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Abstract
A system-on-chip (SoC) platform having a dual-core micro-

processor (μP) and a field-programmable gate array (FPGA), as
well as interfaces for sensors and networking, is a promising ar-
chitecture for edge computing applications in computer vision. In
this paper, we consider a case study involving the low-cost Zynq-
7000 SoC, which is used to implement a three-stage image signal
processor (ISP), for a nonlinear CMOS image sensor (CIS), and
to interface the imaging system to a network. Although the high-
definition imaging system operates efficiently in hard real time,
by exploiting an FPGA implementation, it sends information over
the network on demand only, by exploiting a Linux-based μP im-
plementation. In the case study, the Zynq-7000 SoC is configured
in a novel way. In particular, to guarantee hard real time per-
formance, the FPGA is always the master, communicating with
the μP through interrupt service routines and direct memory ac-
cess channels. Results include a validation of the overall system,
using a simulated CIS, and an analysis of the system complexity.
On this low-cost SoC, resources are available for significant ad-
ditional complexity, to integrate a computer vision application, in
future, with the nonlinear CMOS imaging system.

Introduction
Nowadays, autonomous devices require high processing data

capabilities and portability, to be able to connect to any oper-

ating system (OS), but have restrictions in power, weight, and

cost. Low latency, between inputs and outputs, is also crucial for

high speed applications, which means the use of cloud comput-

ing is not ideal. These are technical challenges of edge comput-

ing systems, as described by Lee et al. [1], which feature large

scales, distributed networks, cyber-physical interfaces, dynamic

and adaptive environments, and heterogeneous platforms.

A case study of a multi-stage image signal processor (ISP),

implemented with a system-on-chip (SoC) platform, demon-

strates a capacity to process a large amount of data in hard real-

time while providing web content. A field-programmable gate

array (FPGA) embeds the image signal processing algorithms,

while realizing true parallel processing. A microprocessor (μP)

handles hardware interfaces for storage and networking, includ-

ing the high-level protocols to serve web pages.

Our system corresponds well to key aspects of edge com-

puting, where the device is capable of processing a large amount

of data, namely high definition (HD) high dynamic range (HDR)

video, reporting processed information in a high-level format, not

overloading the network, and pushing the processing to the edge.

Our method also addresses issues faced by current cloud solu-

tions, reviewed by Shi and Dustdar in “The Promise of Edge Com-

puting” [2], by having low latency and private data (all processing

is done locally), while processing a large amount of data.

This work uses the FPGA as the main platform to embed all

circuits that compose a three-stage pipelined ISP required for a

nonlinear CMOS image sensor (CIS). The research delivers a de-

sign flow for hard real-time to be achieved with an SoC. Underly-

ing software algorithms were previously published by our group.

They include fixed pattern noise (FPN) correction and salt-and-

pepper noise (SPN) filtering [3], as well as their digital circuit

designs [4], and a tone mapping operator (TMO) [5].

Lapray et al. [6] developed an HDR video camera using a

Virtex 6 FPGA from Xilinx. They achieved 60 frames per sec-

ond (FPS) with a spatial resolution of 1280×1024 pixels in a ho-

mogeneous implementation, using only an FPGA. A lot of FPGA

resources were spent in generating the HDR image by combining

low dynamic range (LDR) images with different exposure times.

However, the Virtex 6 is a high-end FPGA and their TMO might

not be able to handle abrupt changes in illumination.

Another full HDR video camera applied for welding was de-

veloped by Mann et al. [7]. The system is real-time and low cost,

deployed using a Spartan-6 LX45 FPGA from Xilinx. Their de-

sign employs look-up tables (LUTs), which guarantees real-time,

but a lot of pre-processing has to be made to generate the LUTs.

It is a good implementation for homogeneous computing, using

only an FPGA that lacks connectivity. As well, the use of LUTs

may be too simple to handle fast changes in luminance.

The novelty of this research is the use of a heterogeneous

SoC to realize an embedded real-time ISP for an HDR imaging

system that will incorporate a nonlinear CIS. Acting as the mas-

ter of the system, the FPGA post-processes and interfaces the non-

linear CIS to the μP. The μP enables the system connectivity and

extra processing could be realized in the μP as well.

Apparatus and Application
After describing the platform of our ISP, this section ex-

plains its functionality. As the explanation is high level, using

input-output images, please consult the references for more de-

tails about the background algorithms and circuits.

System-on-Chip Platform
Fig. 1 shows the SoC development kit we used. The SoC

itself is a XC7Z020 from the Zynq-7000 family of the Xilinx

All Programmable SoC architecture. It is composed of a dual-

core ARM Cortex-A9, called the processing system (PS), and a

7-series FPGA from Xilinx, called the programmable logic (PL).

In this paper, we simply write μP for the PS and FPGA for the PL

to favour generic terminology.

From the available peripherals, we use: the Joint Test Action

Group (JTAG) for debugging; the Universal Serial Bus (USB) uni-

versal asynchronous receiver-transmitter (UART) for serial com-

munication; the Ethernet controller for networking; and the mem-
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Figure 1. Zturn development kit with Zynq-7000 SoC. This board is the

platform chosen to deploy the proposed ISP, and thereby to realize a case

study on edge computing. The image is adapted from the literature [8].

ory controller to access 1 GB of random-access memory (RAM),

specifically double data rate (DDR) synchronous dynamic RAM

(SDRAM). Our ISP requires memory to store the FPN coeffi-

cients, which fit easily into the DDR memory after loading from

the SD card. The OS is booted from the SD card as well.

Documentation and examples are provided by the vendor,

such as C code to embed in Linux and access the board’s periph-

erals, kernel files to configure and recompile the Linux kernel, and

device tree source files, to add new hardware components.

Xilinx has a suite of tools, called Vivado, for system design

with the Zynq-7000. Vivado can work with hardware description

language (HDL) coding and drag-and-drop graphical user inter-

faces (GUIs). For bare-metal development, i.e., to program the

μP with no OS, a software development kit (SDK) is included for

C and C++. The Vivado High-Level Synthesis (HLS) is a third

integrated development environment (IDE) that allows designers

to develop their FPGA projects using C, C++, and/or System C

only, without the need for HDL coding.

For standard components, such as direct memory access

(DMA) and video drivers, we use intellectual property (IP) cir-

cuits from Xilinx. We also designed custom circuits to make our

ISP. Drivers needed by the SoC are available, according to the

FPGA design. For this project, we do not use Vivado HLS.

Image Signal Processor
The SoC allows the design of a heterogeneous system, where

work is divided between an FPGA and μP, as shown in Fig. 2. The

proposed system takes advantage of the highly parallel architec-

ture provided by the FPGA and the rich set of peripheral devices

and software libraries available on the μP.

On the FPGA side, a custom digital architecture can execute

pixel-level algorithms and multi-channel tasks efficiently, taking

advantage of the high throughput and low power of FPGAs, espe-

cially for fixed-point computation. The FPGA can also extend the

Figure 2. Interconnection of primary SoC components. Some are in the

FPGA, while others are in the μP. A key part of this work is the interfacing.

peripherals of the μP, e.g., to accommodate a nonlinear CIS that

requires a custom and sophisticated ISP to be functional.

The μP is composed of: a dual-core ARM processor; stan-

dard peripherals for connectivity; and GB-scale memory access

with memory controllers. It is capable of running Linux, a multi-

threaded OS, and performing additional computation.

As it is “low-power yet high-performance,” to quote Kalb et
al. [9], this heterogeneous system is ideal for realizing the ISP

of a nonlinear CMOS imaging system. However, the design flow

is challenging due to multiple development environments and the

complexities of interfacing the FPGA and μP. Kalb et al. worked

on a more unified tool chain, a customized real-time kernel for

parallel computing, and a hardware system.

A nonlinear CIS, such as the logarithmic one by Mahmoodi

et al. [10], is ideal for HDR imaging at video rates because it does

not need to create the HDR image from multiple LDR images

[6] [7]. While nonlinear CISs have been investigated before, the

literature generally focuses on small-format cases.

In contrast, using HD HDR videos from Kronander et al.
[11], this work simulates a large-format nonlinear CIS. Videos

were pre-processed to simulate the responses of Mahmoodi et
al.’s image sensor [10], except with the larger HD format. This

resulted in compressed logarithmic responses, having 16 bits of

pixel depth, with FPN and SPN incorporated.

Fig. 3 demonstrates the importance of the three main circuits

in the proposed ISP. The “All ISP” row shows the result with

all circuits. The “No TMO” row shows the result with a simple

TMO in place of Li et al.’s one [3]. The “No SPN” row shows

what happens when SPN is not filtered. Finally, the “No FPN”

row shows what happens when FPN is not corrected.

To make the ISP operational, a controller circuit is added

to the design to provide all control and status signals. The con-

troller implements the external communication protocol, called

Advanced eXtensible Interface (AXI), between the ISP and the

DMA, an AXI4-Stream. At the ISP input, the controller extracts

CIS pixel values and FPN correction coefficients from data pack-

ages received via DMA. Pixel addresses are generated by the con-

troller and provided to the SPN filter. Finally, frame synchroniza-

tion signals are generated for the TMO.

Interfacing Method
As shown in Fig. 4, the interfaces between the FPGA and μP

include: high performance (HP) ports, for high speed data trans-

fer; and general purpose (GP) ports, for configuration and control.

We also set up interrupts to make the FPGA the master of the sys-
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Figure 3. Illustration of the ISP functions. From bottom to top, the image quality improves by adding circuits for FPN correction, SPN filtering, and tone mapping.

Figure 4. Zynq-7000 SoC main blocks and interfaces. The AMBA intercon-

nect protocol is utilized to bridge the FPGA and μP sides of the system.

tem and to avoid wasteful polling by the μP.

Our approach differs from the hardware acceleration

methodology, shown in Fig. 5(1), of the literature. Because we

currently simulate the nonlinear CIS, our approach is as shown in

Fig. 5(2). Ideally, the architecture would be as shown in Fig. 5(3),

where an actual nonlinear CIS is controlled by the FPGA.

The protocol we adopted is AXI from Advanced Micro-

controller Bus Architectures (AMBAs). It has three variations:

AXI4-Full, for multiple devices on HP buses; AXI4-Little, for

control; and AXI4-Stream, for point-to-point communication. We

use AXI4-Stream, which is the simplest and more efficient ver-

sion. This protocol, which has a finite state machine with four

states, is implemented in the controller circuit.

The design flow for the SoC can be classified either as hori-

zontal or vertical. In the horizontal case, as in Fig. 6(1), the FPGA

design in Vivado yields the bit file that configures the FPGA. For

the μP, repositories and makefiles, configured for cross compila-

tion, generate the boot file, kernel, device tree binary (DTB), and

root file system. In the vertical case, as in Fig. 6(2), Vivado ex-

Figure 5. Potential master-slave configurations of the system. Squares

indicate the master, and ovals the slave(s). We currently use approach (2).

ports a hardware description file (HDF), which is a container with

the FPGA bit file and other design configuration files. PetaLinux

[12] then uses the HDF to generate the configuration files for the

μP. Modules, packages, and applications can be added in PetaL-

inux before building the whole project.

We use DMA to transfer data efficiently between the FPGA

and μP. The DMA is realized by a standard IP block, which we

add to the FPGA design, that is configured and controlled by soft-

ware running on the μP. To make the FPGA the master, we trigger

the μP to run the software, implemented as a Linux interrupt ser-

vice routine (ISR), in response to interrupt requests (IRQs) gener-

ated by the FPGA and detected by the μP.

The ISR may be in the kernel space or user space of the OS.

We implemented it in the user space, which does not require a

custom device driver. We make use of control and status registers,

which are memory mapped, of the DMA circuit [13].

A kernel space implementation is more robust, but requires

more time and expertise. To design a custom device driver, there

are three components: memory allocation, DMA device control,

and cache control. Also, the kernel has to reserve a contiguous

area of memory in which the driver operates. As in our user

space implementation, we favour the simple operation mode of

the DMA, as opposed to the scatter-gather mode, because it sim-

plifies both the ISR and AXI4-Stream implementations.
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Figure 6. Potential design flows for the SoC system. (1) The horizontal one

has a more independent methodology, where compilation of the FPGA and

μP projects are done separately. (2) The vertical one emphasizes integration,

making it easier to load extra packages and configurations.

Results and Discussion
Having presented the apparatus, application, and method, we

now turn our attention to system validation and evaluation.

System Validation
On the FPGA side, after HDL code entry and synthesis, the

design is tested with functional validation, where most bugs are

caught. An initial validation is realized manually with a few small

images. Thereafter, for many large images, automatic validation

is performed against the same data processed in MATLAB. Bi-

nary files are used to load input data and save output data. After

debugging, zero bit error is consistently achieved.

On the μP side, an initial test is to verify that the Linux ker-

nel detects the new device, i.e., the interrupt-based DMA trans-

fer. This can be done by entering “dmesg” at a command prompt.

Other useful commands are “cat /proc/interrupts,” to ver-

ify the interrupt number and name, and “cat /proc/iomem,” to

verify the DMA address. When using a PetaLinux driver, self tests

of the DMA can be loaded, in the kernel configuration phase, and

Figure 7. Browser screenshot of a web page served by the SoC system.

The μP is running a web server to serve the FPGA output over a network.

basic DMA operation can be verified during boot.

To validate the system, a web server was implemented on

the μP. It serves a simple web page, accessible from any browser

on the same network, that contains a bitmap image. The ISR we

wrote for Linux, coded in C, converts binary data, received from

the FPGA via DMA, to a bitmap image file, which is embedded in

a static hypertext markup Language (HTML) script. Fig. 7 shows

a screenshot of the web page, using a cellphone browser.

Using an oscilloscope, we verified that IRQs were generated

at exactly 30 Hz. A trace is shown in Fig. 8. For this experiment,

we made the μP busy from time to time, also shown in Fig. 8,

while verifying that the FPGA still generated the IRQs at a con-

stant 30 Hz, which enables hard real-time performance.

System Evaluation
To evaluate the complexity of an FPGA design, we have

previously reported aggregate numbers of logic elements (LEs)

and memory bits [4]. In this work, because we focus on a Xil-

inx device only and use the Vivado IDE, we report four param-

eters: logic and memory in LUTs; additional memory in blocks

of RAM (BRAMs); additional memory in flip-flops (FFs); and

additional logic in digital signal processing blocks (DSPs).

An overview of the occupancy is given in Fig. 9. This floor-

plan shows the layout of the ISP for HD resolution. Vertical nar-

row rectangles, for example, represent BRAMs instantiated for

the TMO circuit. Placement of components may be affected by

introducing additional constraints on the design. A breakdown of

resource usage, as reported by Vivado, is given in Fig. 10.

In terms of the circuits being evaluated, we refer to all the

auxiliary circuitry needed to support the DMA as “DMA aux,”

which includes: the smart connectors to bridge HP AXI channels,

between the FPGA and the μP; the inter-connectors for bridging

GP AXI channels; and the reset circuits to reset and synchronize
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Figure 8. IRQ voltage of the FPGA and usage of the μP. The IRQ rate,

measured by an oscilloscope, is never disturbed by the μP load, measured

by a shell script. Usage is varied by interleaving calculations and sleeping.

data transfer, between the FPGA and the μP. These circuits were

all inserted automatically by Vivado.

The controller circuit refers to all circuitry responsible for

integrating the FPN correction, SPN filtering, and TMO circuits,

as well as for interfacing the DMA using AXI4-Stream.

In Fig. 10, the number of LUTs primarily represents logic

used, but some of it could represent memory. The total usage, pri-

marily for the DMA and DMA aux circuits, is less than a quarter

of the amount available. Especially considering the HD resolution

of the ISP, all remaining circuits are highly efficient in terms of

logic used. There are a total of 53,200 LUTs available.

The BRAMs represent most of the memory in the design.

Xilinx embeds in their FPGAs configurable 36 Kb blocks of true

dual-port RAM. Fig. 10 shows that our TMO consumes a signif-

icant number of BRAMs, but it is not much more than a quarter

of the total available. The TMO relies on BRAMs to store his-

tograms and mapping functions in ping-pong buffers. There are

Figure 9. Zoomed-out floorplan image of the ISP design. Using the Vivado

IDE, designers can explore the complexity of their FPGA circuits. For this

case study, plenty of resources are available for additional complexity.

140 BRAM totalling 4.9 Mb available.

As with the LUTs, Fig. 10 shows that the DMA and DMA

aux circuits are the ones that most use the FFs. Notwithstanding a

router inside the SPN circuit, which is purely combinational logic,

the FPN, SPN, and TMO circuits use highly-pipelined sequential

logic, which requires FFs. However, as a fraction of the 106,400

FFs available, the amount used by these circuits is negligible.

The last resource depicted, in Fig. 10, is the number of DSPs.

We can see here the influence of the FPN circuit, which is basi-

cally composed of adders and multipliers. The TMO also has

arithmetic to calculate a mapping function. Only a small fraction

of the 220 DSPs that are available is used.

In addition to unused resources on the FPGA side, there are

unused resources on the μP side. Whereas IRQs are always gen-

erated at 30 Hz, if the ISR takes too long to execute, e.g., when

saving an image unnecessarily to a disk, then some IRQs will not

be served. However, given that the μP has two high-performance

cores, there is plenty of scope for computation on its end.

Conclusion
This work achieved a SoC design flow for hard real-time im-

age signal processing of a nonlinear HDR imaging system. Al-

though algorithms and some digital circuits in the ISP are from

previous work, this work integrates all of them into a single real-

time platform. The design flow to implement such a system is

presented and the system design is validated and evaluated.

Our ISP used 31.4% of BRAMs, 14.5% of LUTs, 9.0% of

FFs, and some DSPs, available in a Xilinx Zynq-7000 SoC, to

process HD video. Because the FPGA in the SoC is a low-cost

device, the realized ISP design is therefore very efficient.

To interface the FPGA and the μP, IRQs and DMA were

used. With a horizontal design flow, having ISR software in user

space, we achieved 25 FPS at HD resolution. With a vertical de-
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Figure 10. Utilization of FPGA resources, at HD resolution, by the ISP. Relative to the DMA and TMO, few resources are used by the FPN, SPN, and controller

circuits. Even considering BRAM memory, mainly used by buffers in the TMO, plenty of unused resources are available for additional processing.

sign flow, using PetaLinux, we compiled and inserted a new driver

in kernel space, updated missing packages, and implemented a

DMA self test. We leave completion of the PetaLinux approach,

which would support higher bandwidths, to future work.

One novelty of our design flow is that the FPGA is the mas-

ter of the SoC platform, which includes a μP running Linux and

will, in future, include a nonlinear CIS. Using this approach, our

design can achieve hard real-time operation. At present, we simu-

lated the nonlinear CIS using binary data loaded from a file, which

consumed some of the bandwidth between the FPGA and μP. By

freeing up this bandwidth, in future, we would be able to achieve

the full 30 FPS required for HD video.

We implemented a new circuit to integrate the ISP to the

μP via DMA. The main interface uses an AXI4-Stream bus and

not video direct memory access (VDMA), because our goal was

not a video processing pipeline with the end point being a display.

Instead, our goal was to send the data to the μP for communication

over a network, i.e., an edge computing case study.

Even taking simple modes of operation for the DMA, and

AXI4-Stream for the protocol, a heterogeneous system requires

mastery of multiple disciplines of knowledge. Working with em-

bedded Linux is an advantage for its networking, open source

tools, and standard OS functions. However, any new interface be-

tween the FPGA and μP has to be recognized by the Linux kernel.

This means editing the Linux device tree, configuring the Linux

kernel to recompile, and possibly, for better performance, creat-

ing a device driver in the kernel space. All of these tasks were

investigated here in order to fully support HD video.

The proposed design flow is especially suited for future edge

computing applications involving HDR imaging and computer vi-

sion. In addition to substantial unused logic and memory available

on the FPGA, the μP was used here, beyond the ISR software,

only to connect to a network and serve simple web content. Its

dual-core ARM processor may be used for additional processing,

by leveraging open-source frameworks for Linux.
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