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Abstract 
        Semantic segmentation has been a complex problem in the field 

of computer vision and is essential for image analysis tasks.  Currently, 

most state-of-the-art algorithms rely on deep convolutional neural 

networks (DCNN) to perform this task.   DCNNs are able to down-

sample the spatial resolution of the input image into low resolution 

feature mappings which are then up-sampled to produce the 

segmented images.  However, the reduction of this spatial information 

causes the high frequency details of the image to be lessened resulting 

in blurry and inaccurate object boundaries.  In order to improve this 

limitation, we propose combining a DCNN used for semantic 

segmentation with semantic boundary information.  This is done using 

a multi-task approach by incorporating a boundary detection network 

into the encoder decoder architecture SegNet. This multi-task 

approach includes the addition of an edge class to the SegNet 

architecture.  In doing so, the multi-task learning network is provided 

more information, thus improving segmentation accuracy, specifically 

boundary delineation.  This approach was tested on the RGB-NIR 

Scene dataset.  Compared to using SegNet alone, we observe increased 

boundary segmentation accuracies using this approach.  We are able 

to show that the addition of a boundary detection information 

significantly improves the semantic segmentation results of a DCNN. 

 

Introduction  

       Semantic segmentation is one of the pivotal problems in the field 

of computer vision and machine learning.  The task of semantic 

segmentation involves understanding an image at the pixel level by 

assigning each pixel in the image to an object class, which is essential 

for complete scene understanding.  Many deep learning related tasks 

rely on this ability including robotic vision, autonomous driving, and 

medical imaging.  Currently, most state of the art architectures used 

for semantic segmentation are deep convolutional neural networks. 

       Semantic segmentation deep learning architectures provide 

incredible results in segmentation and classification of various scenes, 

because of their ability to learn complete mappings from the raw input 

image to class labels.  With their ability to capture the entire context 

of an image, these convolutional-based networks create deep 

representations for classification and have extended connected weight 

sets to improve the boundary characteristics of segmentations.  

However, this performance does comes at a cost.  Because of the 

network’s ability to cover a large context of the input image, the 

network must perform strong down-sampling to capture the entire 

image.  This strong down-sampling results in the loss of high-

frequency detail, particularly accurate localization of the object 

boundaries. To overcome this limitation, we propose a multi- 

task architecture for the deep learning encoder-decoder architecture 

SegNet to further improve the boundary characteristics of the neural 

network.  

       This paper aims to define a deep convolutional neural network 

with built-in edge/boundary detection to be used for semantic 

segmentation.  Basic edge detection architectures are able to develop 

nice boundaries, but are unable to fully characterize the necessary 

boundary information from the imagery. To overcome this, we 

supplement the deep neural network architecture SegNet with specific 

boundary information to remove the boundary information that is not 

indicative of the boundaries of the classified regions.  This is done with 

the addition of edge based learning to the architecture through the use 

of an edge class.  By having the network learn to classify the relevant 

boundaries as a class, the network is biased towards identifying the 

correct and necessary boundaries of the different regions in the image.   

       To test and evaluate the multi-task SegNet architecture, we utilize 

the RGB-NIR Scene dataset for semantic segmentation.  As compared 

to the original architecture, we observe an increase in boundary 

segmentation accuracy and boundary recreation using this approach.  

The incorporation of multi-task learning helps improve the semantic 

segmentation results of the deep learning architecture.   

       In this paper, we propose a multi-task SegNet architecture to 

further improve the boundary characteristics of the neural network.  In 

this regard, the contributions of this paper can be summarized as 

follows: 

 We introduce a multi-task approach for improved boundary 

delineation in a semantic segmentation architecture. 

 We explore a multi-task combination of adding an edge class 

to the SegNet architecture. 

 We show that a multi-task approach significantly improves 

the mean BF score in infrared imagery.  In regard to the 

infrared imagery, this improvement comes with minimal 
difference in overall pixel accuracy.  

       The rest of the paper is structured as follows: After introducing 

semantic segmentation, explaining how it is applied in deep learning, 

and discussing multi-task learning in Chapter II, we give an overview 

of the SegNet architecture in Chapter III.  In Chapter IV, we present 

our multi-task SegNet architecture for improved segmentations.  We 

show the qualitative and quantitative training and testing performance 

of the network on the RGB-NIR Scene dataset and compare these 

performances against the original SegNet architecture in Chapter V.  

We then conclude and display potential future work in Chapter VI. 

 

Background and related work 

Semantic Segmentation  

       Semantic segmentation has become one of the key areas of interest 

and research in the field of computer vision and machine learning.  

Semantic segmentation involves understanding a given image at the 

pixel level.  In doing so, every pixel of an image is able to be assigned 

to a given object class in that particular image.   

       In order to fully understand this concept, it is first important to 

comprehend what exactly segmentation is.  Segmentation involves 

looking at a digital image and partitioning it into different segments.  
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Typically, an image is inputted into a system, the system processes the 

image, then outputs a different representation of this image. Normally, 

this image is changed into something that is more meaningful and 

easier to analyze.  In most cases, segmentation is used to identify 

different objects or boundaries in a given image.  This technique 

differs from object recognition or image classification in the sense that 

it is not necessary for the system to know what objects to look for in 

the images beforehand.  For example, an object classification 

algorithm will only be able to classify objects that it has a specific label 

for, like a person, dog, tree, or building.  An ideal semantic 

segmentation algorithm, however, will be able to segment unknown 

objects in the image which are new or unknown to the system 

beforehand.  For instance, when given a new image, an image 

segmentation algorithm should be able to output which pixels in the 

image semantically belong together.  Unlike classification algorithms, 

we need these models to be able to make dense pixel-wise predictions.   

       For a human, performing this task would seem trivial.  However, 

for a computer this task is much more difficult making semantic 

segmentation a current area of interest for researchers and engineers. 

Semantic segmentation is a difficult task as a result of the computer 

needing to have a deep understanding of the image.  Compared to other 

computer vision tasks like object recognition or image classification, 

semantic segmentation involves an understanding of an image at the 

pixel-level.  Because of this, the details and features of the image need 

to be understood by the system in much greater detail than other deep 

learning tasks.    

 

Deep Learning Applications 

       Because of its ability to assist in complete scene understanding, 

semantic segmentation has become an important area in the field of 

computer vision and machine learning.  Since most of the applications 

in these fields thrive on being able to infer knowledge from imagery, 

semantic segmentation is a very useful technology and tool.  Three of 

the most promising and researched applications are robotic vision, 

autonomous driving, and medical imaging.    

       In the field of robotics, being able to segment the surrounding 

environment for a robot is a very important task.  This would provide 

the robot with information about how the environment around it is 

structured as well as give information about objects that the robot may 

come in contact with.  Meyer and Drummond [1] have introduced a 

technique using semantic segmentation that results in significantly less 

false positive object detections for robotic vision applications.  Wolf 

et al. [2] introduced a three-dimensional (3-D) entangled forests 

technique to improve the semantic segmentation of 3-D point clouds.  

This technique is able to learn and exploit common contextual 

relations between observed structures and objects which is essential 

for robotic vision tasks.  As segmentation algorithms continue to 

improve, robotic vision applications will only become more and more 

advanced. 

Similar to robotic vision, autonomous driving is another 

application that benefits from image segmentation.  Image 

segmentation aids in being able to understand the vehicle’s 

surroundings, like its spatial relationship with the other cars on the 

road or other objects in the scene.  By equipping cars with this 

necessary perception, self-driving cars will be able to be safely 

integrated onto the road.   

       This technique is even being used to model the different traffic 

patterns a car may experience.  In Zhang and Geiger [3], a generative 

model of 3D urban scenes is produced using image segmentation.  This 

model produced an improved overall scene estimation by assisting in 

associating objects with the correct lanes.  While most of the current 

segmentation algorithms are designed for generic images, they are 

beginning to incorporate prior structure in the data to aid in the 

autonomous driving problem.    

       The field of medical imaging is another area that benefits greatly 

from advancements in semantic segmentation.  Health care providers 

rely on medical images in order to correctly assess patients for 

diagnosis and treatment.  More often than not, the studying of these 

medical images is performed by a radiologist.  As a result, the studying 

of these images is a direct result of the visual interpretation by the 

radiologist.  This process is normally time consuming and subjective, 

as the visual interpretation is often a result of the experience of the 

radiologist.  To overcome these limitations, computer systems that 

implement segmentation are beginning to be introduced in the medical 

field.  For example, Narayanan, Hardie, and Kebede [4] are able to 

show that a computer-aided detection system is more successful in 

detecting lung nodules than the typical CT scans and chest radiographs 

radiologists use to detect lung nodules.  Gooya et al. [5] designed a 

software package, GLISTR, aimed at simultaneously segmenting brain 

scans of glioma patients.  They were then able to use these scans to 

construct a statistical atlas of the glioma, a type of tumor.  

Improvements made in medical image segmentation will lead to more 

accurate diagnoses as well as better care and treatment for patients.   

       There are numerous other applications that image segmentation 

can be applied to as well.  Chatfield and Arandjelovic [6] explore its 

use in on-the-fly visual search in addition to content-based image 

retrieval.  For example, an image could be segmented and added to a 

database.  This would allow a user to query and look for particular 

entities in the database, like all images containing an airplane.  Yu and 

Qin [7] discuss how this technique could be applied to SAR image 

processing for better visual representations.  With all of the 

applications mentioned, having access to segmentations would allow 

these problems to be approached at a semantic level. 

 

Multi-Task Learning 

       Multi-task learning is a subfield of machine learning that has 

become popular as of late.  Multi-task learning is described as learning 

multiple tasks at the same time while utilizing the commonalities and 

differences between the tasks.  In doing so, this can result in improved 

learning efficiency and prediction accuracy for the multi-task model, 

compared to training the models independently.  As far as its 

application in machine learning, multi-task learning has aided in 

speech recognition [8], drug discovery [9], food category/calorie 

estimation [10], natural language processing [11], medical diagnoses 

[12], and computer vision [13] related tasks.   

       Related to the task of semantic segmentation, multi-task learning 

has become an area of interest due to its ability to improve prediction 

accuracies.  Currently, most research regarding using multi-task 

learning for semantic segmentation pertains to the incorporation of 

boundary information into a neural network architecture.  Most state 

of the art semantic segmentation architectures perform exceptionally 

well in their ability to classify pixels with their correct class, but often 

lack in their ability to delineate boundaries between the different 

classes.  As a result, by making the class boundary information 

available to the network, the network should be able to produce more 

accurate and distinct segmentations. 

       Recently, researchers have had success in improving 

segmentation results by incorporating boundary information.  

Marmanis et al. [14] work to preserve boundary information on 

segmentation classes by incorporating an edge detection network into 

a neural network.  Using SegNet [15] as a feature extractor and the 

holistically-nested edge detection (HED) network [16,17] to detect 

edge information, the boundary information is fed into the network by 

concatenating the feature maps of SegNet with the edge prediction.  

Using this approach, Marmanis et al. [14] saw an improvement of 
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labeling accuracy of up to 6% for the ISPRS semantic labeling 

benchmark. 

       Bischke et al. [18] employed a similar approach for the semantic 

segmentation of high resolution satellite imagery.  Their cascaded 

multi-task network is a single network containing a single loss function 

comprised of two pixel-wise classification losses, one for semantic 

information and the other for geometric properties.  This approach was 

able to successfully increase the accuracy for the segmentation of 

building footprints in remote sensing imagery.  Mou and Zhu [19] were 

able to use a modified version of the residual neural network ResNet 

to construct a fully convolutional network used for vehicle instance 

segmentation from aerial imagery and video.  Differing from semantic 

segmentation, instance segmentation involves identifying, at a pixel-

level, where the vehicle appears as well as associating each pixel with 

a physical instance of a vehicle.  As can be seen, incorporating 

boundary information through multi-task learning has had a positive 

impact on improving semantic segmentation results. 

 

Overview of SegNet 

       SegNet, introduced in [15], is a variation of a convolutional neural 

network (CNN).  SegNet is an end to end convolutional encoder 

decoder neural network architecture used for semantic segmentation.  

SegNet, as illutstrated in Figure 1, includes an encoder network with a 

corresponding decoder network followed by a final pixelwise 

classification layer.   

 

Figure 1: An illustration of the SegNet architecture [15].  

 

The encoder network is made up of 13 convolutional layers which are 

identical to the first 13 convolutional layers found in the VGG16 

network.  By using this type of encoder network, SegNet is able to omit 

fully connected layers.  In turn, higher resolution feature maps are able 

to be retained deeper into the encoder network.  This also allows the 

encoder network to significantly reduce the number of parameters used 

compared to other architectures found in [20] and [21].  The decoder 

network is also made up of 13 layers as each encoder layer has a 

corresponding decoder layer.  The output of the final decoder layer is 

then fed into a multi-class soft-max classifier that produces the class 

probabilities for each pixel in an image. 

       Looking deeper at the encoder network, each encoder layer 

performs a convolution with a filter bank to produce a set of feature 

maps.  These feature maps are then batch normalized [22] and applied 

to a rectified non-linearity (ReLU) [23] of max(0,x), as seen below in 

Equation 1 
 

                   𝑓(𝑥) =  𝑥+ = max (0, 𝑥).                              (1) 

 

In Equation 1 above, the ReLU is applied element-wise where it 

produces an output of x if x is positive, otherwise it outputs a 0.  

Following this two-step process, max-pooling is performed using a 

2x2 window with a stride of 2.  This is used as a way to achieve 

translation invariance over small spatial shifts in the input image.  This 

reduces the spatial size representation of the image which in turn 

reduces the amount of parameters and computations in the network 

resulting in more efficient computations.  By sub-sampling the input 

image, a larger context of the image is able to be covered for each pixel 

in the feature map.   

       Although several layers of max-pooling and sub-sampling can 

achieve more translation invariance, this approach results in 

significant loss of spatial resolution, particularly boundary detail, of 

the feature maps.  As a result, the boundary information in the image 

needs to be captured and stored in the encoder network’s feature maps 

before any sub-sampling is performed.  To overcome this limitation, 

SegNet reuses the max-pooling indices, the locations of the maximum 

feature value in each pooling window, from each encoder feature map.  

This makes SegNet much more memory efficient since only the max-

pooling indices are copied as opposed to all of the encoder features.    

       SegNet is further able to make use of max-pooling indices in the 

decoder portion of the network.  Each decoder of the decoder network 

of the architecture is able to use the max-pooling indices from its 

corresponding encoder feature map to up-sample the input feature 

maps.  This results is sparse feature maps being produced.  Figure 2 

shows an illustration of the decoding process used. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: An illustration of the SegNet decoder functionality. 

       In understanding the decoding process above, a, b, c, d correspond 

to values in a feature map.  As can be seen, SegNet is able to reuse the 

max pooling indices to up-sample the feature map without learning the 

entire feature map itself.  This differs from other architectures, 

particularly U-Net, where the entire feature map is transferred to the 

corresponding decoder, resulting in more memory being used.  These 

up-sampled feature maps are then convolved with a trainable decoder 

filter bank to produce dense feature maps.  The dense feature maps are 

in turn batch normalized.  This process is repeated until the final 

decoder of the network is reached.  The output of the final decoder is 

then fed to a trainable soft-max classifier which is able to classify each 

pixel independently.  The soft-max classifier outputs a K channel 

image of probabilities where K corresponds to the number of classes 

present in the image.  Each pixel is then assigned the class with the 

maximum probability resulting in the predicted segmentation.  Thus, a 

segmented image representing the predicted class labels is produced.  

       Although SegNet reuses the max-pooling indices, spatial 

information of the feature maps is still lost.  Most semantic 

segmentation architectures suffer from this problem, thus the boundary 

details of the segmented outputs are often blurry and non-delineated.  

Because of the memory efficient nature of SegNet’s architecture, a 

multi-task approach is explored in Chapter IV to incorporate boundary 

detection awareness into this network design. 

 

Multi-Task SegNet Architecture for Semantic 
Segmentation 

       The multi-task approach to incorporate additional boundary 

information from the imagery into the SegNet architecture was to 

introduce an edge class label to the network.  This is done by detecting 

the edges in the mask containing the class labels for a given image in 
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a dataset.  In order to do this, the Prewitt operator is used.  Developed 

by Judith M.S. Prewitt [24], the Prewitt operator calculates the gradient 

of the image intensity at each point in an image.  The Prewitt operator 

gives the direction and magnitude of the largest possible pixel increase 

from light to dark in an image.  As a result, it is able to detect how 

“abruptly” or “smoothly” the image changes at that point determining 

whether or not that part of the image represents an edge. 

       From a mathematical perspective, the Prewitt operator uses two 

3x3 kernels that are convolved with the original image to calculate 

approximations of the horizontal and vertical changes in the form of 

two derivatives.  Equation 2 shows this process below 

 

     𝑮𝑿 = [
−1 0 +1
−1 0 +1
−1 0 +1

] ∗ 𝑨  𝑎𝑛𝑑  𝑮𝑿 = [
+1 +1 +1
0 0 0

−1 −1 −1
] ∗ 𝑨                      (2) 

 

where A is the source image, Gx and Gy are two images that contain 

the horizontal and vertical derivative approximations for each point in 

the image, and * denotes the 2-dimensional convolution operation.  

The gradient approximation at each point in the image can then be 

calculated using  

                                    𝑮 =  √𝑮𝒙
𝟐 +  𝑮𝒚

𝟐                                (3) 

resulting in the gradient magnitude.  Applying the Prewitt operator on 

the label mask for a given image results in a matrix.  This matrix is the 

same size as the label mask and contains the gradient magnitude for 

each pixel.  By taking the magnitude values that are greater than zero, 

the pixel locations for the edges or boundaries between the different 

regions in the image can be identified.  These pixel locations are then 

updated in the original label mask and are given the label associated 

with the edge class.  By including this edge class, the network is now 

biased towards learning the edge/boundary information for all images 

in a dataset.      

 

Results and discussion 

       To evaluate the performance of our multi-task SegNet architecture 

compared to the regular SegNet architecture, the RGB-NIR Scene 

dataset was used.  For each architecture, the global accuracy, mean 

accuracy, mean IoU, weighted IoU, and mean BF score metrics were 

calculated for the training and testing sets for the dataset.  Both of these 

neural network architectures were implemented in MATLAB and ran 

on two GeForce GTX 1080 Ti’s GPUs.  In order to perform a 

controlled training procedure, each architecture was trained with an 

initial learning rate of 10-3 using 10 epochs and a batch size of 20.  The 

learning rate was then lowered to 10-6 and each architecture was again 

trained using the same number of epochs and batch size.   

 

RGB-NIR Scene Dataset 

 

       To evaluate the multi-task approach on infrared imagery, the 

dataset used for evaluation was the RGB-NIR Scene Dataset [25].  

This dataset consists of 477 images captured in RGB and near-infrared 

(NIR).  The images were captured using separate exposures from 

modified SLR cameras, using visible and NIR filters.  This dataset did 

not include any pixel-level labeling, so pixel labeling was done at our 

discretion.  The dataset is broken into two categories: indoor and 

outdoor scenes.  To evaluate these architectures on infrared imagery, 

the NIR images from the outdoor scenes were used.  The outdoor 

scenes are comprised of 370 images, so training and testing sets were 

created using 185 images for each.  These images were scaled into 

smaller sub-images, roughly 120,000 in each set, in order to cover the 

entire context of each image.  Using these sub-images, the initial 

SegNet architecture, as well as the multi-task SegNet architecture, 

were trained and tested.  Figures 3 and 4 show a qualitative comparison 

of the predictions made by the different architectures for the training 

and testing sets.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Qualitative results for the training set of the RGB-NIR Scene 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Qualitative results for the testing set of the RGB-NIR Scene 

dataset. 

 

       In comparing the qualitative results between the two architectures, 

there are a few key observations.  Comparing the initial SegNet 

architecture to the SegNet edge class architecture, the edge class 

architecture seems to delineate the correct boundary information much 

better than the initial architecture.  The edge class architecture 

produces much more distinct boundaries, resulting in much clearer 

segmentations.  Even if the classifications are wrong, the more distinct 

boundaries make it much easier to visualize what the object in the 

image should be.  For example, in the second testing sample, seen 

below in Figure 5, although the fence is misclassified in both the initial 

and edge class architectures, it is much easier to see that the object is 

a fence in the edge class produced image. 
 

 
 

Figure 5: Second testing sample found in Figure V.2 for the RGB-NIR 

Scene dataset. 
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       The qualitative results show the ability of the proposed edge class 

SegNet architecture to segment smaller classes in infrared imagery 

while also producing a smooth segmentation of the overall scene.      

       To further compare their performances, a quantitative comparison 

is made using the global accuracy, mean accuracy, mean IoU, 

weighted IoU, and mean BF score metrics.  Tables 1 and 2 show a 

quantitative comparison of the different architectures for the training 

and testing sets of the modified RGB-NIR Scene Dataset.  

 

Table 1: The metric values calculated for each architecture using the 

training set for the RGB-NIR Scene dataset. 

 

Architecture Global 

Accuracy 

Mean 

Accuracy 

Mean IoU Weighted 

IoU 

Mean 

BFScore 

SegNet 0.95257 0.93882 0.89621 0.91033 0.62212 

SegNet with 

Edge Class 

0.94547 0.92579 0.87974 0.90595 0.73364 

 

 

Table 2: The metric values calculated for each architecture using the 

testing set for the RGB-NIR Scene dataset. 

 

Architecture Global 

Accuracy 

Mean 

Accuracy 

Mean 

IoU 

Weighted 

IoU 

MeanBF

Score 

SegNet 0.65675 0.60366 0.45782 0.49315 0.22018 

SegNet with 

Edge Class 

0.63464 0.58162 0.43863 0.47896 0.36506 

 

      

       In comparing the quantitative results between the two 

architectures, it can be seen that the qualitative observations are 

validated.  The initial SegNet architecture outperformed the multi-task 

approach in terms of global accuracy, however only slightly.  The 

mean BF score of the edge class architecture is significantly higher 

than the original SegNet architecture with an 11% increase on the 

training set and a 14% increase on the testing set.  The global accuracy 

difference between the initial and edge class SegNet architectures is 

minimal.  The loss in global accuracy for the edge class architecture 

can be attributed to the removing of class labels when adding the edge 

class.  However, since there are a less number of classes found in this 

dataset, the removal of these labels doesn’t seem to have as great an 

effect on the overall global accuracy.   

       In terms of comparing the training and testing results for both 

architectures, the overall decrease in performance metrics for the 

testing data can be attributed to the variation found in the dataset.  The 

RGB-NIR Scene dataset has a lot of variation as there isn’t much 

commonality between images.  As a result, the testing set introduces a 

lot of variability to the networks in terms of imagery the network has 

never seen before.    

       For the improvement seen in the mean BF score, roughly 11% and 

14% increases on the training and testing sets, the edge class 

architecture is superior to the initial SegNet architecture.  The minimal 

difference in global accuracy, less than 1% on the training set and 3% 

for the testing set, is a justifiable trade-off for such a significant 

improvement in boundary delineation accuracy. As a result, the multi-

task edge class approach results in improved boundary segmentations 

compared to the initial SegNet architecture.   

 

Conclusion and Future Work 

       In this paper, it was seen that the incorporation of learned 

boundary information significantly improves the boundary 

characteristics of a neural network.  The multi-task approach of 

incorporating an edge class into the SegNet architecture outperformed 

the initial SegNet architecture in terms of mean BF score on the RGB-

NIR Scene dataset.  Using this approach, improved boundary 

segmentation accuracies and boundary recreations were observed.  By 

having the network learn to classify the relevant boundaries as a class, 

the network was biased towards identifying the correct and necessary 

boundaries of the different regions in the image.     

       For future work, other methods are being researched to 

incorporate additional boundary information into neural networks.  

Other multi-task learning approaches can be developed to assist in this 

task.  The successful approach of having the network learn the 

boundaries as a class could be extended to having the network serve as 

an edge detector.  If a given network is simply trained as an edge 

detector, the network will then be able to identify the correct boundary 

information in an image.  This output could then be combined with the 

segmented output to produce clearer segmentations.  Overall, 

improvements to the boundary characteristics of a neural network is 

still desired. 
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