
Hybrid Image-based Defect Detection for Railroad Maintenance
Gaurang Gavai, Hoda Eldardiry: Palo Alto Research Center, Palo Alto, California, USA
Wencheng Wu, Beilei Xu: Goergen Institute for Data Science, Rochester, NY, USA
Yoshihiro Komatsu: East Japan Railway Company, Tokyo, Japan
Shigeki Makino: Brierley+Partners Japan, Tokyo, Japan

Abstract
In this paper, we describe a novel method for image-based

rail defect detections for railroad maintenance. While we devel-
oped the framework to handle a broad range of defect types, in
this paper we illustrate the approach on the specific example of
detecting cracks located on fishplates connecting rails in images.
Our algorithm pipeline consists of three major components: a
preprocessing and localization module, a classification module,
and an on-line retraining module. The pipeline first performs
preprocessing tasks such as intensity normalization or snow pixel
modification to better prepare the images, and then localizes var-
ious candidate regions of interest (ROIs) where the defects of in-
terest may reside. The resulting candidate ROIs are then analyzed
by trained classifier(s) to determine whether the defect is present.
The classifiers are trained off-line using labeled training samples.
While the system is being used in the real-world, more samples
can be gathered. This gives us opportunity to refine and improve
the initial models. Experimental results show the effectiveness of
our algorithm pipeline for detecting fishplate cracks as well as
several other defects of interest.

Introduction
Infrastructure maintenance is a crucial part of ensuring high

quality and safe transportation to customers of railway compa-
nies. Surveys have shown that various rail organizations spend up
to $85000 per kilometer a year on such maintenance [1]. This is
mainly due to railroad operators employing a variety of different
solutions to ensure there are multiple fail-safes in place to capture
defects in their infrastructure in an effective and timely fashion.
Towards this end, the Palo Alto Research Center (PARC) has been
collaborating with the East Japan Railway Company (JR) to de-
velop condition-based maintenance technologies for their assets.

Figure 1 shows examples of some of these defects including
cracks that develop on the fish plates that join two rails and broken
bondwires that conduct electricity between them. Examples of
these defects shown in Figure 1 are demarcated by red boxes. The
aim of this effort was not only to ensure greater redundancy in
detecting defects but also add an automated detection layer that
could perhaps find defects tough to find with the human eye. To
this end, we investigated the use of a blend of traditional computer
vision and deep network based features to evince these hard to
find defects.

This novel hybrid approach to detecting defects is what we
wish to highlight in this paper, particularly in the case of detecting
cracked fishplates. In the dataset section we outline some related
algorithms and approaches to ours in literature; this section also
discusses some characteristics and statistics of the images dataset
we worked with and how it informed some of the choices we

Figure 1. Examples of cracked fishplate and broken bondwire.

made. Thwe defect detection section covers the rail surface seg-
mentation, fishplate localization, snow detection and crack detec-
tion algorithms that are all part of the automated pipeline, and the
conclusion discusses our learnings from this work and our path
forward.

Related Work
Computer vision aided rail defect detection has been stud-

ied and researched in many different forms. Numerous traditional
computer vision based approaches exist to detect particular de-
fects such as cracks on railroad tracks [2] and marks on the rail-
road surface [3]. Several researchers have explored using other
methods to detect defects such as hardware LED assemblies [4],
geometrical analysis [5], and condition based-maintenance using
detailed models of parts [6].

Deep networks have gained popularity as solutions to image
classification and anomaly detection problems in the recent years.
In cases where the number of defect examples is large enough,
some groups have attempted to use convolutional neural networks
for the detection of rail defects [7] [8].

Tangentially, hybrid approaches of traditional computer vi-
sion and deep networks such as ours have been used in different
combinations to solve image processing challenges [9]. However
our approach is novel not only in the make-up of algorithms we
use in it but also in the application area of condition-based main-
tenance and defect detection.

Dataset
The dataset we used was provided by the East Japan Railway

Company (JR). It consisted of 2 different types of images:

• Contiguous grayscale images of the track taken from 3
views - directly above, at an angle to the left and at an angle
to the right [G2,G1,G3]

• Contiguous range images [10] taken from the right and the
left [R1,R2]

IS&T International Symposium on Electronic Imaging 2019
Image Sensors and Imaging Systems 2019 360-1

https://doi.org/10.2352/ISSN.2470-1173.2019.9.IMSE-360
© 2019, Society for Imaging Science and Technology

Figure 2. Example set of [G1,G2,G3] (left) and [R1,R2] (right) of a cracked

fishplate.

Over 10000 image sets were acquired as described above, taken
from 5 different lines operated by JR. These sets contained some
rail images that had fishplates and some that did not. However,
all of these sets did not have any images with cracked fishplates.
A separate sample of 27 sets were provided that had cracked fish-
plates with labeled crack locations taken on 7 distinct days (except
for one day with 26) for a total of 188 cracked fishplate image sets
(188 of G1, G2, G3, R1, and R2) . Figure 2 shows one of these
27 cracked fishplate sets as an illustration. The unbalanced nature
of the dataset in terms of positive and negative samples honestly
reflects the anomalous nature of these defects. This imbalance
motivated a lot of our algorithmic choices and decisions. At the
end of the project we were provided with an independent test set
of 304 cracked fishplates without crack location labels and 398
non-cracked fishplates to validate our models. The test set was
unlabeled since crack detection is evaluated at a plate level gran-
ularity.

Defect Detection Pipeline
In this section, we describe our defect detection pipeline for

railroad maintenance applications. Our method uses a combina-
tion of image processing and machine learning techniques to de-
tect and sometimes quantify the rail defects. We discuss and il-
lustrate this in relation to cracked fishplates; though similar meth-
ods have been tested and verified by us on a number of rail de-
fects including black spots, head anomalies, broken bond-wires
and many more. The algorithm pipeline flows as follows:

Rail Track Surface Segmentation
The first step of the pipeline is the rail surface segmentation

algorithm. Its purpose is to localize the rail surface area within an
image. This step would not only aid fishplate localization, but also
simplify the task of rail surface defect detection and/or anomaly
detection such as head-check, dark spots, wavy rail etc. Although
we will only illustrate one of these examples in this paper, it is
worthwhile to point out that our rail surface segmentation algo-
rithm is used in multiple places in various rail defect detection
tools. This algorithm involves three steps as shown in Fig. 3. The
first step is all we need for horizontally locating fishplate. The
remaining two steps are used to segment out rail surface in finer
resolution for the purposes of detecting other rail surface defects
(e.g., head-check, dark spots, and wavy rail). Hence we will focus
on the first step. Estimate rough location via 1-D peak detection:

Figure 3. Algorithm flowchart for rail surface segmentation

Figure 4. Example image of cracked fishplate.

A rough location of the rail surface is identified by peak detection
on a one-dimensional (1-D) intensity profile of the image. The
intuition is that the rail surface area would appear as a compara-
tively lighter streak running the length of the image.

Fishplate Localization
Once we’ve localized the rail, the next step is to use the rail

as a bearing to localize the fishplate. Cracks are minuscule fea-
tures that occupy a very small area in a captured image as shown
in Figure 4. Exhaustively searching for a small crack on an entire
rail image is not only time consuming but also will increases false
positive detections due to the many confusing structures a detector
would encounter across an image (e.g., ballast, clips, etc.) so we
llocalize the fishplate(s) in an image. Figure 5 shows the multi-
step localization process for fishplate detection. We describe this
localization process in detail below:

Pre-localization through a threshold-based method
As shown in Fig. 5, a new image is first processed by the

threshold-based localization method. It first horizontally local-
izes the fishplate and then vertically. For the horizontal localiza-
tion, since the fishplate is placed next to rail tracks and the rail
imaging system captures images while traveling along the rail; it
is expected that the fishplate would be next to the track. With
this in mind, we can now use the rail surface found by the rail
segmentation algorithm with a heuristic rule to identify its hor-
izontal location. We use the mean of the edge locations of the
rail, derived from the above rail surface segmentation algorithm,
as the reference positions. From there, we select an offset to the
right or left (depending on whether the image is G3 or G1) of 300
pixels and identify the next 500 pixels as the horizontal location
of the fishplate. As you can see in Figure 6, the method works
very well since all rail images have a very similar layout. For
the next vertical localization step, we developed an algorithm that
runs on the thin slices of horizontally located fishplates. The ver-
tical algorithm runs a pair of contiguous sliding 50 pixel windows
across this slice and computes the Euclidean difference between
the features of both patches. Here, HoG or Histogram of Ori-
ented Gradient features [11] are used and in reality, we run the
algorithm every 10 rows to speed up computation. Once the Eu-
clidean distance is calculated, it is checked against a threshold
that was set after experimentation to ensure fewer false positives
(non-fishplate structures detected as fishplates). The intuition of
this algorithm is that when the pair of windows straddles the edge
of a fishplate the difference between the HoG features of the two
patches would be maximal since there would be a large difference
in the local object appearance of a fishplate versus an empty rail.

360-2
IS&T International Symposium on Electronic Imaging 2019

Image Sensors and Imaging Systems 2019

Figure 5. Flowchart for fishplate localization

Figure 6. Horizontal Pre-Localization of Rail image

We used the G1 images containing fishplates from the 159
of approximately 10000 unique images sets described in Section
along with 245 randomly selected non-fishplate G1 images to

test our pre-localization algorithm. This is the dataset we used to
test our fishplate localization algorithm. Although this threshold-
based vertical pre-localization method was able to localize quite
a few fishplates from the rail images (as seen in Figure 7), the
accuracy was not satisfactory as shown in Table 1.

Performance of threshold-based pre-localization method L0 ∼
L3, refer to different threshold values on the strength of the
HoG features as discussed in section 1)

G1 L0 L1 L2 L3
T P 159 97 15 0
T N 6 240 245 245
FP 239 5 0 0
FN 0 62 144 159

In this table the labels shown at the top row (L0, L1, L2 and
L3), refer to different threshold values applied to the strength of
the HoG features as discussed previously. Here, L0 is has the low-
est threshold value and L1, L2, and L3 are increasingly higher. In
particular, it is noted that the false negative rate (the number of
missed plates), at L1 ∼ L3 levels were quite significant. In addi-
tion, comparing the columns 2-5 in Table 1 shows that the perfor-
mance of this pre-localizer is very sensitive to where the thresh-
old value is set, which means that the process can be sensitive to
noise sources during image acquisition such as illumination vari-
ation and presence of different confusing objects (e.g., bond-wire,
handwriting marks, etc.), if the threshold value is set for one set
of images and applies to another. More importantly, the method is
constrained to detect a single plate per image. For cases as shown

Figure 7. Vertical Pre-Localization of Rail image

in Figure 4 when multiple plates present in a single image, some
plates would not be detected.

We can see from the right-most column in Table 1 that,
at the L0 level, though there were a lot of false positive de-
tections, there was no false negatives either, i.e., no missed
fishplates from the pre-localizer. This is a very desirable property
from the pre-localization process because if a plate is not
detected in this step, then it is impossible to recover the plate
later in the process. On the other hand, if an area is falsely
identified as a fishplate, it is possible to eliminate it through
other means such as a fishplate classifier as it is demonstrated
below. The current pre-localization step in the final pipeline is
thus set at the L0 level; and the identified ROIs are then passed
to the refinement step to detect the final locations of the fishplates.

Refinement step using splitting-and-merging along with a
foreground/background classifier

After a captured image is processed through the pre-
localization step using the L0 threshold, a refinement step utilizing
foreground/background classifier (also referred as binary fishplate
classifier or BFC) was introduced. The basic idea is to incorpo-
rate machine learning into the process so that a more discrimi-
native foreground/background comparison can be achieved. This
is what the pre-localizer lacks since without a weighting (e.g.,
through linear SVM) on the delta of the image features, the HoG
features are not sufficient to locate the plate accurately.

One approach for the refinement is to focus on removing the
false-positives in the pre-localizer step while leaving the spatial
locations unaltered. [12] That is, for each detected fishplate ROI
the classifier is used only to verify the presence of a fishplate. The
benefit of such approach is that it only adds a small overhead at
run-time once the binary fishplate classifier is trained. However,
it would not be able to improve the localization of other true pos-
itives. In the field of object detection, such performance can be
assessed via IOU or the Intersection Over Union between the true
region of the fishplate and the localized region of the fishplate
through algorithms.

Instead of using HoG as the image features like that in pre-
localizer, we explored both HoG and BoW (Bag of visual Words)
as the image features for the binary fishplate classifier. The results
of using BFC as a post-selection for the candidate ROIs from pre-
localizer are shown in Table 2. From the results, one can see the
clear accuracy advantage of using BoW over HoG even though

IS&T International Symposium on Electronic Imaging 2019
Image Sensors and Imaging Systems 2019 360-3

HoG calculation is about 60 times faster than BoW calculation.
We think the accuracy advantage comes from the fact that BoW
features are less sensitive to errors due to shifts in the image from
the pre-localizer. Comparing to the G1 column to Table 1 at the L0
level, one can see that although introducing a binary fishplate clas-
sifier significantly reduced the false positive detections from the
pre-localizer at the L0 level, it is also noted that the false negative
rate was increased and was still relatively high (44 plates for G1 as
shown in Table 2). The reason of this increase of false-negatives
may be due to poor localization in the pre-localizer. This leads us
to introduce a more complex refinement step, which aims to re-
duce false-positive rate in the pre-localizer as well as fine-tuning
the localized positions of the fishplate. Toward this end, we use
the sliding window trick that is commonly used in converting ob-
ject detection task into object classification task.

Comparison of fishplate classifier using BoW and HoG fea-
tures (numbers in brackets))

BoW (HoG) G1 G3
T P 115 (78) 149 (137)
T N 245 (234) 245 (234)
FP 0 (11) 0 (11)
FN 44 (81) 10 (22)

Our final refinement algorithm proceeds as follows. First, we
train a patch BFC using positive patches (e.g., random portion of
fishplate with Sw = 300 pixel length) and negative patches (e.g.,
random crop of non-fishplate regions with Sw pixel length). We
use a fixed length patches in the training so that we only need
to apply one sliding window size for computational efficiency.
Note that this patch BFC is similar to the BFC above but trained
with patches. Now, for each candidate ROI from pre-localizer,
say with length × width = H×W ′, we segment it into Nw over-
lapped regions of size Sw ×W ′ each. Here, Nw = H/Sw +1 to
ensure no gaps between the split patches while keeping the num-
ber of patches small to save computation. Each patch is input to
the patch BFC to yield the 0/1 label and its confidence of being
a fishplate patch (e.g., using SVM score). If at least one patch
within the candidate ROI has label 1 or positive, then we have
found a fishplate in this candidate ROI; and the final refined posi-
tions of this found fish plate is found by merging connected pos-
itive patches starting from the patch with highest SVM score(s).
Note that by nature of splitting and merging of connected positive
patches into refined ROI for fishplate, it is possible that a given
candidate ROI identified from pre-localizer may have zero (if no
positive patches), one, or more final refined ROIs for fishplate.
Since we use patch BFC, we can now refine and even split the
candidate ROI. This greatly shifts the burden from pre-localizer
to this refinement step. However, it is still worthwhile to have
pre-localized step in practice. This is because (1) the computation
is several order faster in pre-localizer (so it is not a larger overhead
to add to) than split-and-merge with patch BFC and (2) large frac-
tion of the acquired rail images does not have fishplate in it (the
pre-localizer served to filter many images that do not need to get
into split-merge step and fishplate defect detection step). The per-
formance of this modified approach is shown in Table 3. With
multiple ROI proposals per image, this splitting-and-merging pro-
cess reduced the number of false negatives comparing to Table

Figure 8. Improved IOU with the splitting-and-merging process.

2. As expected, this step not only improves the overall fishplate
detection rate it also improve the intersect-of-union (IOU) over
the pre-localizer with the classifier as demonstrated in Figure 8,
where the left and right figures correspond to the result from G1
and G3 in y direction, respectively.

Performance of fishplate localization with sliding window and
patch BFC

BoW G1 G3
T P 143 156
T N 242 243
FP 3 2
FN 16 3

Snow Detection
A fair number of the images we came across in the rail im-

age data set were taken on rail lines that experienced snowfall.
This snow that is present in the image accumulated along the side
of the track can sometimes interfere with the rail segmentation
algorithm. Poor rail surface segmentation would lead to poor lo-
calization of fishplate and thereby the following process of crack
detection. In order to mitigate the effect of this, we developed an
algorithm to detect images with severe snow-on-track so that we
can filter them out of the fishplate analysis, where the detection is
not robust , or removing the snow via image matting techniques.
We tested our algorithm on a set containing 87 G1 and G3 fish-
plates with snow images and 21 G1 and G3 non-snow fishplate
images.

Figure 9 depicts our snow-on-track detection and image mat-
ting algorithm. The idea is to first assess the severity of accu-
mulated snow or over-exposure of the acquired image via white
pixel count. Based on this rough assessment, we apply simple im-
age processing and machine learning methods to further separate
between “severe” and “non-severe” conditions. For the “severe”
condition, we flag the image and route it to manual inspection.
For “non-severe” case, we perform simple image-matting method
to replace white pixels in non-rail-surface regions with the mean
of the images and then pass it on to the remaining process for
defect localization and detection processing. The performance
differences without vs. with our snow-on-track defect and image
matting are summarized in Table 4. As shown in the table, we
have gained 10% to 20% on the true-positives while have very lit-
tle increase on false-positives. Note that it may appear that the FP
has increase quite a bit (14%) but we only have 21 negative sam-
ples (no plate) in this test. Hence the high FPR increase should

360-4
IS&T International Symposium on Electronic Imaging 2019

Image Sensors and Imaging Systems 2019

not be an issue here.

Performance of fishplate localization without and with snow-
on-track detection and image-matting.

Without With
image-matting image-matting

G1 G3 G1 G3
T P 74 (85%) 57 (66%) 83 (95%) 74 (85%)
T N 20 21 17 21
FP 1 (5%) 0 (0%) 4 (19%) 0 (0%)
FN 13 30 4 13

Figure 9. Snow-on-Track detection and image matting for removing its

impact on rail surface segmentation.

Crack Detection Pipeline
Once a fishplate ROI is localized, the next step is to classifier

whether the fishplate is cracked or not. To accomplish this, the
fishplate ROI is first split into overlapping patches that can then
be tested for the presence of cracks as seen in Figure 10.

Figure 10. Splitting the fishplate image into patches.

A series of experiments were performed to select the set of
parameters to optimize the classifier including the patch size, the
feature type, and the kernel of the classifier. Experiment results
show that a patch size of 128× 128 pixels using deep-features
(from the pre-trained VGG-16 model [13]) along with a linear
SVM classifier gave the best classification performance. These
patches performed better than the 64×64 or 32×32 size patches
- our intuition here is that the larger patches gave more context to
differentiate between cracks and features that looked like cracks
but weren’t. If the number of patches within a fishplate ROI clas-
sified as cracked exceed a pre-defined threshold ηs (eventually
set at 2 after experimentation), the entire plate is declared as a
cracked plate.

Besides tuning these parameters, the classifier performance
using different numbers of training samples was also evaluated as
shown in Table 5. We created a balanced training dataset (Ini-
tial Set) of 138 positive (cracked) patches and 157 negative (non-
cracked) patches from the 27 unique crack location labeled plates

we had in our set. Since the detection is at a patch level, cracked
plates produce a large number of non-cracked training example
patches too along with the cracked patches. We used the other
independent crack location unlabeled testing set of 304 positive
(cracked) plates and 398 negative (non-cracked) plates. Table 5
shows the experiment results, where the positive results and the
negative results were evaluated using the testing data mentioned
previously.

As can be seen in Table 5 the classifier achieved greater than
99% accuracy for the positive class at the plate level, but for
the negative class the accuracy was below 5%. To improve the
classification performance on the negative patches, the number
of negative patches were increased. Since we did not have more
unique positive patches, the number of positive patches remained
the same throughout the experiment. The Additional Plates col-
umn in Table 5 shows the number of additional negative training
plates from which negative training patches were extracted in sub-
sequent datasets used in the experiment. The Name column indi-
cates which line the additional negative plates were pulled from
to extract the negative patches and the number signifies the num-
ber of plates from that line. The reason we talk in terms of plates
and not patches is since the ultimate goal of the crack detection is
at the plate level. As mentioned before we used a threshold of 2
cracked patches detected in a plate to classify it as a cracked plate.

Classification results using different number of negative train-
ing samples.

Name Additional Plates Evaluating Plates
Positive accuracy Negative Accuracy

Initial set none 99% 5%

CHUO
3 plates 87% 40%
6 plates 84% 59%

13 plates 80% 70%

ECHIGO
10 plates 77% 86%
30 plates 75% 92%
50 plates 73% 96%

As one can see from Table 5, the classification performance
is significantly affected by the number of negative samples intro-
duced to the training. With the current limitation of the number of
training samples, it is impossible to reach a desired performance
where both positive and negative classes achieved a comparable
accuracy. Hence, to further improve the accuracy of the plate-
crack detection, as mentioned earlier we toyed with the threshold
ηs. For example, for the model using 6 plates from CHUO line
(row #5 in Table 5), Table 6 shows the performance using differ-
ent threshold of the number of cracked patches, ηs. The first row
used one patch per image and the 2nd was two patches per image
and so on. Over our experiments with multiple lines we found
that the most optimal threshold for ηs was 2 patches per image,
i.e., only if there are at least two patches are detected as cracked,
the plate is classified as a cracked plate. This threshold can be ad-
justed for different lines in the future. This 6 plate CHUO model
with a ηs threshold of 2 achieved on average a 76 % accuracy
in finding cracks which is commendable for a defect that is often
confused even by human engineers.

IS&T International Symposium on Electronic Imaging 2019
Image Sensors and Imaging Systems 2019 360-5

Comparison of number of minimum cracked patch for cracked
plate detection.

ηs Positive accuracy Negative accuracy
1 84% 59%
2 80% 71%
3 77% 77%
4 71% 83%

Discussion and Conclusion
We constructed a pipeline that allows us to look for differ-

ent types of defects on a railway image that functions with a high
accuracy to detect cracked fishplates . This pipeline was trained
on another simpler to find defect (broken bond-wires connecting
railway tracks) and achieved 87% accuracy as well; thus demon-
strating the generalizability of this approach. We are exploring
collaborations with the JR engineers to augment the defect data
using more model-based approaches as well using deep method-
ologies to extract more expressive features that may find defects
in their most nascent stages so that early interventions can occur
in a timely fashion.

References
[1] Tomas Liden. Railway infrastructure maintenance - a survey

of planning problems and conducted research. Transporta-
tion Research Procedia, 10, 2015.

[2] Mohammad Farukh Hashmi and Avinash G. Keskar.
Computer-vision based visual inspection and crack detec-
tion of railroad tracks. Recent Advances in Electrical and
Computer Engineering, 2014.

[3] Limin Chen, Yin Liang, and Kaimin Wang. Inspection of
rail surface defect based on machine vision system. Infor-
mation Science and Engineering (ICISE), 2010.

[4] E. Deutschl, C. Gasser, A. Niel, and J. Werschonig. Defect
detection on rail surfaces by a vision based system. Intelli-
gent Vehicles Symposium, 2004 IEEE, 2004.

[5] Lin Jie ; Luo Siwei ; Li Qingyong ; Zhang Hanqing ; Ren
Shengwei. Real-time rail head surface defect detection: A
geometrical approach. IEEE International Symposium on
Industrial Electronics, 2009.

[6] Hao Feng ; Zhiguo Jiang ; Fengying Xie ; Ping Yang ; Jun
Shi ; Long Chen. Automatic fastener classification and de-
fect detection in vision-based railway inspection systems.
IEEE Transactions on Instrumentation and Measurement,
63, 2013.

[7] Shahrzad Faghih-Roohi ; Siamak Hajizadeh ; Alfredo Nez
; Robert Babuska ; Bart De Schutter. Deep convolutional
neural networks for detection of rail surface defects. Inter-
national Joint Conference on Neural Networks, 2016.

[8] YoungJin Cha, Wooram Choi, and Oral Bykztrk. Deep
learningbased crack damage detection using convolutional
neural networks. Computer Aided Civil and Infrastructure
Engineering, 2017.

[9] Sheng Guo; Weilin Huang; Limin Wang; Yu Qiao. Locally-
supervised deep hybrid model for scene recognition. IEEE
Transactions on Image Processing, 2017.

[10] Wikimedia Foundation. Range imaging.
[11] Robert K. McConnell. Method of and apparatus for pattern

recognition, 07 1982.
[12] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-

jects in images via a sparse, part-based representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26, 2004.

[13] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2014.

360-6
IS&T International Symposium on Electronic Imaging 2019

Image Sensors and Imaging Systems 2019

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

