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Abstract
Nonlinear CMOS image sensor (CIS) technology is capable

of high/wide dynamic range imaging at high frame rates with-
out motion artifacts. However, unlike with linear CIS technology,
there is no generic method for colour correction of nonlinear CIS
technology. Instead, there are specific methods for specific non-
linear responses, e.g., the logarithmic response, that are based
on legacy models. Inspired by recent work on generic methods
for fixed pattern noise and photometric correction of nonlinear
sensors, which depend only on a reasonable assumption of mono-
tonicity, this paper proposes and validates a generic method for
colour correction of nonlinear sensors. The method is composed
of a nonlinear colour correction, which employs cubic Hermite
splines, followed by a linear colour correction. Calibration with
a colour chart is required to estimate the relevant parameters. The
proposed method is validated, through simulation, using a com-
bination of experimental data, from a monochromatic logarithmic
CIS, and spectral data, reported in the literature, of actual colour
filter arrays and target colour patches.

Introduction
CMOS image sensors (CISs) have become the dominant

imaging technology, with CCDs comprising less than 10% of
the market share since 2010 [1]. Research in the area includes
work on nonlinear sensors, such as logarithmic (log) and linear-
logarithmic (linlog) ones [2, 3]. It is well known they can achieve
a high/wide dynamic range (DR) in single exposures at video rates
and, with the work of Mahmoodi et al. [4], also to realize a high
peak signal-to-noise-and-distortion ratio (PSNDR).

Recent work on nonlinear sensors does not address colour
specifically. Brunetti and Choubey [2] alter the log sensor circuit
to improve its sensitivity in the dark. Meanwhile, Bae et al. [3]
develop a variation of the linlog circuit with two piecewise linear
regions in the dark. Given that colour is an integral component of
visible-band imaging technology, one can safely assume from the
ongoing interest in nonlinear sensors that legacy work on colour
correction in such sensors is worth improving upon.

The main limitation of legacy work on colour correction, in
nonlinear sensors, is that it is specific to the classic log sensor.
Methods by Hoefflinger [5] and Joseph and Collins [6] rely on a
classic model of the log sensor, developed by Joseph and Collins
[7] for fixed pattern noise (FPN) correction. While these colour
correction methods worked to some degree, they are not applica-
ble to the variety of nonlinear sensors of interest today, including
log sensor variations that deviate from the classic model.

This paper proposes a new approach to colour correction,
which leverages a model recently developed by Li et al. [8], using
low-degree polynomials and cubic Hermite splines, for FPN and
photometric correction. Relying only on the monotonicity of pixel

responses, this model is so generic that it may be applied to a wide
variety of sensors, including log and linlog variations. Also, Li et
al. [8] showed that, when applied to Mahmoodi et al.’s log sensor
[4], FPN correction using the generic model was competitive with
FPN correction using the classic specific model.

One difficulty of working on this subject is the challenge
of obtaining experimental data from a nonlinear image sensor,
i.e., an array of nonlinear pixel sensors, having a colour filter ar-
ray (CFA). Therefore, we adopt a simulation strategy here by
using monochromatic experimental data, from Mahmoodi et al.’s
documented image sensor [4], and spectral data from multiple lit-
erature sources, regarding the quantum efficiency (QE) of photo-
diodes, the transmittance of a CFA, and the reflectance of a wide
variety of objects, to validate our proposed method.

We first summarize the apparatus of interest, i.e., a nonlin-
ear sensor that obeys the assumptions laid out by Li et al. [8].
However, we extend Li et al.’s model from a monochromatic to
a colour scenario. Thereafter, the new colour correction method
is proposed, which entails a description also of colour calibra-
tion. Because FPN is inherent to nonlinear sensors and Li et al.’s
model, we review FPN, its calibration, and its correction, focusing
on implications for colour calibration and correction.

Moreover, we present a suite of results to validate and eval-
uate the proposed method, including two variations thereof. They
include calibration with Macbeth chart patches and testing with
a large database of other patches. Not only do we report median
1976 CIE L*a*b* (CIELAB) errors, including over a high/wide
DR, but also their probability density functions (PDFs). Errors
are broken down into luminance and chromaticity parts, and are
compared to just noticeable difference (JND) thresholds.

We conclude the paper by summarizing our motivation, ap-
paratus, methods, results, and discussion. Our conclusion also
highlights the novelty and significance of this work—a generic
method for the colour correction of nonlinear sensors.

Apparatus and Method
This paper proposes and validates a method to correct colour

for the class of image sensors that are strictly nonlinear and mono-
tonic in their response to incoming light. The method is intended
to be implemented, in real time, as one subsystem in a series of
subsystems of an image processing pipeline. It is designed to out-
put images in the 1931 CIE XYZ (XYZ) colour space. These may
be easily transformed into other colour spaces.

Figure 1 illustrates a nonlinear imaging system, comprising
a nonlinear image sensor and an image processing pipeline for
FPN and colour correction. A transformation to the sRGB colour
space, suitable for display, is indicated at the output.

The proposed method has two stages. The first is calibra-
tion, which is performed once to establish parameters required in
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Figure 1. The proposed colour imaging system. Dashed boxes indicate the

focus of our work. Nonlinear colour correction (NCC) is done before or after

demosaicing (DM). They are followed by linear colour correction (LCC).

the correction stage. Correction is then performed, in real time
on all frames, using a combination of nonlinear and linear colour
corrections. Assuming the image sensor uses a CFA, demosaic-
ing is also needed. Variations in the sequence of performing the
colour corrections and demosaicing yield different results.

Below, we first analyze relevant aspects of image sensors.
Next, taking nonlinear and linear parts separately, the proposed
colour correction method is explained, calibration included. For
demosaicing, we simply use Malvar et al.’s [9] algorithm.

Image Sensor
An imaging system views an object when a spectrum of light

reflects off a scene and hits an array of pixels. In a given pixel
array, the circuit configuration of the pixels will not vary, but due
to variations in device manufacturing, responses to identical input
can vary from pixel to pixel. This is the basis of FPN.

Considering FPN and nonlinearity, to describe the response
of the jth pixel, in an array of pixels, we can write:

y j = f j(x j)+ ε j, (1)

where f j is the opto-electronic conversion function (OECF) of the
pixel, ε j is a noise associated with each pixel that encapsulates
temporal and quantization noise, and x j is the stimulus.

The stimulus x j, of the jth pixel, depends on localized scene
illumination and object reflectance, as well as CFA transmission
and photodiode sensitivity. It can be modeled as follows:

x j =
∫

∞

0
s j(λ )β j(λ )α j(λ )dλ , (2)

where s j, β j, and α j, which are functions of wavelength λ , are
the illumination, reflectance, and absorption spectra. Whereas x j
and s j can have dimensions, e.g., cd/m2 and cd/m2/nm, β j and
α j are always dimensionless and range from 0 to 1.

Assuming R, G, and B represent, according to the CFA, the
sets of pixels with red, green, and blue colour filters, respectively,
the absorption spectrum may be modeled as follows:

α j(λ ) =


TR(λ )Q(λ ), j ∈ R,
TG(λ )Q(λ ), j ∈ G,

TB(λ )Q(λ ), j ∈ B,

(3)

where TR, TG, and TB are the transmission efficiencies of the red,
green, and blue colour filters, and Q is the quantum efficiency of

the photodiode. They are treated as constants because there are
enough degrees of freedom, in (1), to model FPN.

The proposed method requires that f j, the OECF in (1), be
a monotonic function. Monotonicity is a typical characteristic of
any image sensor, including linear, log, and linlog. Although we
use data from a log sensor, for validation purposes, the method is
mathematically applicable to linlog and other possible high/wide
DR sensors. The success of the method depends neither on the
form of the OECF nor on its variation from pixel to pixel.

Nonlinear Correction
We assume FPN correction, shown in Fig. 1, is implemented

using a polynomial-based method our lab previously published
[8]. In that paper, our lab also introduced a spline-based method
for photometric correction. We amend and extend those methods,
in this paper, to realize a nonlinear colour correction.

Considering the pre-demosaicing variation, shown in Fig. 1,
nonlinear colour correction follows FPN correction. During FPN
calibration, an average response is computed as follows:

ȳi =
1
n

n

∑
j=1

yi j, (4)

where yi j is the response to a uniform stimulus xi, which varies,
and n is the number of pixels. The averaging, in (4), reduces the
significance of ε j, in (1). The noise may be reduced further by
averaging, for each stimulus xi, over multiple frames.

Data points (xi, ȳi), from FPN calibration, are used to define
F , an ideal monotonic and nonlinear OECF, as follows:

ȳi = F(xi)≡
1
n

n

∑
j=1

f j(xi). (5)

Our FPN calibration also computes n low-degree polynomials Pj ,
which are used to implement FPN correction as follows:

ŷ j = Pj(y j)≈ F(x j), (6)

where x j and y j are the stimulus and response, in (1), and ŷ j is the
corrected response, i.e., the FPN correction output.

Our photometric correction computes an estimated stimulus,
x̂ j, using the corrected response, ŷ j, as follows:

x̂ j = exp(S−1(ŷ j))≈ F−1(ŷ j), (7)

where S−1 is a cubic Hermite spline [10] fitted to the data points
(ln xi, ȳi) in the inverse direction. Logarithms are used to robustly
deal with a high/wide DR on the x-axis. Unlike a cubic spline, a
cubic Hermite spline guarantees monotonicity.

The stimulus xi, in (5), is constant for all pixels, for a uniform
scene imaged by a monochromatic sensor, because the absorption
spectrum α j equals the quantum efficiency Q, in (3). However,
for a uniform scene imaged by a colour sensor, the stimulus must
be represented by three constants, as follows:

xR
i = si

∫
∞

0
s0(λ )β (λ )TR(λ )Q(λ )dλ , (8)

xG
i = si

∫
∞

0
s0(λ )β (λ )TG(λ )Q(λ )dλ , (9)

xB
i = si

∫
∞

0
s0(λ )β (λ )TB(λ )Q(λ )dλ , (10)
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where s0 is the normalized illumination spectrum, e.g., a D65
spectrum in 1/nm, and si its photometric intensity, e.g., in cd/m2.
The R, G, or B superscripts indicate that the constants apply only
to the red, green, or blue pixels, respectively.

Consequently, our previous FPN and photometric methods
must be performed three times separately, once each for the red,
green, and blue pixels. Instead of (6) and (7), we obtain:

ŷ j = Pj(y j)≈


FR(x j), j ∈ R,
FG(x j), j ∈ G,
FB(x j), j ∈ B,

(11)

x̂ j =


exp(S−1

R (ŷ j))≈ F−1
R (ŷ j), j ∈ R,

exp(S−1
G (ŷ j))≈ F−1

G (ŷ j), j ∈ G,
exp(S−1

B (ŷ j))≈ F−1
B (ŷ j), j ∈ B,

(12)

where FR, FG, and FB are ideal monotonic and nonlinear OECFs
for red, green, and blue pixels, respectively, and SR, SG, and SB
are the cubic Hermite splines for the same. The splines may easily
be created in normal or inverse directions, as indicated.

Thus, for the pre-demosaicing variation, the nonlinear colour
correction is given by (12). It operates directly on the result, given
by (11), of FPN correction. Each scalar x̂ j represents either a red,
green, or blue value. After demosaicing, using the established
algorithm by Malvar et al. [9], for each pixel there is a red, green,
and blue value, which we may represent by a vector x̂ j .

Alternately, for the post-demosaicing variation, shown in
Fig. 1, demosaicing happens after FPN correction. The result of
FPN correction is still a red, green, or blue scalar ŷ j. It becomes
a red, green, and blue vector ŷ j after demosaicing. Thus, instead
of (12), the nonlinear colour correction is as follows:

x̂ j =

exp(S−1
R (ŷR

j ))

exp(S−1
G (ŷG

j ))

exp(S−1
B (ŷB

j ))

≈
F−1

R (ŷR
j )

F−1
G (ŷG

j )

F−1
B (ŷB

j )

 , (13)

where ŷR
j , ŷG

j , and ŷB
j are components of the vector ŷ j. The end

result is a vector x̂ j for either variation in Fig. 1.

Linear Correction
The input of the linear colour correction, shown in Fig. 1, is

always a tristimulus vector, denoted x̂RGB
j , in the colour space of

the nonlinear image sensor. Because nonlinear aspects are already
corrected, the proposed linear colour correction proves identical
to the colour correction of linear image sensors, i.e.,

x̂XYZ
j = D̂−1x̂RGB

j , (14)

where x̂XYZ
j is the corrected tristimulus vector, in the standard

XYZ colour space, and D̂ is a 3× 3 matrix, which is invertible,
that represents the underlying linear relationship.

Therefore, the novelty here is not in linear colour correction
per se but rather in its calibration process, i.e., how D is estimated,
because that is different compared to the linear image sensor case.
One part of the calibration process remains the same. We require
an image y j of a standard colour chart, e.g., a Macbeth chart, il-
luminated by a standard illuminant, e.g., D65. After segmenting
the image to isolate the colour chart patches, the true XYZ values,
xXYZ

j , of segmented pixels, j ∈C, are known.

To estimate the unknown parameter D, we minimize a sum
of square errors (SSE), which is defined as follows:

SSE = ∑
j∈C

(ŷ j−Y j)
2, (15)

where ŷ j is the result, in (11), after FPN correction of the colour
chart image y j . For j ∈C, Y j is defined as follows:

Y j =


SR(ln xR

j )≈ FR(xR
j ), j ∈ R,

SG(ln xG
j )≈ FG(xG

j ), j ∈ G,
SB(ln xB

j )≈ FB(xB
j ), j ∈ B,

(16)

where SR, SG, and SB are cubic Hermite splines that model ideal
OECFs FR, FG, and FB, as described previously, and xR

j , xG
j , and

xB
j are components of xRGB

j . Due to a final equation, i.e.,

xRGB
j = DxXYZ

j , (17)

the scalar SSE, in (15), depends on the matrix D.
As all relevant functions are differentiable, the gradient of

the SSE with respect to D, denoted ∇SSE, may be formulated.
Using an established algorithm, such as fminunc in MATLAB,
which terminates when ∇SSE equals the zero matrix, the SSE may
be minimized. The matrix D̂ that minimizes the SSE is then used,
in (14), to implement the linear colour correction.

Results and Discussion
This section summarizes the results of testing the proposed

method, and discusses the results achieved. First, we present de-
tails on how a colour nonlinear image sensor is simulated. Next,
we describe how the image sensor is calibrated, and present the
results of the calibration. Results of correction are then presented,
including performance over a high/wide DR.

Image Sensor
The method is validated using a simulated colour log image

sensor based on the model presented above. As with Li et al. [8],
the OECF of the image sensor is determined by taking several
images of uniform scenes of constant luminance.

Using literature data [11, 12], shown in Fig. 2, the stimulus
x j is simulated by evaluating (2) for each pixel, which has a colour
filter on top of a photodiode, of the image sensor. The quantum
efficiency Q(λ ) is a measure of the electron-hole pairs generated
relative to photons, of a particular wavelength, incident on the
photodiode. The colour filters are used to limit the wavelengths
to a certain range and to weight them appropriately.

Assuming a standard Bayer CFA, we segment pixels into red
( j ∈ R), green ( j ∈ G), and blue ( j ∈ B) sets. Using data from
a monochromatic log image sensor, presented by Mahmoodi et
al. [4], we compute red (SR), green (SG), and blue (SB) cubic
Hermite splines to model the ideal OECFs of red, green, and blue
pixels, respectively, for colour calibration purposes. Inverse cubic
Hermite splines are computed for colour correction.

As shown in Fig. 1, we focus on the colour correction part of
a hypothetical nonlinear imaging system, in this case a log imag-
ing system. Using Li et al.’s method, the FPN correction output,
i.e., ŷ j in (6), is for each pixel equivalent to its ideal response, i.e.,
based on its ideal OECF, plus residual noise. According to Li et
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Figure 2. Transmission and quantum efficiency data from the literature.

Red, green, and blue transmission efficiencies correspond to a Canon 5D

CFA. The photodiode quantum efficiency is from a standard CMOS process.

We use this data to help simulate a colour nonlinear image sensor.

al., the residual noise is proportional to the original noise ε j, in
(1), and is normally distributed with zero mean.

Consequently, for each pixel of our colour log image sensor,
we simulate the response to the stimulus as follows:

ŷ j =


round(SR(x j)+ ε j), j ∈ R,
round(SG(x j)+ ε j), j ∈ G,
round(SB(x j)+ ε j), j ∈ B,

(18)

where ε j is pseudo-random noise that is normally distributed, with
a standard deviation that matches that of the original log image
sensor. Responses are rounded, which introduces some quantiza-
tion noise, because Li et al.’s FPN correction preserves the 16-bit
integer format of Mahmoodi et al.’s image sensor.

Colour Calibration
Colour calibration is performed using the Macbeth chart, a

standard colour chart consisting of 24 square patches [13]. Spec-
tral information of each patch is known, along with its XYZ co-
ordinates. Assuming 10× 10 pixels per patch, we simulated the
stimulus image of the Macbeth chart, the image after FPN correc-
tion, and the image after colour correction. This was done using
the standard D65 illuminant at 104 cd/m2.

The results of the calibration can be checked qualitatively
by converting the true and corrected XYZ values to a displayable
sRGB format [14], and then viewing them next to each other. Fig-
ure 3 illustrates the Macbeth chart, with the left half of each patch
showing the corrected values, and the right half the true values.
Due to simulated image sensor noise, the left halves exhibit a
small pixel to pixel variation that cannot be seen.

To quantify errors, we use the CIELAB colour space due to
its approximation of perceptual uniformity [15]. We convert true
and corrected XYZ tristimulus values to CIELAB coordinates.
Thereafter, the Euclidean distance, between the true and corrected
CIELAB vectors, provides an estimate of perceived colour differ-
ence. It may be compared to a JND of 2.3 [16]. Although more
accurate colour difference formulas exist, the Euclidean distance
in CIELAB space was chosen because of its simplicity.

Figure 3. True and corrected Macbeth chart in sRGB colour space. The

right half of each patch shows the true colour, using the D65 illuminant at

104 cd/m2, while each pixel in the left half shows its corrected colour, which

varies imperceptibly due to noise, after calibration and correction.

Table 1 gives the median correction error ∆E, over all 24×
10×10 pixels of the Macbeth chart patches, after the calibration
and correction. Results for the chosen CFA are given, as well as
for an ideal CFA that employs the XYZ spectral functions.

The closer the actual CFA spectral functions are to a linear
combination of the ideal spectral functions, the better the results
would be, even for linear imaging systems. An improvement of
the results when an ideal CFA is used, as indicated in Table 1,
means that non-idealities of the actual CFA play a limiting factor,
irrespective of the nonlinear response of the image sensor.

Figure 4 presents a detailed comparison of true and corrected
coordinates in CIELAB space. As six patches in the last row of
the Macbeth chart have low a*-b* coordinates, they crowd near
the origin of the chromaticity graph. While errors are primarily
along the green-red axis, colour matching is good.

Recalling Fig. 1, two variations of the imaging system are
considered: pre-demosaicing and post-demosaicing. Whereas the
colour calibration process is the same for both, the impact of the
variations may be analyzed, in CIELAB space after colour correc-
tion, using the Macbeth chart. In fact, median correction errors for
both variations are reported in Table 1. These results imply that
pre-demosaicing outperforms post-demosaicing.

Figure 5 shows the error after colour correction of the cal-
ibration image over a high/wide DR. Although illumination in-
tensity is varied, the colour correction parameters are estimated
only once, at 104 cd/m2 as before. In addition to imaging system
variations, results are shown for actual and ideal CFAs.

It is evident, in Fig. 5, that the pre-demosaicing method out-
performs the post-demosaicing method at higher intensities. At
lower intensities, however, the reverse is true. In any case, errors

Table 1. Median CIELAB error of the Macbeth chart image.
Using the D65 illuminant, at 104 cd/m2, the median error after
colour calibration and correction was calculated. It was done
for both system variations, in Fig. 1, and an ideal CFA.

Simulated CFA ∆E (Pre-DM) ∆E (Post-DM)
Canon 5D 0.8545 1.3860
Ideal XYZ 0.2441 0.3336
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Figure 4. Luminance and chromaticity errors of Macbeth chart patches.

Red lines and circles in the luminance (top) and chromaticity (bottom) graphs

indicate JND regions. Errors are computed after calibration and correction at

104 cd/m2. Each corrected coordinate represents a typical pixel.

are above the JND at lower intensities. While this is partly be-
cause of non-idealities of the CFA, it may also be affected by the
relatively high dark limit of Mahmoodi et al.’s log image sensor
[4], a topic that is beyond the scope of this work.

Colour Correction
To validate the proposed method properly, it is important to

test colour correction on images that were not used for colour cal-
ibration. To this end, the Standard Object Color Spectra (SOCS),
published by the International Organization for Standardization
(ISO), was used [17]. This database contains reflectance spectra
of over 50,000 objects divided into various categories.

The ISO suggests categories of data that are especially suited
for evaluating digital cameras. They are called “human faces,”
“Krinov,” which concerns buildings, “flowers,” and “leaves.” We
used all 1,148 spectra, in these 4 categories, and simulated 10×10
pixel patches, as before. We focus on the pre-demosaicing vari-
ation of the imaging system, for simplicity, with the actual CFA.
Finally, we used the 24 spectra of the Macbeth chart patches, for
calibration purposes, and the same D65 illuminant.

Differences, between true and corrected colours, are quanti-
fied once again using the Euclidean distance in CIELAB space.

102 103 104 105 106

Illumination Intensity (cd/m2)

0

2

4

6

8

10

M
ed

ia
n 
C
IE
LA
B 

Er
ro

r (
ΔE

)

JND (Photopic) 
Canon 5D (Post-DM) 
Canon 5D (Pre-DM) 
Ideal XYZ (Post-DM) 
Ideal XYZ (Pre-DM)

Figure 5. Median CIELAB error per intensity of Macbeth chart images.

Using the D65 illuminant, after calibration at 104 cd/m2, the median error after

colour correction was calculated at various intensities. Results are shown for

both system variations, in Fig. 1, as well as for an ideal CFA.

Table 2 reports the median error of all pixels in each category.
Note that each patch has the same number of pixels.

Considering that the JND is 2.3 in CIELAB space, Table 2
demonstrates that the colour correction performs well, on median.
Given the large number of images per category, compared to the
24 patches of the Macbeth chart, we can estimate a PDF across
the images, per category, of the median error per image. Such a
result provides a comprehensive assessment of colour correction,
because a PDF determines all statistics of interest.

Figure 6 shows, for each category, the estimated PDF of the
median error per image. The JND is also indicated. Errors vary
the most for the flowers category, the only category with a sig-
nificant error probability mass beyond the JND, even though the
median error is better than that of the faces category.

Because the actual CFA was used in these results, its non-
idealities are a limiting factor, as implied previously with Table 1.
If transmission efficiencies of the red, green, and blue filters, mul-
tiplied by the quantum efficiency of the photodiode, were made to
closely follow a linear combination of ideal XYZ matching func-
tions, we would expect an improvement in the results.

Figure 7 shows the results of correction at varying intensi-
ties. As demonstrated, the colour correction proves stable enough
for high/wide DR applications involving a large variety of ob-
jects. Future work will investigate how to improve performance
at dimmer intensities. Possibilities include the improvement of

Table 2. Median CIELAB error of simulated SOCS images.
The median error after colour correction was calculated using
the D65 illuminant at 104 cd/m2, after colour calibration using
a Macbeth chart imaged under the same illumination.

Category Images ∆E
Faces 538 1.6440

Buildings 370 1.1273
Flowers 148 1.5242
Leaves 92 1.1379
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Figure 6. The PDF of median CIELAB error of simulated SOCS images.

Each SOCS category has enough images to estimate the PDF reasonably

well. All correction is performed, using the D65 illuminant at 104 cd/m2, after

calibration using a Macbeth chart imaged with the same illumination.
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Figure 7. Median CIELAB error per intensity of simulated SOCS images.

The median error after colour correction, using the D65 illuminant at various

intensities, was calculated for each SOCS category, after colour calibration

using a Macbeth chart imaged with the same illuminant at 104 cd/m2.

the colour filters and dark limit of the image sensor.

Conclusion
This paper proposed a novel method for colour correction

of nonlinear CMOS image sensors, which are ideal for high/wide
DR applications. The method is neither limited by the specific
nonlinear response, i.e., the specific OECF, of the image sensor,
nor by FPN, i.e., a variation of the OECF from pixel to pixel due
to device mismatch. The only requirement of the method is that
the OECF be a monotonic function of light stimulus.

The monotonic property of the OECF allows for cubic Her-
mite splines to be constructed to allow calibration and correction
of red, green, and blue pixel responses. As with linear imaging
systems, a 3×3 matrix is also involved. Colour correction is done
after FPN correction using Li et al.’s method [8], also from our re-
search group. The two methods are complementary and both are
needed to realize a colour nonlinear imaging system.

Validation is done by simulating a colour log image sensor
using data collected in previous works. This image sensor is used
to image a standard Macbeth chart, for colour calibration and its
validation, and 1,148 standard objects, for colour correction and
its validation. Results show that the proposed method performs
well, relative to the JND when errors are measured in CIELAB
space, for a large variety of standard objects.
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