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Abstract 

A color image is the result of a very complex physical process. 
This process involves both light reflectance due to the surface of the 
object and the sensor. The sensor is the human eye or the image 
acquisition system.  To avoid metamerism phenomena and to give 
better rendering to the color images resulting from the synthesis, it 
is sometimes necessary to work in the spectral field. Now, we meet 
two classes of methods that enable the closest spectral image to be 
produced from color images. The first method uses circular and 
exponential functions. The second method uses the Penrose inverse 
or the Wiener inverse. In this article, we first of all describe the two 
methods used in a variety of fields from image synthesis to 
colorimetry not to forget satellite imagery. We then propose a new 
method linked with the neural network so as to improve the first two 
approximation methods. This new method can also be used for 
calibrating most of color digitization systems and sub wavelengths 
color array filters. 

INTRODUCTION  
       The images used have three components, which cover generally 
the visible spectrum of the visible light. In most cases, this type of 
image is sufficient to resolve the problems met. But there are 
specific cases in which more than three components are required. 
       It is necessary to have a good command of the acquisition 
system in the following cases:  
-When images are acquired outdoors. Thus aerial images under a 
clear sky are different from those taken under a cloudy sky. -When 
the object of study presents spectral information beyond the visible 
(example of certain plants that emit in infrared). -When it is 
necessary to acquire an image with greater precision so as to avoid 
any confusion between the different color hues. -When the Lab or 
Luv space is to be used, it is essential to know the composition of 
the reference white. -Finally, when it is necessary to calibrate the 
acquisition system.    
       To bring some solutions of the above-mentioned problems, we 
propose to tackle in this article the complex question linked with the 
color image acquisition system. We propose a comparative study of 
spectral reflectance retrieval by different methods and we then 
propose a new method linked with the neural network. 
        In this paper, we will describe the method that is now used for 
the reconstruction of the spectral response of a multi-component 
image. This technique can be extended to the calibration of any other 
digitization system. 
        Finally, the last part will be dedicated to our spectral response 
reconstruction method based on neural networks. A comparative 
and objective analysis will lead us towards the best method 
depending on the color problem to be solved. 

Reconstruction of the spectral response of an 
image using exponential functions 
Overview of this method 

       The integral relation described in equation (1) is a simplification 
of the physical phenomena involved in the lighting of an object. This 
observation is an established fact since the light interference 
phenomena have been discovered but often neglected. The work 
carried out by Smits and Meyer [23] was a precursor in the field. 
They tried to simulate the interference phenomena so as to take them 
into account the color rendering. This block diagram is composed of 
the object we wish to see. This object is characterized by its spectral 
reflectance sλ It is illuminated by a light Lλ coming from a point 
source. Consider any observer; if a monochromatic light produces 
the illumination, all these parameters are constant. On the other 
hand, for a polychromatic light, these parameters will depend on the 
wavelength λ. This phenomenon has been formed in equation as: 
         
         v୧ = k∫ L(λ)s(λ)f୧(λ)dλౣ౮

ౣ
                                               (1) 

   
s is the spectral reflectance of the object observed and fi represents 
one of the basic functions of the CIE. If ̅ݕ ,ݔത, ̅ݖ are the basic 
functions, the CIE proposes an XYZ colorimetric base that connects 
the spectral response of the object with the observer response 
according to equations (2), (3), (4): 
 
 ܺ = ݇ ∫ ఒೌೣ݀(λ)ݔ̅(λ)ݏ(λ)ܮ

ఒ
λ                                               (2) 

 
 ܻ = ݇ ∫ ത(λ)݀ఒೌೣݕ(λ)ݏ(λ)ܮ

ఒ
λ                                               (3) 

 
 ܼ = ݇ ∫ ఒೌೣ݀(λ)̅ݖ(λ)ݏ(λ)ܮ

ఒ
λ                                               (4) 

 
k is a constant, which is obtained by using a white reference. 
In 1989, A.S. Glassner [7] proposed a solution that allows the 
transformation of a color image into a spectral image. The aim of 
this work was to have a tool capable of generating a spectral 
correspondence from drawings. It forms the foundation of the 
spectral reconstruction of color images. 
      We were trying to match a triad (R, G, B) with its spectral 
distribution. In order to succeed, we started with a transformation 
that allows the passage from the RGB space to the XYZ space of the 
CIE. 
 Given Lλ and sλ which respectively symbolize the illumination 
and the reflectance of the object to be visualized and depend on the 
wavelength. If we are only interested in the visible range, the color 
v is defined by the fundamental relation (see equation 1). 
 The color is defined in a three-dimensional space (3D). To 
obtain a bijective relation between the color and its spectrum, three 
basic functions gj are determined that could fully describe this 
spectrum. Consequently, any spectral density can then be described 
through the knowledge of these basic functions gj and coordinates aj 
so that (5): 
  
 ϕ

∗ = ∑ a୨g୨ଷ
୨ୀଵ                                                                        (5) 
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with: ߶ఒ∗ =  ఒܮఒݏ
By replacing ϕ

∗  with its value in the equation (1), we achieve the 
relation (6): 
 
 v୧ = k∫ ∑ a୨g୨(λ)f୧(λ)dλଷ

୨ୀଵ
୫ୟ୶
୫୧୬                                           (6) 

 
If we render k discrete, we arrive at relation (7): 
 
∗ݒ          = ݇∑ ∑ ܽ ݃(ߣ) ݂(ߣ)Δߣଷ

ୀଵ
ఒ௫
ఒ                                     (7) 

 
A matrix version is given below (8) 
 

 ൭
ଵݒ
ଶݒ
ଷݒ
൱ = 

ℎଵଵ ℎଵଶ ℎଵଷ
ℎଶଵ ℎଶଶ ℎଶଷ
ℎଷଵ ℎଷଶ ℎଷଷ

൩൭
ܽଵ
ܽଶ
ܽଷ
൱                                           (8) 

 
 v = H.a 
with: 
 
 ℎ = ݇∑ ݃(ߣ) ݂(ߣ)Δߣఒ௫

ఒ                                                 (9) 
 
where Δߣ represents the spectral resolution. It can be admitted that 
these basic functions meet some constraints according to the CIE 
recommendation, and Morovic and Finlayson works: 
-They should be linearly independent. –They should be maximum 
for the red, the green and the blue wavelengths, which are defined 
be: ߣ, ߣ, ߣ. 
 We calculate the error committed in rebuilding the reference 
color coming from Macbeth color chart (called also "Macbeth Color 
Checker") as well as the spectral relation by the relation (10, 11) 
below: 
 

 Δݒ = ଵ
ଷ
∑ ඨ൫௩ି௩

∗൯మ

௩
మ                                                              (10) 

with i=1, 2, 3. 
 
 Δ߶ = ଵ


∑ |߶ −߶∗|
ୀଵ                                                          (11) 

J represents the total number of spectral data given by equation (12) 
(the approached integer value): 
 
ܬ  ≈ ఒೌೣିఒ

ఒ
                                                                       (12) 

 
vi is the initial color and ߶ its spectral stimulus function related with 
reflectance light. ߶∗ is the color stimulus function calculated with 
the relation (5) and ݒ∗ is obtained by using the relation (7). 
 To have a basis for comparison, we used the Macbeth color 
chart. The Macbeth color chart is less rich than that of Munsell. It is 
composed of 24 colors numbered from 1 to 24. Each color is 
characterized by its three components RGB and its spectral 
response. The spectral response of each color was carried out by a 
spectroradiometer. These data are standard and more especially used 
for calibration. 
 Figure (1) shows the different colors of the Macbeth color 
chart. 

 
 
Figure 1. Colors of the Macbeth color chart 
 
Gaussian function 
 Although the introduction of circular functions has brought in 
certain richness at spectral resolution level, this representation is still 
far from the real color spectrum. The faithful reproduction of the 
color is difficult to reach.  Maloney and al [14], Peercy [19], propose 
a solution using Gaussian functions. A comparison between circular 
and Gaussian function has done by Peercy and a deep analysis shows 
that these methods seem to be similar. Here, we prose to summarize 
the Gaussian method. 
 The main reason was to approximate the spectral reflectance 
by simulating the spectral response of the photosensitive sensors so 
as to make their model adhere to physical reality. Peercy proposes 
to use Gaussian functions as basic functions focused on the primary 
colors RGB. This choice is not unimportant because the spectral 
responses of the red, green and blue filters used in cameras have 
allure close to the Gaussian and are focused. The equations (13) 
characterize these basic functions. 
 

 

݃ଵ = ݁ିଶቀଶ
ഊషഊೝ
భ

ቁ
మ

݃ଶ = ݁ିଶቀଶ
ഊషഊ
మ

ቁ
మ

݃ଷ = ݁ିଶቀଶ
ഊషഊ್
య

ቁ
మ

⎭
⎪
⎬

⎪
⎫

                                                            (13) 

 
The parameters ߪ allow the color effect to be taken into account, 
whether or not it is saturated. They are calculated by the relation 
(14): 

 
ଵߪ = ଵଶ߱ߦ + (1− ଵଶ)߱௫ߦ
ଶߪ = ଶଷ߱ߦ + (1− ଶଷ)߱௫ߦ

ଷߪ = ଵߪ)݊݅݉ (ଶߪ,
ቑ                                      (14) 

 

with: ߦଵଶ = ห௩ೝି௩ห
௩ೝା௩

 and ߦଶଷ = ห௩ି௩್ห
௩ା௩್

. 

The constants ߱  and ߱௫ (respectively 10 nm and 150 nm) are 
obtained empirically. vr, vg, vb are red, green and blue primary 
colors. The figure (2) shows an example of spectral reconstruction 
starting from basic Gaussian functions. We used the color number 
11 in the Macbeth color chart base defined in figure (1). 
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Figure 2. Spectral reconstruction using Gaussian functions. A dotted line shows 
the initial spectrum; a solid line shows the rebuilt spectrum (R=173, G=187, 
B=78; N°11;Δ߶ = 27.06%) 
Results are better for the wave lengths near the blue and diverge 
toward the red. Although the global result is satisfactory, it can be 
seen that the error on the rebuilt spectrum remains high. These errors 
can be the cause of the metamerism phenomena met in colorimetry. 
That is why, in the rest of this paper, we shall propose works based 
on physical reality. 
 
Setting up of an equation of the multi-
component image acquisition system 
Proposal 
 Compared to the previous method, the image is obtained by an 
electronic acquisition system. The acquisition system is composed 
of: the object to be observed, an illumination, a set of filters, the 
optics, the camera and finally a PC equipped with an acquisition 
card.  
 We consider that the acquisition system is characterized by 
optical properties Γఒ,Φఒ  the spectral filter blocked on the 
wavelength of the primary ߣ (or any other frequency of the studied 
spectrum) and photosensitive properties W(λ). The object is 
illuminated by a polychromatic light [8], [20], [24]. By generalizing 
the relation defined by the equation (1), we obtain the discrete 
relation (15): 
 
ݒ  = ݇∑ ఒ௫ߣΔ(ߣ)Φ(ߣ)ܹ(ߣ)Γ(ߣ)ݏ(ߣ)ܮ

ఒ                        (15) 
 
The number of filters may vary from 1 (monochrome image) to N. 
The larger N is the better is the spectral or colorimetric resolution. 
For a standard color image N=3. 
 If we take H= [L, Γ , W, Φ ...] then the relation (15) leads to 
the matrix equation (16) for one color: 
 v = H.s                                                                                (16) 
H is often unknown, which represents the acquisition system with 
which the illumination is associated. v= [v1, v2, …vN]T represents 
the colour vector for a space with N dimension. s=[s1,s2,..,sJ]T is the 
spectral density of the studied object. As the object is composed of 
just one colour, it is impossible to identify H. We generally use the 
Munsell color atlas [8] or the Macbeth colour chart. For this work, 
we arbitrarily use the Macbeth color chart. This chart is composed 
of 24 colours, we obtain a system of 24 equations with x unknowns 
(x is equal generally 80 for a best spectral resolution from 400 to 
800 nm). 
 Equation (16), which is true for one object, can be rewrite as 
equation (17) below for K objects (colors nuances): 
  V = H.S                                                                        (17) 
V is a matrix which has the dimension NxK (K= total number of 
different colors). 
S is a matrix which has the dimension JxK (J defined by the relation 
12), represents all the spectral reflectances of the chart. 
H has the dimension NxJ. 

The advantage of using the Macbeth colour chart is that we 
know the spectral response s of each colour in the data base; 
therefore, from the colour vectors v obtained via the acquisition 

system, we resolve our system to find H. Consequently, we can 
identify our acquisition system if the light is properly defined. This 
results in the relation (18): 

H=V.S°                             (18)           
The matrix S° is the generalized of the matrix S. If S is a square and 
non singular then: 

S°=S-1. 
To find H in most cases, we shall analyse two types of approach: 
either through an approached inverse matrix or by a neural 
approach. 
 
Identification of H via the matrix method 
Pseudo-inverse matrix 

Matrix S (composed of all the spectral responses of the color 
contained in the Macbeth color chart) is not simply non-singular. 
Such as defined, our system does not allow any solution or infinity 
of solutions. Most of the methods proposed tend towards the optimal 
solution. Thus, the singular decomposition values are one of them.
 We recall here that the notion of inverse applies to square 
matrices if the columns (rows) of this matrix are linearly 
independent. When it exists, this inverse is unique for a given 
matrix. Thus, Moore (1920) proposes to extend this notion of 
inverse to the matrices not included in the above category [2], [8]. 
Later, Penrose when resuming Moore’s work proposed the 
generalized inverse matrix called Penrose inverse or pseudo-inverse 
matrix. The algorithm of generalized inverse matrix is given by 
relation (19). 

  Σ° = ቈߜ
భ
మ Οଵ்

Οଶ் Οଷ
                                                                  (19) 

The error on the calculation of Δ߶ is defined in the relation 
(11). We employed this method to rebuild the whole system used to 
acquire data from the Macbeth colour chart. Figure (3) shows the 
appearance of the system represented by H. The three components 
RGB lead to three functions Hi(ߣ).The curves H show the spectral 
response of the whole formed by the spectral acquisition system 
(spectroradiometer) and the illuminating light. Figure (4) gives the 
standardized spectral density and its approximation for the colour 
defined in figure (1). 

                              
Figure 3. Modelling of the acquisition system    Figure 4. Spectral density  
And the illumination(R, B, G)    rebuilt from the penrose inverse 
The initial spectrum is a dotted; the rebuilt is solid line (R=173; 
G=187; B=78; N°11; Δ߶=9.65%).  

The Penrose inverse introduces noise that increases the 
difference between the real spectrum and the calculated spectrum. 
There are solutions to limit the noise. The first one consists in 
limiting the number of Eigen vectors. This increases the gap 
between the real spectrum and that sought for. The solution used 
here is based on the principle of linear hetero-associative memories. 
The hetero-associative memory is a neural network that uses the 
Penrose inverse to calculate the real response knowing the 
theoretical response. This method is very interesting since it allows 
the gap between the real spectrum and the rebuilt spectrum to be 
reduced. This method was preferred to the first solution that consists 
in drastically reducing the number of Eigen values. Nevertheless it 
does not converge towards a global minimum.  
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Wiener inverse 
 The method we have just seen gives some good results, but it 
is noisy. Other methods are often used to reduce this noise. Research 
workers such as PG Herzog and his team [9] use the smooth inverse 
called of the Wiener inverse.  

Let us note that SL, the smooth inverse or the Wiener inverse 
of matrix S, SL is calculated by the relation (20): 
 
 ܵ = ்ܵ.ଵି(ௐଶܯ) . (ܵ.  ଵ.்ܵ)ିଵ                             (20)ି(ௐଶܯ)
 
With: ܯௐଶ = ௐଵܯ +  .Ιߝ
MW1, a matrix introduced by Mancill [15] is equal to the relation 
(21) and this matrix is singular. So as to be able to inverse it, it is 
altered by ߝΙ where I is the identity matrix and ߝ a very small value. 
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Figure 5. Spectral density rebuilt from the inverse of Wiener 
The initial spectrum is a dotted line; the rebuilt spectrum is a solid 
line 
(R=173  G=187 B=78; N° 11; Δ߶ = 17.93%) 
For the chosen color, the reconstruction error is higher (figure 5) 
than the pseudo-inverse method. But nevertheless, this difference is 
smaller than the methods using basic Gaussian functions. 
 It can be noted that the Wiener inverse method is suitable for 
the reconstruction of very monotonous spectra. Consequently, it is 
more suitable for colors situated on the achromatic axis. 
 
Approximation of the spectral response by 
neural learning 
 All the solutions we have just seen are interesting. But there is 
still a difference between the initial spectrum and the calculated 
spectrum. Over recent years, very powerful methods have been 
developed in the field of pattern recognition. These methods, 
inspired by neuroscience, are highly efficient mathematical tools. 
Referring to previous works [10], we propose an extension to the 
identification of the system represented by matrix H. Indeed, the 
neural networks are powerful, parsimonious, and universal 
approximators, for the interpolation of digital data.  
Many works exist in the scientific literature which treats the problem 
of the peripheral calibration (screen, scanner, etc.) [3], [11]. In this 
part of this article we describe some part of their methods. 
 
Process and method 

We use a neural network theory to describe ours process and 
method. A neural network [1] [4] is composed of elementary 
integrators or formal neurons (perceptron) and is a succession of two 
elementary mathematics operators:  

-A summation of the input vector xi or stimulus (i=1…I where I is 
the dimension of the input vector) weighted by coefficients called 
weights wj,i. this sum evaluates the activation potential aj of the 
neuron (22): 
 
 ܽ = ∑ ூݔ,ݓ

ୀଵ                                                                    (22) 
With x0=1 
- A non-linear thresholding operation by activation function F which 
evaluates the output of the neuron. 
This can be schematized by Figure (6) below 
 
ߧ  =  (23)                                                                         (ܽ)ܨ

The association of several formal neurons will form a layer of 
neurons (Figure 7). The generalized form of the potential activation 
vector becomes ܣ = ܹܺ with wj,I the intensity of the connection 
between the ith input vector and jth neurons. The number of formal 
neurons varies from 1 to P and  
ܺ = ݔ] ଵݔ, …  .்[ூݔ
 

 ܹ = ൦

ଵ,ݓ ⋯ଵ,ଵݓ ଵ,ூݓ
ଶ,ݓ ଶ,ଵݓ … ଶ,ூݓ
⋮

,ݓ

⋮
,ଵݓ

⋱
⋮

,ூݓ

൪                                             (24) 

  

 
Figure 6 Example of a layer of formal neuron 
The vector X of input will be of size I * N where I is the size of the 
input vector, N is the number of examples or observable. 

 The most frequently used supervised learning network is the 
MLP (Multi-Layer Perceptron). It is used in a number of industrial 
applications [12] for signal and image processing such as form 
recognition [18]. The architecture of a MLP is composed of the 
assembly of formal neurons in two or more layers (figure 9). 

 
Figure 7. Multi-layer neural network (Multi Layer Perceptron) 
The complexity of the network, i.e. the number of layers and the 
number of neurons per layer, will influence the performance of the 
interpolation [10]. 
The network response at output will be evaluated (25) for each 
example (subscripted k): 
 
 ܱ = ܨ ൬ ܹ ଶܨ… ቀ ଶܹ൫ܨଵ( ଵܹ ܺ)൯ቁ൰                                 (25) 
 
with Wi connection matrix of layer i and Fi activation function of 
layer i, xk the kth observable. 
Supervised learning 
 The supervised learning procedure will require: 
-A learning and test set that will form the data base with dimension 
N. The network parameters are calculated from the N-N0 examples 
formed by the couples {input xk, theoretical output tk} of the 
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learning basis. Many authors have underlined the importance of the 
learning basis which should be representative of each class and in 
sufficient number [18] [25]. 
The performances of the network are established from the N0 
examples of the test basis. The measurement of performance is 
established by the comparison between the mean square errors of 
the learning set and the mean square errors of the test set [25]. When 
the database is very small the validation of the network parameters 
use the leave-one-out cross validation method [25][26]. 
- The definition of a cost function that measures the difference 
between the required theoretical output and the output estimated by 
the network [5]. The most frequently used cost function is the total 
cost function (equation 26) of the mean squares or root mean square 
error, insensitive to its number N of examples [22]. 
 
ܬ  = ଵ

ଶே
∑ ்݁݁ே
ୀଵ   

 
equivalent to 
 
ܬ  = ଵ

ଶே
∑ ݐ) − ݐ)்( − )ே
ୀଵ                                         (26) 

 
Where ek is the instant error vector at network output between the 
theoretical response vector tk and the calculated response vector ok 
of the kth stimulus. 
The learning of a network is realised by iteration or epoch. An epoch 
therefore corresponds with the presentation of all the examples for 
learning. 
- A minimisation algorithm of this cost function in relation to the 
weight W of the network. The choice of the optimisation method 
will mainly depend on the complexity of the network, i.e. the size of 
the connection matrices and input vector [22]. 
Gradient backpropagation algorithm 
 We cannot speak of supervised learning multi-layer networks 
without mentioning the most famous one: the MLP error 
backpropagation network. This algorithm [13], [21] is a 
generalisation of the Widrow-Hoff rule (or general delta rule) [4]. 
 The correction of the network weights is defined by the following 
equation (figure 8, equation 27). 

 
Figure 8. Skeleton diagram of the weight learning rule 
 
 ܹାଵ = ܹ + Δ ܹ with Δܹ = ∑ Δ ܹ

ே
ୀଵ  and  

         Δ ܹ =                                                                    (27)ܬ௪∇ߟ−
 
with (ߟ) constant learning rate gradient. 
 Furthermore, this first order optimisation method does not 
guarantee the convergence to a minimum of the cost function. The 
best improvements for minimising the root mean square error for the 
networks of multi-layer neurones come from the classical 

optimisation methods for functions with several variables, in 
particular the digital optimisation methods with no second order 
constraints such as backpropagation by conjugated gradient, the 
quasi-Newton algorithm. Using the appropriate optimization 
method, as the Bayesian Regularization method we defined ours 
process, and method. 

The main reason for choosing the Bayesian Regularization 
algorithm (BR) is the fact that, it can result in good generalization 
for difficult, small or noisy datasets. Training stops according to 
adaptive weight minimization (regularization), the lesser cost of the 
calculations and the quick guarantee of the convergence to a 
minimum (28): 
 
 Δ ܹ =                                                              (28)ܬ∇ଵି[ܩ]−
 
Among the limited neighbourhood methods, the Fletcher method 
[17] [6] [Dreyfus] was chosen and developed. The Hessian is always 
positive definite, which ensures the convergence to a minimum of 
the solution. 
 
Methodology 
We used a two-layer network, which is largely sufficient, for the 
problem considered. The first layer (called hidden layer) is 
composed of a layer of 15 neurones. The number of points in our 
spectral response fixes the output layer. With a chosen resolution of 
 nm, we actually have 81 points to rebuild. Consequently 81 ߣ∆
neurons are necessary on the output layer. This can be schematized 
by Figure (9) below 
 

 
Figure 9. The MLP architecture of the proposed method 
 

Moreover, due to the small database of example, the leave one 
out cross validation method has been applied [25]. For the learning, 
we have 18 samples to present to the network and for the testing 
step, we have 6 samples (Colors 1, 8, 11, 16, 18 and 20) of the 
Macbeth color chart. Each input datum puts in a vector of 3 
components. The activation function of the input layer is a sigmoid 
function whereas we have a linear activation on the output layer. 
After the learning stage, we keep the weight matrices W1, W2 and 
the activation thresholds B1 and B2. These 2 matrices and the 2 
associated vectors represent the system to be identified. Therefore, 
starting from any triplet, whether or not it is in the Macbeth colour 
chart, we can deduce its spectral response. Considering the very few 
filters used, (here red, green and blue) it will always contain 
approximation errors. The solution we suggest is to increase the 
number of filters. This solution is conditioned by the place required 
for storing such an image.   

The training set and test set results are shown respectively in 
the figure (10) and the figure (11)
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Figure 10. Rebuilt spectral density through learning of a two-layer network for some colors in the Training Set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Rebuilt spectral density through learning of a two-layer network for colors in the Test Set 
 
 

 
Global results analysis 
Overview of this method 
 For one color, it is difficult to have a proper idea. So as to bring 
in a deep analysis of the various spectral image reconstruction 
methods, the comparison is done on the whole color of the Macbeth 
color chart. 
In this analyze, table result show the whole chart color of our 
database and we can see for each color the RGB components.  Table 
1-a, table 1-b, give different errors produced by each reconstruction 
method for each color in the database and table 2 gives the mean  

 
error. The another tables which we are not present here gives for 
each color the initial spectral reflectance in dotted line and the 
reconstruction spectral using a multi-layer BR (Bayesian 
Regularization) optimization in solid line. Another table resumes the 
technical specification used to implement the neuronal learning. The 
new method we proposed is the best approximation, since it permits 
to perfectly rebuild the spectral reflectance.  

The method uses the Penrose inverse remains acceptable, 
because it is very fast in time of calculation and permits fast 
verifications. In our application, to avoid the noise due to this 
inversion method we preferred a hetero-associative memory with 
learning rate constant.   

371-6
IS&T International Symposium on Electronic Imaging 2019

Image Sensors and Imaging Systems 2019



 

 

   For the whole samples which composed the basis for our 
study, the neural method gives the best results for all samples. This 
comparative survey spread to the set of the 24 colors gives 
satisfaction on the proposed scientific approach. Neuronal aspect is 
not the only element to take in consideration since it has been done 
by various authors, but here we have brought a deep analyze in the 
method of optimization and results show that BR approximation is 
well adapted in this case. Only 24 colors (in our database) is used to 
rebuild the spectral reflectance, for each color, it produces the best 
spectral reconstruction with a mean error less than 0.3%. Thanks to 
the present power computer we can easily implement a 3 layers 
network neuronal configuration. The learning process takes less 
than 1 minute CPU times (43 seconds exactly) which seems 
reasonable. Although in the scientific literature no indication is 
given on the number of neurons for hidden layers, best results have 
been obtained with 6 neurons for the layer 1 and 20 neurons for the 
layer 2. The output layer is constructed with 80 neurons. We observe 
that the Penrose inverse is second in relation to the other remaining 
methods. This survey shows that the 3rd position is attributed to the 
Gaussian basic function approach. Finally the Wiener inverse is 
worst. This is in contradiction with the author who based their 
affirmation only on a few chosen colors.  

The neuronal network method we proposed requires a long 
time of learning. In many applications the identification of the 
system acquisition or visualization is done once. Therefore increase 
the learning time are necessary for best identification. Otherwise 2 
layers can be used in order to reduce the learning time. 

 
Table 1-a. Comparison between 4 spectral reconstruction methods applied to 
color database 

 
Table 1-b. Comparison between 4 spectral reconstruction methods applied to 
color database 

 
Table 2. Comparison between Mean spectral reconstruction errors for 4 
methods 
 

Conclusion 
 In the image processing chain, the acquisition of these images 
is a key element of the process. In this paper we have proposed a 
method based on the neural network so as to improve the spectral 
response estimation starting from a color triad (or set of filters). This 
tool is precursor of experimental work allowing improving the 
quality of multi-component images and acquisition systems. 
To the two existing models, we have added a third one: 
The first model is used in the field of image synthesis. The image 
reconstruction method lies on a decomposition of the spectral 
reflectance in a space of circular functions or exponential functions. 
The aim of the work is to give the color image a rendering that has 
no connection with the physical reality of the colors. The 

reconstruction errors calculated from a choice of color ranges drawn 
from the Macbeth color chart show that the method using the 
circular functions is closer to reality. The approach used here is not 
different from the models below. Consequently, from the real 
spectral response of the object, we can make it undergo the required 
transformations.  

The second model is used in the field of acquisition of multi-
component images called multi-spectral image. The main concern 
in this field focuses on the colorimetric quality of the objects and on 
the reproducibility so as to avoid the effects of light and 
metamerism. This requires the power to model the acquisition 
system. Two methods were used in this field. One consisted in using 
the Penrose inverse (singular value method) and the other approach 
uses the Wiener inverse (or smooth inverse). Out of these two 
methods, the first one gives the best results on the rebuilt spectrum. 

The third model we propose is to exploit the neural approaches 
that are subjacent in the second model. It is not the first time that the 
neural networks are used in the identification of systems. We can 
mention the frequent case in automatism. Considering the 
complexity of the system to be identified, we have opted for a multi-
layer network with backpropagation error. To avoid getting trapped 
in local minima for the quadratic error, we use second order 
optimization methods. The Bayesian Regularization method was 
preferred since our data allowed it and furthermore it converges very 
quickly (43 seconds), after 243 iterations with 2 layers. The best 
result is obtained when we increase the learning time and it gives 
the lowest reconstruction error which is less than 0.09%. 
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