-and-pepper noise (SPN) of any
monochromatic CIS. It is well known that stuck pixels, such
as dead (always dark) or hot (always bright) pixels, require
correction by the ISP with linear sensors [6]. In contrast,
literature on integrated circuits for log and linlog sensors,
including the above citations [7–10], does not address SPN
filtering, which like FPN correction is affected by nonlinear
responses.

The proposed digital circuit methods exploit recent
software algorithms that our group previously published [5].
In Section 2, we summarize the background algorithms and
present the novel methods under distinct sub-headings.

As described in Section 3, the proposed methods
are validated and evaluated by generating and simulating
very-high-speed integrated circuits (VHSICs), using field-
programmable gate array (FPGA) tools, from Xilinx and

J. Imaging Sci. Technol. 060404-1 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

mailto:dil.joseph@ualberta.ca

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Altera, and VHSIC hardware description language (VHDL)
designs. Section 3 also elaborates on the novelty and
significance of this work, both ofwhich have been introduced
above.

Section 4 concludes the paper by summarizing its
motivation, background, methods, results, and discussion.

2. BACKGROUNDANDMETHODS
In this section, we summarize relevant background, i.e.,
software algorithms and underlying concepts, that we have
previously published. We also propose novel methods, i.e.,
digital circuit designs and a generic design flow, to implement
FPN correction and SPN filtering, for one or more copies of
an ‘‘arbitrary’’ image sensor, in hard real time.

2.1 Generic Design Flow
Our digital circuits are coded in VHDL, which is a popular
hardware description language (HDL) that allows designs
to be implemented in a wide variety of technologies,
such as low-cost FPGAs, from Xilinx and Altera, or high-
performance CMOS application-specific integrated circuits
(ASICs), from TSMC, IBM, etc. However, we explain our
circuits and methods using figures, tables, equations, and
words.

We target FPGA implementations, due to the prelimi-
nary nature of our work, but occasionally we make design
choices considering ASIC implementations, anticipating
future work.Moreover, we go beyond proposing novel digital
circuits for a specific image sensor by proposingmethods that
generate novel digital circuits for an ‘‘arbitrary’’ image sensor.

These digital circuit methods are implemented using
the generic FPGA design flow shown in Figure 1. Unlike
the standard design flow, in which Design Specification and
Design Entry are both manual, we introduce three aspects
that make the Design Entry automatic. The new aspects
also add a scripting environment, in this case Matlab, to
the standard design flow, which otherwise needs only FPGA
design tools, such as ISE fromXilinx or Quartus fromAltera.

Normally, digital circuits are realized in FPGAs as
follows. First, a high-level description, called the De-
sign Specification, is produced, e.g., using figures, tables,
equations, and words. Design Entry means the high-level
description is coded in a low-level HDL, which enables
Functional Simulation. Using FPGA design tools, a Gate
Level Model is obtained via Synthesis. This model, which
enables Gate Level Simulation, has more importance with
ASIC implementations.

To achieve a binary file, called firmware, suitable for
FPGA Download, the design flow has aspects that target a
specific FPGA device family, such as the Xilinx Spartan-6
or the Altera Cyclone III. Under Translation & Mapping,
the design is flattened into a single ‘‘netlist,’’ removing
modular aspects, and functional resources, i.e., logic and
memory units, of the FPGA family are allocated. Finally,
Place & Route, which enables Timing Simulation, selects and
configures resources physically available on a chosen FPGA
device.

Figure 1. Generic FPGA design flow adopted here. The dashed box
shows aspects added to a standard design flow. Functional Simulation
suffices to demonstrate validity and estimate complexity. Timing Simulation
suffices to evaluate max frequency, of valid operation, and power
consumption.

As shown in Fig. 1, instead of manual Design Entry,
we generate VHDL code automatically from a Design
Template, i.e., VHDL pseudo-code that is image sensor
independent, and Design Parameters, i.e., data that is image
sensor dependent. Using a Matlab program, these files are
processed to generate the VHDL code of a digital circuit
for a specific image sensor. Although VHDL has some
capability, i.e., generics, to support templating, we required
the sophistication of Matlab to realize a recursive digital
circuit method.

Because digital circuits are predictable and FPGA testing
tools are sophisticated, reliable results are possible without
performing FPGADownload.We use Functional Simulation
to validate operation, debugging included. Although we may
use it also to estimate complexity, i.e., logic and memory
needed, we evaluate complexity after Place & Route for 100%
accuracy.We do not use Gate Level Simulation but we do use
Timing Simulation, including static timing analysis (STA), to
evaluate max frequency and power consumption.

2.2 FPN Correction
In this paper, as in relevant literature, the word ‘‘sensor’’
may mean either an image sensor or one pixel sensor
thereof. Sometimes, themeaning is specified. Sometimes, the
meaning is evident. Sometimes, either meaning works.

J. Imaging Sci. Technol. 060404-2 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 2. FPN correction need not invert nonlinear responses. Two pixels
are shown from a log CIS having 48× 64 pixels. Offset correction,
which is inadequate, simply adds a pixel-dependent number to each
response. Ideal correction is well approximated, in this case, using cubic
polynomials.

2.2.1 Background
To create an effective and efficient algorithm, which we
previously published [5], for the FPN correction of an
‘‘arbitrary’’ image sensor, a key concept is that FPNcorrection
need not invert monotonic (non)linear responses of the
pixel sensors. Using experimental data from an available log
sensor, which we previously documented [11], Figure 2 has
been newly prepared to illustrate this concept.

Calling scene luminance x and pixel response y , in
Fig. 2, we see first that offset correction does not require
computing x . Second, the result of offset correction is still
highly nonlinear over the WDR. Although offset and gain
correction is not shown, these two observations remain true.
Because the ‘‘knee point,’’ called the bias [3], varies in this
example, even offset and gain correction cannot result in
overlapping responses over theWDR, the ideal result of FPN
correction.

To improve FPN correction of log sensors, the offset,
gain, and bias (OGB) approach uses a specific model [3]:

yj = aj+ bj ln(cj+ xj)+ εj, (1)

where aj, bj, and cj are called the offset, gain, and bias of pixel
j, with 1 ≤ j ≤ n, respectively. Temporal and quantization
noise, plus residual FPN, are represented by εj above. After
calibration, using uniform luminance of varying intensity,
FPN correction is achieved as follows:

x̂j = exp((yj− âj)/b̂j)− ĉj, (2)

where âj, b̂j, and ĉj are parameters estimated by the one-time
calibration, and x̂j is the OGB correction.

The above approach is unsuitable for FPN correction of
an ‘‘arbitrary’’ sensor. As it requires inversion of the nonlinear
response, it may not even be the best approach for FPN

correction of a log sensor. Third, modeling a linlog sensor
in a similar way to Eq. (1) proves complicated [4].

An alternative, i.e., our inverse polynomial regression
(IPR) approach [5], uses the following generic model:

yj = fj(xj)+ εj, (3)

where fj is amonotonic (non)linear functionwith parameters
that vary with pixel j. We showed that FPN correction is
possible, using low-degree polynomials, as follows:

ŷj = yj+ b̂j0+ yj(b̂j1+ yj(b̂j2 · · · + yj(b̂jq))), (4)

where b̂jk are the coefficients of degree q polynomials, with
0≤ k≤ q, and ŷj is the IPR(q) correction.

Irrespective of q, IPR(q) correction requires arithmetic
only. Moreover, IPR(0) correction is simply offset correction,
IPR(1) correction equates to offset and gain correction, and
IPR(3) correction is ideal for the log sensor example of Fig. 2,
over all 3,072 pixels [5]. The ideal response, which remains
highly nonlinear over the WDR, is shown in Fig. 2.

We also developed a fixed-point version of FPN correc-
tion [5]. Denoting binary-point positions and word lengths
as sk and tk, respectively, double-precision coefficients b̂jk
convert to signed-integer coefficients Bjk as follows:

Bjk = round(2−sk b̂jk), (5)

|Bjk|< 2tk−1. (6)

We showed how to calculate optimal sk and tk values, given a
total word length t , in bits per pixel (bpp):

t = t0+ t1+ t2 · · · + tq. (7)

The binary-point shifting of Eq. (5), to scale coefficients
before rounding, means the FPN correction of Eq. (4) must
be amended, to undo the binary-point shifting, as follows:

Yj = yj+ 2s0 (Bj0+ 2s1−s0yj (Bj1+ 2s2−s1yj
× (Bj2 · · · + 2sq−sq−1yj(Bjq)))), (8)

where Yj denotes the result of fixed-point IPR(q) correction.
When t is sufficiently large, the results of floating-point and
fixed-point correction are indistinguishable [5].

To complete the explanation, two additional details are
needed. First, instead of yj in the right hand side (RHS) of
Eq. (8), except the leftmost yj, we use the following:

y ′j = yj− y0, (9)

where y0 is an unsigned-integer constant. Because yj, the re-
sponse of pixel j after an analog-to-digital converter (ADC),
is an unsigned integer, we use Eq. (9) to produce signed
integers where the worst-case magnitude is significantly
lower. This change allows us to significantly lower the total
word length t required by the fixed-point correction [5].

The final detail concerns binary-point, or bit, shifts in
the RHS of Eq. (8). Because s0 is expected to be non-negative
in an optimal configuration, it entails a left shift. The left

J. Imaging Sci. Technol. 060404-3 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 3. FPN correction using a recursive pipeline circuit. This schematic shows: offset correction in black; offset and gain, i.e., linear, correction in blue
and black; quadratic correction in green, blue, and black; and cubic correction in red, green, blue, and black. Bus operations � and � represent bit
shifts.

shift of an integer stays an integer. On the other hand,
sk − sk−1 for 1 ≤ k ≤ q may be negative, entailing potential
right shifts. The right shift of an integermay have a fractional
part. To avoid fractional parts and reduce word lengths
of intermediate values, a round operation is performed
after each shift in Eq. (8), except the leftmost one. This
turns the fixed-point correction into a more efficient integer
correction [5].

2.2.2 Method
Because FPN calibration is a one-time process with no
real-time constraints, there is no need to design a circuit
to implement it. The software algorithm we detailed
previously [5], implemented in Matlab, suffices for this
purpose. However, we require a digital circuit to implement
FPN correction efficiently in hard real time. Moreover,
because we want a solution not for one nonlinear image
sensor but for a wide variety of them, we use our generic
design flow, shown in Fig. 1, to realize a digital circuit
method.

Parameters of the FPN correction include: the poly-
nomial degree, q; the binary-point positions, sk, and word
lengths, tk, where 0 ≤ k ≤ q; the number of pixels, n; the
polynomial coefficients, Bjk, where 0 ≤ j ≤ n− 1 assuming
0-based indexing, what VHDL uses, instead of 1-based
indexing, i.e., 1 ≤ j ≤ n, what Matlab uses; and the word
length, tADC, of pixel responses, yj. Because FPN correction
is agnostic to the division of n pixels into n1 rows and n2
columns, where n equals n1n2, the latter are not parameters.

For each pixel j, we pack the coefficients Bjk, where word
lengths tk may vary, into t-bit words denoted by Bj, where
t in Eq. (7) is constant. As this is done once, it is done in
Matlab after calibration. The resulting tn-bit data is not a part
of the proposed FPN correction circuit but is external data,
e.g., stored in flash memory, that is repeatedly read into the
circuit synchronously with yj, the response of pixel j.

Given an image sensor design, Bj may be the only
set of parameters that needs to vary with each instance,
or fabricated copy, of the design. The remaining pa-

rameters may be fixed, which therefore fixes the FPN
correction circuit. Whereas FPGA implementations allow
circuit reconfiguration, ASIC implementations do not. In
his FPN correction work, Hoefflinger [10] also externalized
coefficients.

Figure 3 presents a schematic, or rather multiple
schematics, of the proposed FPN correction circuit. An
important feature of the circuit is its recursive nature. The
IPR(3) circuit has the IPR(2) circuit as a sub-circuit. In turn,
the IPR(2) circuit has the IPR(1) circuit as a sub-circuit.
For q > 3, the IPR(q) circuit follows from the pattern.
Even though the IPR(1) circuit has the IPR(0) circuit as a
sub-circuit, they are both special cases as neither follows the
higher-degree pattern.

Digital circuit elements may be classified as sequential
logic, operating synchronously with a clock signal, or com-
binational logic, operating asynchronously. Unlike software
algorithm steps running on central processing units (CPUs),
where parallel processing is absent or limited to a few CPU
cores, digital circuit elements always operate in parallel,
including state changes of memory bits in sequential logic.
However, the state changes happen either on rising or falling
edges, depending on the design, of a clock signal.

In Fig. 3, addition (+), subtraction (−), multiplication
(×), and delay (z−1) elements are synchronous, each with a
latency of one clock cycle. Other elements are asynchronous.
Digital circuits require synchronous elements, for reliable
operation at very high speed, because of race conditions
that arise in a purely asynchronous design. A sequence
of synchronous elements with intervening asynchronous
elements, as shown in the figure, results in a pipeline circuit,
which exploits parallel processing in the fashion of an
assembly line.

Elements are arranged, in Fig. 3, to illustrate the pipeline
processing. Each column of synchronous elements performs
one arithmetic operationwhile equally delaying other signals
required for a subsequent arithmetic operation, final one
aside. Although a pixel is corrected each clock cycle, IPR(q)
correction has a latency of 2(q+ 1) clock cycles, for q> 0.

J. Imaging Sci. Technol. 060404-4 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Because offset correction does not require Eq. (9), i.e., a
subtraction, IPR(0) correction takes exactly one clock cycle.

For high-speed operation, i.e., to increase the max
frequency of the clock signal, elements are kept as simple
as possible. The combinational logic, in Fig. 3, consists
primarily of bus operations, where a bus is a group of wires,
each carrying one bit of a digital signal. The Demux element,
for ‘‘demultiplexer,’’ partitions a t-bit bus, carrying Bj, into
multiple tk-bit buses, carrying Bjk, where 0 ≤ k ≤ q. The
left-shift (�) element, before the final addition, simply pads
the incoming bus with s0 zero-valued least significant bits
(LSBs).

The right-shift (�) elements, in Fig. 3, require elabo-
ration. First, the value 1sk of each shift, from left to right,
is sk − sk−1, where k goes from q to 1, respectively. Except
for positive 1sk, in which cases a left shift is implemented
as described above, the |1sk| LSBs of each incoming bus are
ideally discarded. However, this implements a right shift with
rounding down, which may be expressed as follows:

Y � |1s| = b21sY c, (10)

where Y is the digital signal on the incoming bus.
Although convenient for a circuit implementation, using

Eq. (10) leads to bit errors because the background algorithm
uses right shifts with rounding off. Because the difference
between rounding off and rounding down is either 0 or 1, a
right shift with rounding offmay be implemented as follows:

Y � |1s| = b21sY c+ cout, (11)

where cout, for carry out, is a one-bit correction. This exploits
a bus operation but ensures a bit-true implementation.

For a u-bit signed-integer signal Y , the carry out, cout,
of Y � v may be calculated as follows, assuming a standard
two’s complement representation for negative values:

cout = Yv−1 ∧ (Ȳu−1 ∨ drem), (12)
drem = Yv−2 ∨Yv−3 · · · ∨Y0, (13)

where Yu−1 is the most significant bit (MSB) of Y (its sign
bit), Yv−1 is the MSB of the v discarded bits, and Yv−2 to
Y0 are the remaining discarded bits. Symbols ∧, ∨, and ¯ are
logical AND, OR, and NOT operators, respectively.

Addition of carry out in Eq. (11), to correct each right
shift, may actually be integrated into a following adder. In
Fig. 3, every right-shift element is followed by an adder
element. Standard two-input adders always have a third
one-bit input, called the carry in, that is added to the sum of
the two inputs. Therefore, the carry out of the right shift may
be directed to the carry in of the adder. This efficiency may
be readily exploited with an ASIC implementation. With an
FPGA implementation, even though adder elements support
carry in, the exact mapping of operations to circuitry is,
however, fully automatic.

To complete the digital circuit, all bus sizes in Fig. 3must
be specified. Input signal yj and constant signal−y0, the two’s
complement of y0, are both tADC bits wide. Input signal Bj
is t bits wide. After demultiplexing, signals Bjk are tk bits

Figure 4. FPN correction and SPN filtering are complementary. To deal
with noise in raw images (top row), from a log sensor over a WDR (left to
right), both correction (middle row) and filtering (bottom row) are needed.

wide, where 0≤ k≤ q. Delays do not change bus sizes. The
output bus size of each adder ismax(u, v), for inputs with bus
sizes u and v. While, in theory, such adders could overflow
by one bit, it is unlikely because each addition represents a
perturbation to correct, in stages, deviation from an ideal
response that is never close to the saturation limits. In the
unlikely event of overflow, the outlier would be removed by
the SPN filter of the next section. Finally, the output bus size
of each multiplier is u+ v, for inputs with bus sizes u and v.

2.3 SPN Filtering
Whereas we have previously disclosed our SPN filtering ap-
proach [5], which was implemented as a software algorithm,
it was only briefly justified. Before introducing a novel digital
circuit method, we briefly review the background approach,
while offering additional justification for it.

2.3.1 Background
Stuck pixels are one source of SPN, also called impulse noise.
Because stuck pixels may be identified during calibration,
instead of filtering they may be corrected using a static
procedure, similar to FPN correction.

However, with nonlinear pixels, such as the log pixels
shown in Fig. 2, pixels may appear stuck at some luminances,
behaving as outliers after FPN correction, butmay contribute
useful information at other luminances. In addition, there
may be a few nonlinear pixels that are truly stuck. An SPN
filtering approach can deal with both cases dynamically.

Using experimental data from the previously docu-
mented log sensor [11], Figure 4 has been newly prepared
to illustrate how FPN correction and SPN filtering are
complementary. Images are shown of six uniform scenes at
three stages of signal processing. Whereas FPN is mostly
corrected by the FPN correction, it yields SPN especially
at lower light levels. The SPN, which includes bright and
dark pixels that vary with luminance, is filtered by the SPN
filtering.

Median filtering is a well known approach to dynam-
ically remove SPN. A median filter replaces each pixel’s
response with the median response from a local window. For
simplicity, we consider only monochromatic image sensors,
avoiding the complexities of color filter arrays for now.

J. Imaging Sci. Technol. 060404-5 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 5. SPN filtering employs windows that vary with pixel. In each
window, pixels are colored red except for the center pixel, which is
colored yellow. The center pixel is replaced with the median value of
its window.

Figure 5 illustrates the different windows used by our
SPN filter. Image dimensions are preserved because amedian
is computed at every pixel. Small symmetric windows are
chosen to minimize distortion. For interior pixels, the pixel
and four neighbors are used. For boundary pixels, at the
borders and corners, the pixel and two neighbors are used.
At the time of our software algorithm [5], we were thinking
ahead to a circuit method. With odd-size windows, only
sorting is needed to compute medians; averaging is not
needed.

2.3.2 Method
Figure 6 presents a schematic of our SPN filter. We use
our generic design flow, of Fig. 1, to realize a digital circuit
method, suitable for a variety of monochromatic image
sensors, as opposed to a digital circuit, suitable for just one
set of parameters. The parameters in question are: n1 and n2,
which are the number of rows and columns, respectively, in
the n-pixel image, where n equals n1n2; and tFPN, which is
the word size of the input signal, Yj. Additional parameters,
namely trow and tcol, are explained below.

Because FPN correction precedes SPN filtering, we
exploit pipeline processing in the latter also. Whereas it does
not matter for FPN correction whether pixels are processed
in row-major or column-major order, we assume they are
processed in row-major order, for clarity, in explaining the
SPN filtering. The first row of n2 pixels is processed, one by
one from left to right, followed by the second row, and so on.

The first stage of the SPN filter is a first-in first-out
(FIFO) buffer. Its five outputs, denoted by a to e in Fig. 6,
are delayed versions of the input signal, Yj. The delays are 0,
n2− 1, n2, n2+ 1, and 2n2 clock cycles, respectively. They are
chosen so that, when c corresponds to an interior pixel, a to
e correspond to its five-pixel cross-shaped window, as shown
in Fig. 5. Bus sizes of the input and output signals equal tFPN.

Bypassing the second stage momentarily, the third stage
of the SPN filter is a simplified pipeline sorter of five digital

Table I. Combinational logic performed by the router. The encoder outputs a four-bit
code, which controls the multiplexers, based on the center pixel address. See Figs. 5
and 6 also.

Pixel address (j) Encoder a ′ b ′ c ′ d ′ e ′

Corner, top left 1010 a b c a b
Border, top 1000 b b c d d
Corner, top right 1001 a a c d d

Border, left 0010 a a c e e
Interior 0000 a b c d e
Border, right 0001 a a c e e

Corner, bottom left 0110 b b c e e
Border, bottom 0100 b b c d d
Corner, bottom right 0101 d e c d e

signals, e.g., FIFO outputs a to e. A five-input pipeline sorter
may be realized using multiple two-input pipeline sorters.
Although all five signals may be fully sorted with a latency of
five clock cycles, the circuit may be simplified because only
the third output, i.e., the median signal, is required. Each
two-input sorter outputs the same two signals in min–max
order with a latency of one clock cycle. Only one of the two
outputs is required in some cases. All bus sizes equal tFPN.

On their own, a combination of the above FIFO and
sorter stages would compute invalid outputs at boundary
pixels, where a five-pixel cross-shaped window cannot be
formed. One solution is to add a one-bit output signal, of
the SPN filter, to indicate validity of the main output signal,
Y ′j . This solution would require some combinational logic to
distinguish interior from boundary pixels. At a cost of some
more combinational logic, valid outputs may be computed at
the boundary pixels and the additional one-bit signal may be
avoided.

The second stage of the SPN filter, between the FIFO and
the sorter in Fig. 6, is a router. The router enables median
filtering of three-pixel windows at the boundary, as shown in
Fig. 5, using the same FIFO and sorter. Mathematically, the
median of three numbers equals the median of five numbers
where two of the original three numbers are copied.

Table I elaborates on the router. The position of the
center pixel, denoted by c in Figs. 5 and 6, is given by
its address j. An encoder converts the address, which is
trow + tcol bits wide, into a four-bit code. This code controls
multiplexers that, at boundary pixels, replace two of the five
inputs a to ewith two selected copies. The five outputs a′ to e′
of the router, where c ′ always equals c, become inputs of the
sorter.

For the above reasons, SPN filtering requires a pixel-
address input signal, unlike FPN correction. With pipeline
processing, careful attention must be given to synchroniza-
tion when there are multiple input signals. Because a equals
Yj in Fig. 6, the address of pixel c does not equal j. One
solution is to use an address signal j delayed by n2 clock
cycles, the delay between c and a. Because delay elements

J. Imaging Sci. Technol. 060404-6 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 6. SPN filtering using a three-stage pipeline circuit. The FIFO buffers two rows of pixel values. The sorter computes the median of five pixel values.
The ‘‘no-delay’’ router is needed to compute medians for three-pixel windows at the image corners and borders. Table I elaborates on the router logic.

map to memory resources, this would increase memory use
by about 50%.

The image sensor, whose output signal, yj, becomes the
input signal in Fig. 3, itself requires an address signal, j.
Addresses would be supplied in sequence by a controller
circuit, typically using counters, wholly separate from the
FPN correction and SPN filtering. We assume that, with
minor changes, e.g., extra counters, the same controller
circuit could also provide a ‘‘delayed’’ address signal, denoted
by j − n2 in Fig. 6, suitable for SPN filtering. The exact
‘‘delay,’’ implemented using counters not delay elements,
must also account for the latency of FPN correction, which
is 2(q+ 1) clock cycles, for q> 0, or 1 clock cycle, for q= 0.

Assuming the address signal may be demultiplexed into
row and column parts that are trow and tcol bits wide,
respectively, the logic of the encoder, in Fig. 6 and Table I, is
simple. The first two bits of the code are computed from the
row address, and the last two bits from the column address.
The first bit is one at the first row only, the second bit is one at
the last row only, the third bit is one at the first column only,
and the fourth bit is one at the last column only.

Becausememory is relatively scarce in a low-cost FPGA,
our SPN filtering circuit avoids buffering a whole image
frame, i.e., all n pixels, before computing medians. Only two
rows, i.e., 2n2 pixels, are buffered, the fewest values needed to
form cross-shaped windows for interior pixels. Not only does
this reduce memory requirements from O(n) to O(

√
n) bits,

because n2 is usually proportional to
√
n, but also it reduces

latency by the same order of magnitude.

3. RESULTS ANDDISCUSSION
Section 2 presented methods to generate digital circuits to
correct FPN and filter SPN in hard real time. These methods
are validated and evaluated by generating and simulating
specific circuits using FPGA tools from Xilinx and Altera.
Results are compared to the state of the art.

3.1 Test Benches
Using the design flow shown in Fig. 1, digital circuits are
generated for specific FPGA devices, namely the Xilinx
XC6SLX4 and theAltera EP3C5. BothXilinx andAltera, now
part of Intel, have multiple device families. The lowest-cost

Table II. Video formats used to evaluate proposed methods. Frames are composed of
n1 scan lines and n2 pixels per line. The clock frequency is the number of pixels times
the frame rate.

Format Pixels (n1× n2) Rate Clock

TTVGA 3,072 (48× 64) 30 fps 92.16 kHz
HQVGA 38,400 (160× 240) 30 fps 1.152 MHz
VGA 307,200 (480× 640) 30 fps 9.216 MHz
FHD 2,073,600 (1080× 1920) 30 fps 62.21 MHz
4KUHD 8,294,400 (2160× 3840) 30 fps 248.8 MHz

families still in production, at the time of this work, are the
Xilinx Spartan-6 [12] and the Altera Cyclone III [13]. The
chosen devices, i.e., the XC6SLX4 and the EP3C5, are the
simplest ones in these lowest-cost families.

We use ISE 14.7, from Xilinx, and Quartus 13.0,
from Altera, for synthesis, translation-and-mapping, place-
and-route, etc. Validation involves manual signal analysis
and automatic comparison against background software
algorithms. Evaluation assesses circuit complexity, max
frequency, and power consumption versus parameters of
interest.

For FPN correction, the main parameter is the polyno-
mial degree. As 3 suffices for a log sensor [5], we considered
degrees from 0 to 5. For SPN filtering, the main parameter
is the number of pixels, or rather columns. We considered
five video formats, which specify number of pixels, division
into rows and columns, and frame rate. Power consumption
depends on clock frequency, which equals number of pixels
times frame rate, in frames per second (fps).

Table II lists three popular video formats, two of
which are high definition (HD) formats, where pixel
numbers are roughly equidistant on a log scale. They are
the video graphics array (VGA), full HD (FHD), and
4K ultra HD (4KUHD) formats. While tenth tenth VGA
(TTVGA) is a non-standard format, itmatches our log sensor
prototype [11]. The half quarter VGA (HQVGA) format, a
rare standard format, fills a gap between the TTVGA and
VGA formats on a log scale.

Recalling Fig. 1, Functional Simulation after Design
Entry suffices for validation but Place & Route is needed to

J. Imaging Sci. Technol. 060404-7 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 7. Initial validation of a generated FPN correction circuit. Input, output, and intermediate signals are shown for a small-format test case. Fig. 3
elaborates on the signals. Larger-format test cases were validated by automatic comparison of circuit and software outputs, given the same inputs.

evaluate complexity accurately. Timing Simulation is used to
evaluate max frequency and power consumption. The max
frequency is the highest clock frequency at which the circuit
operates correctly. It is determined via STA, which identifies
critical circuit paths. A video format is supported if its clock
frequency, in Table II, is below the max frequency. Power
consumption is evaluated only for supported video formats.

3.2 FPN Correction
Given that the simplest FPGA devices were chosen, in the
lowest-cost device families from two leading vendors, the
following results show that the generated FPN correction
circuit is not only effective but also efficient.

3.2.1 Validation
Illustrated in Figure 7, the initial validation of the generated
FPN correction circuit was done manually for a 4× 4 pixel
subset of the TTVGA format, using experimental data from
a log sensor [11]. The figure shows, at left, the input image,
yj, the output image, Yj, and the FPN correction coefficients,
Bjk. Circuit parameters are given, at right.

Validation was done for the chosen Xilinx and Altera
devices. FPGA tools are used to analyze input, intermediate,
and output signals, depicted in Fig. 7, in simulated hard
real time, i.e., against a clock signal with fixed period. For a
small-format test case, the expected intermediate and output
signals, including latencies, may be calculated. For example,
the first output, Y1, may be manually calculated as follows:

y ′1 = 19259− 25625=−6366 (14)
Y1 = 19259+ 23 (52+ [2−9−3(−6366) (−33

+ [2−21+9(−6366)(−16)])])

= 19771, (15)

where square brackets indicate rounding.

As shown in Fig. 7, the correct output appears with
a latency of 6, i.e., 2(q + 1), clock cycles, as expected.
Unknown signal values, based on initial conditions of
memory elements, are indicatedwith a ‘‘U,’’ as with the FPGA
tools.

Manual validation on small-format test cases was key to
debugging all issues. For large-format test cases, the same
input data was processed by the generated circuit and a
MATLAB implementation of the background algorithm. The
two output data sets were compared bit-for-bit in MATLAB
to ensure a bit-true design, i.e., zero bit error.

3.2.2 Complexity
Given functional correctness, we then analyzed the com-
plexity of generated circuits, illustrated in Figure 8, versus
polynomial degree, q. The word lengths of the pixel response,
tADC, and of the packed correction coefficients, t , were kept
constant, at 16 and 32 bits, respectively. Parameters sk and tk
were automatically determined [5].

In Fig. 8, actual data is shown using symbols, for
each FPGA device, and trends are shown using best-fit
lines. Complexity is measured in logic elements (LEs) and
memory bits, on the left and right y-axes, respectively. The
LEs required grow roughly linearly with degree (R2, the
coefficient of determination, equals 80% and 86% with
Xilinx and Altera, respectively). Outlier aside, i.e., degree
zero with Altera, the bits required also grow linearly with
degree (R2 equals 92% and 93% with Xilinx and Altera,
respectively).

More significant than linearity perhaps, the generated
FPN correction circuits are of very low complexity relative
to the available resources, leaving plenty of LEs and bits
for other ISP operations on the same FPGA. The available
resources in the chosen devices, i.e., the simplest ones in
the lowest-cost families, are 8,648 LEs and 297,984 bits with
Xilinx, and 10,318 LEs and 423,936 bits with Altera.

J. Imaging Sci. Technol. 060404-8 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 8. Complexity of FPN correction versus polynomial degree.
Required LEs and bits depend linearly on degree, Altera memory for
offset correction aside. Even so, these requirements use a tiny fraction
of available resources.

Figure 9. Max frequency of FPN correction versus polynomial degree.
Except at the lowest degrees, max frequencies are essentially independent
of polynomial degrees. FHD and simpler video formats are readily
supported.

3.2.3 Frequency
Next, we determined themaximum clock frequency at which
functional correctness ismaintained. These results are shown
in Figure 9 versus polynomial degree, as before. Other
parameters were unchanged.

Notwithstanding the lowest degrees, at which the
generated circuit can run faster, the max frequency is
approximately constant in both FPGAs. Reflecting on Fig. 3,
each increase in degree introduces a synchronous stage in the
recursive pipeline circuit. However, each stage is composed
of parallel circuit paths where the worst-case circuit path is
of constant complexity. This explains the trends in Fig. 9.

What is also significant is that the max frequency is high
enough, in both FPGAs, to support FPN correction of FHD

Figure 10. Power consumption of FPN correction versus parameters.
Except for the FHD video format, where it increases a little, dynamic power
is nearly constant. Compared to static power, dynamic power is generally
low.

video in hard real time. Horizontal dashed lines, shown in
Fig. 9, indicate the frequencies, listed in Table II, required to
support the FHD and 4KUHD formats.

3.2.4 Power
Our final results, shown in Figure 10, concern power
consumption. Because this depends on clock frequency, we
use the corresponding frequencies, listed in Table II, for
the supported video formats. We also vary the polynomial
degree, as before. Other parameters were unchanged.

In Fig. 10, total power is decomposed, using a stacked bar
graph, into static and dynamic components, and this is done
for each device. The FPGA tools enable this decomposition,
where the static consumption represents the background
power consumed by the device, an approximate constant that
is independent of the circuit and its operation.

Not only is the total power on the order of 50mW, in
Fig. 10, but also the dynamic power is, in general, low relative
to the static power. Except for the FHD video format, where
the power increases a little and depends a little on degree, the
dynamic power is otherwise nearly constant.

J. Imaging Sci. Technol. 060404-9 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 11. Initial validation of a generated SPN filtering circuit. Input, output, and intermediate signals are shown for a small-format test case. Fig. 6
elaborates on the signals. Larger-format test cases were validated by automatic comparison of circuit and software outputs, given the same inputs.

3.3 SPN Filtering
Evaluation of the generated SPN filtering circuit proceeds
similarly to the preceding evaluation of the generated FPN
correction circuit. Therefore, we will be briefer.

3.3.1 Validation
Illustrated in Figure 11, initial validation was done manually
using small-format test cases. Input (Yj) and output (Y ′j)
images are shown at left, as are circuit parameters. Example
corner, border, and interior pixels are indicated (see legend).
Waveforms are shown, at right, and they are grouped as per
Fig. 6. It is straightforward to show that all waveforms in
Fig. 11 are correct, including the latencies.

Manual validation on small-format test cases was
followed by automatic validation on large-format test cases.
In the latter situation, output from the generated circuit was
compared bit-for-bit to output from a MATLAB program,
implemented using high-level matrix-vector operations to
perform median filtering, as per Fig. 5. There was zero bit
error.

3.3.2 Complexity
Given functional correctness, we then analyzed the complex-
ity of the generated circuit, illustrated in Figure 12, versus
number of pixels, n. Each number, n, and its breakdown into
rows, n1, and columns, n2, is taken from Table II. The word
size of the input signal, tFPN, was kept constant at 16 bits.
Address bus sizes, trow and tcol, were set to the minimum
values, i.e., dlog2 n1e and dlog2 n2e, respectively.

The LEs required are roughly independent of image size,
as shown in Fig. 12. However, there is a linear relationship,
on a log–log scale, between the bits required and the number

Figure 12. Complexity of SPN filtering versus number of pixels. Required
LEs are approximately constant and use a fraction of available resources.
Required bits grow with the number of pixels but remain well below
capacities.

of pixels (R2 equals 99% and 100% with Xilinx and Altera,
respectively), excluding one outlier. Memory required with
Altera exactly equals the minimum bits, i.e., 2n2tFPN, needed
to implement the FIFO stage shown in Fig. 6.

What is more significant is that, relative to the available
resources in the Xilinx and Altera devices, the LEs required
are very low, e.g., 7.17% and 6.88%, respectively, for the FHD
video format. The bits required are also low, e.g., 24.7% and
14.5%, respectively, for the same video format.

J. Imaging Sci. Technol. 060404-10 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Figure 13. Max frequency of SPN filtering versus number of pixels. The
max frequency is essentially independent of the number of pixels. FHD
and simpler video formats, listed in Table II, are readily supported.

3.3.3 Frequency
Next, we determined themaximum clock frequency at which
functional correctness ismaintained. These results are shown
in Figure 13 versus number of pixels, as before. Other
parameters are the same as with Fig. 12.

In Fig. 13, the max frequency is nearly constant in both
FPGAs. The fact that the LEs required are roughly constant,
in Fig. 12, largely explains this result. Max frequency is
expected to depend on circuit paths, i.e., logic not memory.
Changes in video format, such as the number of pixels,
primarily affect the memory used by the FIFO stage in Fig. 6.

What is also significant is that the max frequency is high
enough, in both FPGAs, to support SPN filtering of FHD
video in hard real time. Dashed lines, in Fig. 13, indicate the
numbers of pixels and clock frequencies, listed in Table II,
required to support the FHD and 4KUHD formats.

3.3.4 Power
Our final results, shown in Figure 14, concern power
consumption for the supported video formats. We use the
numbers of pixels and clock frequencies listed in Table II.
Other parameters are the same as with Fig. 12.

Except for the FHD case, as shown in Fig. 14, dynamic
power is essentially independent of video format, with both
FPGA devices, and is lower than static power. For the FHD
video format, averaging over both FPGA devices, dynamic
power increases to a level comparable to static power, but the
total power remains on the order of 50mW.

3.4 Significance
After summarizing selected results, we compare our digital
circuit for FPN correction to an analog competitor, a
mixed-signal competitor, which uses both analog and digital
circuitry, and a digital competitor. We also compare our
digital circuit for SPN filtering to a digital competitor.

Figure 14. Power consumption of SPN filtering versus video format. Static
power is a constant and significant part of total power. Except for a jump
at the FHD video format, dynamic power is approximately constant.

3.4.1 Specifications
Table III summarizes the specifications of the designed FPN
correction and SPN filtering circuits for a specific scenario,
namely cubic polynomials and the FHD video format. Other
parameters are as described in Sections 3.2 and 3.3. These
circuits were also combined into one ISP circuit, i.e., FPN
correction followed by SPN filtering. Specifications of the
combined circuit, obtained in the same way using FPGA
tools, are also reported.

Percentages shown are with respect to available re-
sources of the chosen devices. Even for the combined
circuit, LEs required are very low relative to available logic.
This leaves plenty of room for logic needed by other ISP
operations, e.g., tone mapping. Even for the combined
circuit, bits required are low relative to available memory.
This leaves some room for memory needed by other ISP
operations. If additional memory or logic is needed, a
different device may be selected from the same family, or
from a different family.

When comparing the combined circuit to the separate
circuits, LEs and bits required do not exactly sum due to
optimizations. The same may be said for dynamic power.
Also, max frequency is not exactly the worst max frequency.
Due to the FIFO stage in Fig. 6, SPN filtering requires more
memory and power than FPN correction. Finally, as static
power is significant in the separate circuits, the combined
circuit achieves notable savings in total power.

3.4.2 Analog Competitor
De Moraes Cruz et al. [8] proposed an analog circuit to
correct offset variation only in linlog sensors. While the
circuit is simple, the signal-to-noise-and-distortion ratio
(SNDR) in the log region, which depends on temporal noise
and residual FPN, was limited to 29 dB. In our previous
work [5, 11], we demonstrated a peak SNDR (PSNDR) of

J. Imaging Sci. Technol. 060404-11 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

Table III. Specifications of designed circuits. FPN correction and SPN filtering, using cubic polynomials and for the FHD video format, were evaluated as separate and combined circuits.
LEs and bits are given, in parentheses, as a fraction of available resources. The chosen Xilinx and Altera devices were the simplest ones in the Spartan-6 and Cyclone III families,
respectively.

Circuit Technology Logic Elements Memory Bits Max Frequency Static Power Dynamic Power

FPN Correction Xilinx XC6SLX4 178 (2.06%) 21 (0.01%) 222.2 MHz 13.9 mW 17.1 mW
Altera EP3C5 261 (2.53%) 88 (0.02%) 178.6 MHz 46.1 mW 27.9 mW

SPN Filtering Xilinx XC6SLX4 620 (7.17%) 73,737 (24.7%) 158.7 MHz 14.1 mW 44.8 mW
Altera EP3C5 710 (6.88%) 61,440 (14.5%) 105.5 MHz 46.2 mW 31.8 mW

Combined ISP Xilinx XC6SLX4 817 (9.45%) 73,767 (24.8%) 140.8 MHz 14.2 mW 48.4 mW
Altera EP3C5 972 (9.42%) 61,528 (14.5%) 108.7 MHz 46.2 mW 42.6 mW

45 dB, the highest ever reported for either a log sensor, what
we used, or a linlog sensor in the log region. Higher-order
FPN correction was critical to our result.

Whereas DeMoraes Cruz et al.’s self-calibration method
is intended for hard real time, they do not report any clock
frequencies of their 8× 8 pixel prototype. They write ‘‘the
proposed calibration can be executed at least at the same
rate of a regular CDS operation,’’ but add that ‘‘the frame
rate of the array will not be evaluated in this work.’’ As
shown in Table III, our digital circuit for higher-order FPN
correction can process up to 222 megapixels per second, or
7.4 megapixels at 30 fps, with the simplest Spartan-6 FPGA.

De Moraes Cruz et al. also do not report any measures
of power consumption. With the simplest Spartan-6 FPGA,
our digital circuit consumes 31mW of power at the 62
megapixels per second required for FHD video.

3.4.3 Mixed-Signal Competitor
To correct offset and gain variation in linlog sensors, Storm
et al. [9] proposed a mixed-signal circuit. The analog
circuitry is simple and well documented, comprising several
extra transistors per pixel and per column. Digital parts,
some at chip level, adjacent to the sensor array, and some
in an external FPGA, are documented so briefly that it is
impossible to assess their complexity. The digital circuitry
provides control signals for a self-calibration process and
participates also in FPN correction.

Despite the appeal of a self-calibration process, we
have shown [5, 11] that image quality is limited with log
sensors unless higher-order FPN correction is employed. We
calculate the PSNDR [14] of Storm et al.’s imaging system,
using data they provide, to be 26 dB in the log region, which
is significantly lower than the 45 dB we achieved.

Storm et al.’s prototype, comprising a 288 × 352 CIS
and an FPGA, operates in hard real time at 26 fps. This
corresponds to 2.6 megapixels per second. Because of timing
issues with the self-calibration process, it is unclear how the
work scales. The authors note ‘‘a maximum frame rate of
26 fps for an array of 288 rows.’’ From data Storm et al.
provide, it is impossible to separate out power consumption
of the FPN correction. Their imaging system used 5.3mW

of digital power, ‘‘not incl. FPGA,’’ and 61–84mW of analog
power.

Our all-digital circuit is competitive on frame rate
and seems competitive on power too, while performing
higher-order FPN correction on a much larger number of
pixels.

3.4.4 Digital Competitors
Hoefflinger [10] proposed a digital circuit to correct
OGB variation in log sensors. After FPN calibration, by
approximate curve fitting of the model given in Eq. (1), FPN
correction is implemented, using an FPGA, by transforming
the fitted model approximately into a set of piecewise linear
functions.While it is briefly explained and its complexity not
reported, the digital circuit is likely of similar complexity to
our FPN correction circuit.

Hoefflinger’s imaging systems, which consumed up to
5W of power, operated in hard real time. One system
supported the VGA format, i.e., 480× 640 pixels at 30 fps,
or 9.2 megapixels per second. Another supported 496× 768
pixels at 38 fps, or 14 megapixels per second. It is likely
that Hoefflinger’s FPN correction, on its own, would scale
to larger formats. While a breakdown was not given, it is
likely that power consumption of his FPN correction alone,
in an equivalent FPGA, would be comparable to our reported
figures.

An important difference between our digital circuit
method and Hoefflinger’s digital circuit is that our method
leverages a recently published algorithm [5], which we also
developed, that is not specific either to log sensors or Eq. (1).
Hence, our method may be applied to realize a digital circuit
for FPN correction of any monotonic nonlinear sensor,
including linlog sensors. While Choubey and Collins [4]
have developed a model, similar to but more complex than
Eq. (1), for linlog sensors, no corresponding circuit has been
proposed.

Stuck pixels exist in log and linlog sensors, as in linear
sensors. However, neither De Moraes Cruz et al., nor Storm
et al., norHoefflinger address them. In his Stanford lecture on
the ‘‘Camera Processing Pipeline,’’ Pulli [6] addresses ‘‘stuck
pixels’’ alongside ‘‘pixel non-uniformity,’’ i.e., FPN, advising

J. Imaging Sci. Technol. 060404-12 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

to ‘‘replace with filtered values.’’ We show, in Fig. 4, that
they are complementary, address both, and evaluate joint
complexity, max frequency, and power consumption.

Latha and Sasikumar [15] implemented a two-stage
median filter to process 256× 256 pixels, i.e., 66 kilopixels,
with 8 bpp. They showed that their circuit filtered salt-and-
pepper, speckle, andGaussian noise effectively. Although not
reported in LEs, their circuit uses a similar amount of logic
to what we report in Table III for 1080× 1920 pixels, i.e.,
2.0 megapixels, with 16 bpp. While briefly explained, their
circuit needs more memory than ours, at least 100% the
capacity, about 129Kb, of their Xilinx Spartan-II device. It is
unclear, from their paper, if their circuit also needed external
memory.

While Latha and Sasikumar’s median filter operates in
hard real time, it is unclear if they determined the max
frequency of their circuit itself. The 200MHz figure they
report is simply the rated max frequency of the Spartan-II
device. Although it is unclear at what frame rate, they report
a power consumption of 202mW. In contrast, we use STA
to reliably determine a max frequency of 159MHz, with our
Xilinx Spartan-6 device, for processing 31 times as many
pixels in pipeline fashion. Our circuit consumes 59mW of
power to process these pixels at 30 fps, i.e., what is required
for FHD video.

4. CONCLUSION
Kim [1] writes, in a review paper, ‘‘WDR imaging is currently
a hot issue in the mobile CIS market. Many commercial
sensor providers are proposing various types of WDR
sensors, such as the [linlog] type,’’ an approach that he
champions. Kim also recognizes that FPN, especially in the
log region, is a serious problem with nonlinear sensors.

Li et al. [5], i.e., our recent work, propose an algorithm
for FPN correction of monotonic (non)linear sensors, which
include linear, log, and linlog sensors, using low-degree
polynomials. This background work is taken in a significant
new direction in the current paper. Both works use
experimental data from a log sensor [11] for validation.

The new direction includes the development, validation,
and evaluation of a digital circuit method to automatically
implement the background algorithm, for a wide variety of
parameters, effectively and efficiently in hard real time. We
also elaborate here on SPN filtering, mentioned briefly in our
previous work. A digital circuit method for SPN filtering is
similarly developed, validated, and evaluated.

To support a wide variety of parameters, such as
polynomial degree and number of pixels, a design template
in VHDL and a data file of parameters are processed by a
Matlab script to generate a specific VHDLdesign. The design
includes a recursive pipeline circuit for FPN correction that
could not be implemented via VHDL generics. Using an
FPGA design flow, the design is turned into digital circuits.

For readability, design templates are explained here
using figures, tables, equations, and words. They include cir-
cuit schematics comprising synchronous and asynchronous
elements, i.e., sequential and combinational logic, where

all elements operate 100% in parallel. Image signals are
processed in pipeline fashion strictly in sync with a clock
signal. This is what guarantees hard real-time performance.

We validate and evaluate our novel methods by generat-
ing specific digital circuits, using the proposed design flow,
for a variety of parameters. We target the simplest devices
in the Xilinx Spartan-6 and Altera Cyclone III families,
the lowest-cost families in the market at the time of this
work. Evaluation assessed the complexity, max frequency,
and power consumption versus parameters of interest.

Resulting circuits were effective, with either FPGA
device, in processing FHD video, using cubic polynomials
for FPN correction, at a rate of 62 megapixels per second.
Moreover, with the Xilinx device, the FPN correction circuit
functioned correctly up to 222 megapixels per second, and
the SPN filtering circuit up to 159 megapixels per second.

The circuits were also efficient, especially the FPN
correction. With the Xilinx device, the combined circuit to
process FHD video used 9.45% of the available logic, 24.8%
of the available memory, and 63mW of power. SPN filtering
aside, the FPN correction used 2.06% of the available logic,
0.01% of the available memory, and 31mW of power.

In conclusion, this paper developed, validated, and
evaluated novel digital circuit methods to correct and filter
noise of nonlinear CMOS image sensors. Presented results
provide excellent benchmarks against which future analog,
mixed-signal, and digital circuits may be measured.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the Natu-
ral Sciences and Engineering Research Council, Canada, and
Science Without Borders, Brazil.

REFERENCES
1 T.-C. Kim, ‘‘Wide dynamic range technologies: formobile imaging sensor
systems,’’ IEEE Consum. Electron. Mag. 3, 30–35 (2014).

2 A. E. Gamal and H. Eltoukhy, ‘‘CMOS image sensors,’’ IEEE Circuits
Devices Mag. 21, 6–20 (2005).

3 D. Joseph and S. Collins, ‘‘Modeling, calibration, and correction of
nonlinear illumination-dependent fixed pattern noise in logarithmic
CMOS image sensors,’’ IEEE Trans. Instrum. Meas. 51, 996–1001 (2002).

4 B. Choubey and S. Collins, ‘‘Models for pixels with wide-dynamic-range
combined linear and logarithmic response,’’ IEEE Sensors J. 7, 1066–1072
(2007).

5 J. Li, A. Mahmoodi, and D. Joseph, ‘‘Using polynomials to simplify fixed
pattern noise and photometric correction of logarithmic cmos image
sensors,’’ Sensors 15, 26331–26352 (2015).

6 K. Pulli, ‘‘Camera Processing Pipeline.’’ https://web.stanford.edu/class/cs
231m/lectures/lecture-11-camera-isp.pdf, May 2015.

7 S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and
J. Bogaerts, ‘‘A logarithmic response CMOS image sensor with on-chip
calibration,’’ IEEE J. Solid-State Circuits 35, 1146–1152 (2000).

8 C. A. de Moraes Cruz, D. W. de Lima Monteiro, E. A. Cotta,
V. Ferreira de Lucena, and A. K. Pinto Souza, ‘‘FPN Attenuation by
Reset-Drain Actuation in the Linear-Logarithmic Active Pixel Sensor,’’
IEEE Trans. Circuits Syst. I 61, 2825–2833 (2014).

9 G. Storm, R. Henderson, J. E. D. Hurwitz, D. Renshaw, K. Findlater,
and M. Purcell, ‘‘Extended dynamic range from a combined linear-
logarithmic CMOS image sensor,’’ IEEE J. Solid-State Circuits 41,
2095–2106 (2006).

J. Imaging Sci. Technol. 060404-13 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

https://doi.org/10.1109/MCE.2014.2298072
https://doi.org/10.1109/MCD.2005.1438751
https://doi.org/10.1109/MCD.2005.1438751
https://doi.org/10.1109/MCD.2005.1438751
https://doi.org/10.1109/TIM.2002.807803
https://doi.org/10.1109/JSEN.2007.895959
https://doi.org/10.3390/s151026331
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://web.stanford.edu/class/cs231m/lectures/lecture-11-camera-isp.pdf
https://doi.org/10.1109/4.859503
https://doi.org/10.1109/TCSI.2014.2327284
https://doi.org/10.1109/JSSC.2006.880613

Nascimento, Li, and Joseph: Digital circuit methods to correct and filter noise of nonlinear CMOS image sensors

10 B. Hoefflinger, ‘‘High-Dynamic-Range (HDR) Vision,’’ Springer Series in
Advanced Microelectronics (Springer, Berlin, Germany, 2007), Vol. 26.

11 A. Mahmoodi, J. Li, and D. Joseph, ‘‘Digital pixel sensor array
with logarithmic delta-sigma architecture,’’ Sensors 13, 10765–10782
(2013).

12 Xilinx, ‘‘All Programmable FPGAs and 3D ICs’’ https://www.xilinx.com/
products/silicon-devices/fpga.html, Oct. 2017.

13 Altera, ‘‘Intel FPGAs.’’ https://www.altera.com/products/fpga/overview.
html, Oct. 2017.

14 O. Skorka and D. Joseph, ‘‘Toward a digital camera to rival the human
eye,’’ J. Electron. Imaging 20, 033009-1–18 (2011).

15 T. Latha and M. Sasikumar, ‘‘A novel non-linear transform based image
restoration for removing three kinds of noises in images,’’ J. Inst. of Eng.
(India): Series B 96, 17–26 (2015).

J. Imaging Sci. Technol. 060404-14 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Sensors and Imaging Systems 2019

https://doi.org/10.3390/s130810765
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://www.altera.com/products/fpga/overview.html
https://doi.org/10.1117/1.3611015
https://doi.org/10.1007/s40031-014-0123-y
https://doi.org/10.1007/s40031-014-0123-y
https://doi.org/10.1007/s40031-014-0123-y

	Introduction
	Background and Methods
	Generic Design Flow
	FPN Correction
	Background
	Method

	SPN Filtering
	Background
	Method

	Results and Discussion
	Test Benches
	FPN Correction
	Validation
	Complexity
	Frequency
	Power

	SPN Filtering
	Validation
	Complexity
	Frequency
	Power

	Significance
	Specifications
	Analog Competitor
	Mixed-Signal Competitor
	Digital Competitors

	Conclusion
	Acknowledgments
	References

