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Abstract 

We present a practical 3D-assited face alignment framework 
based on cascaded regression in this paper. The 3D information 
embedded in 2D face image is utilized to calculate two novel 
components to improve the performance of 2D methods in 
unconstrained face alignment. The two novel components for 2D 
image features are the projected local patch and the visibility of 
each landmark. First, we propose to extract the landmark related 
features in the projected local patches on 2D image from the 
corresponding 3D face model. Local patches of a fixed landmark 
in 3D face models for different 2D images cover the same region of 
face anatomically. The extracted features are more accurate for 
further locations regression of landmarks. Second, we propose to 
estimate the visibilities of 2D landmarks based on 3D face model, 
which are proven to be vital to address large pose face alignment 
problem. In this paper, we adopt Local Binary Features (LBF) to 
extract landmark related features in the proposed framework, and 
name the new method as 3D-Assisted LBF (3DALBF). An extensive 
evaluation on two face databases shows that 3DALBF can achieve 
better alignment results than the original 2D method and maintain 
the speed advantage of 2D method over 3D method. 

Introduction 
Face alignment aims to locate a set of predefined facial 

landmarks, such as eye corners, nose tip, mouth corners and chin 
center. It is an essential step for many subsequent face analysis 
tasks, e.g., face recognition [1], facial attributes classification [2] 
and 3D face reconstruction [3]. Although a large number of 
methods have been proposed to address this problem with various 
degrees of success, face alignment in unconstrained environment 
remains open, due to the high degree of facial appearance 
variations caused either by the intrinsic non-rigid of facial 
components, or by the change of ambient environment. 

From the perspective of landmarks dimension, most existing 
methods can be divided into two categories: 2D face alignment and 
3D face alignment. 2D face alignment, which treats face as a 2D 
object, aims to find the 2D locations of facial landmarks from 2D 
images, such as Constrained Local Model (CLM) [4, 5], 
Supervised Descent Method (SDM) [6] and Coarse-to-Fine Shape 
Searching (CFSS) [7]. In contrast, 3D face alignment, which treats 
face as a 3D object, aims to find the 3D locations of facial 
landmarks from 2D images [8], such as Pose-Invariant 3D Face 
Alignment (PIFA) [9], 3D Dense Face Alignment (3DDFA) [10] 
and 3D Face Alignment Network (3D-FAN) [11]. Generally 
speaking, 2D methods can achieve better results than 3D methods 
for faces in small to medium poses with higher speed; however, 3D 
methods can achieve better result than 2D methods for faces in 
large poses.  

The reason that large pose face alignment is challenging for 
2D methods is that large pose can cause self-occlusion and large 
shape variation in face image. Therefore, some landmarks become 
invisible and lose their semantic meanings. Most 2D methods 

assume that each landmark can be located accurately because it has 
distinctive visual feature. However, landmark related visual 
features may be incorrect in a large pose face image, which can 
cause failure of 2D face alignment methods. In contrast, 3D 
methods can estimate head pose and the visibility of each landmark 
with 3D facial information, which makes these methods robust to 
large pose variation in face image. However, most existing 3D 
methods convert the face alignment problem from predicting 
landmarks position to estimating parameters of 3D model, which 
are shown to be indirect and sub-optimal since smaller parameter 
errors are not necessarily equivalent to smaller alignment errors 
[12, 13]. Furthermore, 3D landmark related features are usually 
more complicated to extract and most 3D methods adopts deep 
neural network to locate the landmarks, which cause higher time 
cost of 3D methods.  

Both 2D methods and 3D methods in face alignment have 
their limitations, either in accuracy or in speed, which make them 
not suitable for subsequent face analysis tasks in practice. Most 2D 
methods are incapable of estimating the visibility of 2D landmarks, 
assuming that all landmarks are visible. However, self-occlusion in 
large pose face images makes this assumption not true. Since the 
local features of invisible landmark are inaccurate, we attempt to 
extract features separately for different landmarks according to 
their visibilities in this paper. Furthermore, the landmark related 
features are usually extracted in the local patch of each landmark 
in traditional 2D methods, e.g. ESR [12], LBF [14], CFSS [7], etc. 
However, these local patches are usually untidy with complex 
background, causing inaccurate of the corresponding landmark 
related features. Therefore, we propose to extract these features in 
the projected local patches of visible landmarks from 3D model. 
For invisible landmarks, the features can be extracted in the local 
patches of their symmetric landmarks due to the symmetry of face 
shape, or set to zero to eliminate the influence of inaccurate 
features. 

 In this paper, a practical framework based on cascaded 
regression is proposed to deal with the problem of face alignment 
in unconstrained environment. A 3D face model is first constructed 
from a 2D face image, and then the visibility of each landmark and 
the 3D to 2D projection function are calculated. Landmark related 
features are extracted in the projected local patch in 2D image 
from 3D model. With the extracted features, regressors can be 
learnt to adjust the locations of landmarks towards their desired 
position. Various types of feature descriptors can be adopted to 
extract the landmark related feature, such as SIFT [7], HOG [7] 
and LBF [14]. LBF is employed in this paper, and the new method 
is named as 3D-Assisted LBF (3DALBF).  

The main contributions of this paper can be summarized as 
follows: 

1. More accurate features: We propose to extract the landmark 
related features in the projected local patches of 2D image from 3D 
face model. The extracted shape-indexed features are more 
accurate for further landmark location regression. Furthermore, 
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local patches of a fixed landmark in 3D face models for different 
2D images cover the same region of face anatomically. Therefore, 
the projected local patch of one 2D image corresponds to the patch 
from another image anatomically. These correspondences between 
different images contribute to improving the accuracy of landmark 
related features. 

2. Robust to large pose variation: We propose to estimate the 
visibilities of 2D landmarks based on 3D face model. Landmarks 
related features are then extracted separately according to their 
visibilities in 2D image plane. 

Experimental results on 300W and ALFW2000-3D databases 
show that the proposed method can achieve better alignment 
results than original 2D method and maintain the speed advantage 
of 2D method over 3D method. 

Related works 
A large number of methods have been proposed for face 

alignment in the last decades. We briefly review related works in 
this section, including methods for 2D and 3D face alignment. 

2D face alignment 
Typical methods for 2D face alignment include Active 

Appearance Model (AAM) [15, 16], Constrained Local Model 
(CLM) [4, 5], Cascaded Regression (CR) [7, 12, 14] and Deep 
Neural Network (DNN) [17, 18, 19]. There are a number of 
successful methods following the cascaded regression framework, 
which is also adopted in our work. The basic idea of cascaded 
regression is to learn a series of regressors from shape-indexed 
features to reduce the alignment error progressively.  

Cao et al. [12] design a two-level boosted fern regressor to 
progressively infer the face shape with selected pixel-difference 
features. Supervised descent method (SDM) [6] is proposed to 
predict shape increment by applying linear regression on SIFT 
features. Ren et al. [14] propose a very fast face alignment method, 
which learns a set of local binary features (LBF) and a linear 
regressor in a cascaded manner. Zhu et al. [7] present a novel 
coarse-to-fine shape searching method to locate facial landmarks 
stage-by-stage by using hybrid features of SIFT and BRIEF. We 
can see that advanced feature learning contributes to achieving 
higher alignment accuracy and speed [14, 20]. However, most 2D 
methods lack the ability to estimate the visibilities of landmarks, 
which are proven to have an important influence on the accuracy 
of exacted shape-indexed features in large pose face alignment.  

3D face alignment 
3D face alignment methods are introduced to address the 

large pose face alignment problem. 3D face model possesses 
natural advantages of handling a full range of head pose while still 
maintaining the landmark correspondences between different faces. 
Besides, it also provides more information for estimating the head 
pose and visibility of 3D facial points.  

Jourabloo and Liu [9] propose to learn two regressors to 
predict the camera projection matrix and 3D shape parameters 
alternatively, following the cascaded regression framework. 
Besides, they also propose to estimate the visibility of 3D facial 
landmarks via 3D surface normal. They further present a method to 
fit a 3D dense shape to a face image with large poses by combining 
cascaded convolutional neutral network (CNN) regressors and the 
3D Morphable Model (3DMM) [21]. Zhu et al. [10] also propose 
to perform 3D face alignment by fitting a 3DMM to a 2D face 
image via cascaded CNN with different image features and cost 
function. These methods transform the face alignment problem 

from predicting landmarks position to estimating parameters of 3D 
model, which are proven to be indirect and sub-optimal. Besides, 
complex designed feature and cascaded CNN regressors lead to 
higher time cost. 

The proposed method 
This section describes the proposed 3D-Assisted Local Binary 

Feature (3DALBF) method in detail. 3DALBF follows the 
cascaded regression scheme. In order to utilize the 3D information 
of face image, we need to construct a 3D face model from 2D 
image with landmarks and their visibilities in current stage as 
reference. Together with the construction of 3D model, the head 
pose of 3D face and the projection function from 3D model to 2D 
face are calculated. The visibility of each landmark is then 
estimated in 3D face space. The local patch of each landmark on 
3D face model is projected onto the 2D image plane with 
corresponding projection function. Landmark related features are 
extracted in the projected local patch in 2D image for visible 
landmarks. For invisible landmarks, the features can be extracted 
in the projected local patches of their symmetric landmarks due to 
the symmetry of face shape, or set to zero to eliminate the impact 
of inaccurate features on learning regressors. With the features 
extracted for each landmark, regressors are learnt to adjust the 
locations of landmarks towards their desired position.  

3D Face Model 
We represent the 3D face model as S, which contains the 3D 

locations of M vertices, 
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 3D Morphable Model (3DMM) [22] is adopted to describe S 
by a set of 3D shape bases, 
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where 0S  is the mean face model, n
idS  and exp

nS  are the nth PCA 

basis for identity and expression. n
idc and exp

nc  are the reconstruction 

coefficients for n
idS  and exp

nS  respectively. The collection of both 
coefficients is denoted as the shape parameter of a 3D face model, 
i.e. ( )exp,id=c c c . The 3D mean model 0S  and the identity bases 

idS  are from Basel Face Model [23], which contains 199 bases for 
describing identification variances. The expression bases expS  are 
from FaceWarehouse [24], including 29 bases for describing 
expression variances. 

In 2D face alignment, 2D face shape U can be represented by 
the locations of L 2D landmarks, i.e. 
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A subset of L vertices of the 3D face model S, denoted as 
( ):,S d , corresponds to the location of 2D landmarks U on the 

image. The relationship between the 3D face model S and 2D 
shape U can be described as 

( )( ):,f=U S d          (4) 

where ( )f ⋅ is the projection function from 3D model to 2D shape. 
d is a L-dim vector indicating the indexes of 3D vertexes with 
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semantically meaning that correspond to 2D landmarks. Using the 
weak perspective projection, ( )f ⋅  can be further expanded as 

( )f s= +S PRS t          (5) 
where s is the scale parameter, P is the orthographic projection 

matrix 
1 0 0
0 1 0
 
 
 

, R is the rotation matrix controlled by three 

rotation angles α, β, and γ, corresponding to pitch, yaw and roll in 
head pose respectively, t is the 2D translation parameter vector 
composed of tx and ty. All parameters of the projection function can 

form a vector ( )T
, , , , ,x ys t tα β γ=p . The projection parameter p 

and shape coefficients parameter c guarantee the uniqueness of a 
3D face model. 

In the first step of 3DALBF, we need to construct a 3D face 
model from 2D image with landmarks and their visibilities. As 
mentioned before, we can identify a 3D face model with the 
projection parameter vector p and shape parameter vector c. The 
construction of 3D face model can be transformed to the estimation 
of p and c. Given 2D landmarks U and their visibilities V, 
parameters p and c can be estimated by minimizing the following 
optimization function, 

( ) ( )( ) 2
, arg min :,

F
J = −

p,c
p c pS d U V      (6) 

where S is expressed by Eq. (2),  denotes the element-wise 
multiplication. V is an L-dim vector with binary elements 
indicating whether the landmarks are visbile (denoted as 1) or not 
(denoted as 0). The objective function in (6) is the difference 
between the locations of visible 2D landmarks and their 3D 
projections. Alternating optimization strategy is utilized to 
compute the optimal parameters p and c. We initialize the 3D 
shape parameter c to 0, and estimate p by ( )1argmin ,k kJ −=

p
p p c , 

and then estimate c by ( )arg min ,k kJ=
c

c p c . This process 

continues iteratively until the changes of p and c are small enough. 
Both optimization problems can be efficiently solved in closed 
forms by least-square method. The head pose (i.e. rotation matrix 
R) of 3D face can be easily estimated based on the projection 
parameter p. 

Landmark visibility 
One of the disadvantages of traditional 2D face alignment 

methods is that they are not robust to large pose variation. Some 
landmarks are invisible because of self-occlusion in large pose, and 
consequently their landmark related visual features will be 
incorrect. However, landmark visibility estimation in 2D image is 
difficult, since there is little information available. On the contrary, 
landmark visibility can be easily computed in 3D face model. 

With the calculated head pose of 3D face, we can compute the 
visibility of each 2D landmark by examining whether the 3D 
surface normal of the corresponding 3D landmark is pointing to the 
camera or not [9]. For each landmark, we first compute the 3D 
surface normal of a set of vertexes around the 3D landmark of 
given, and the average of these 3D normal, denoted as N, is 
regarded as the surface normal of this 3D landmark. By rotating 
the surface normal of each landmark according to the head pose, 
we can compute whether the rotated surface normal is pointing 
toward or away from the camera, representing visible or invisible 
of the landmark respectively. With the 3D surface normal Nl of lth 

landmark and the head rotation matrix R, we can compute its 
direction by 

12l lv = ⋅N R           (7) 
where R12 is the first two rows of rotation matrix R. If vl is positive, 
the lth 2D landmark is visible, and it is invisible otherwise. The 
visibility of each landmark will be further utilized in extracting 
landmark related features in the following section. 

3D-Assisted LBF 
In traditional 2D face alignment methods, the landmark 

related visual features are extracted in the local patch of each 
landmark in 2D image. However, most of the 2D images contain 
not only people face, but also complex background, even after face 
detection. The local patch of each landmark may include large area 
of complex background, especially for the contour landmarks; 
therefore, the extracted features of landmarks may be inaccurate or 
even incorrect. And this condition will be worse in large pose face 
images. The inaccurate features directly deteriorate the accuracy of 
predicted landmarks’ locations. 

In this paper, the projected local patch is introduced to tackle 
this problem. The local patch of each 3D landmark, which is a ball 
centered at the landmark of interest, is defined on the surface of a 
3D face model. In other words, the 3D local patch is a collection of 
vertices on the surface of a 3D model inside a sphere. The 
projected local patch of each 2D landmark can be obtained by 3D-
2D projection function, which means each vertex in the local patch 
of 3D landmark will be projected onto the 2D image plane. The 
projected 2D points constitute the local patch of 2D landmark. 
Since there is no background in 3D model, the projected local 
patch will be much cleaner. The shape of projected local patch for 
each landmark is irregular and varying because of landmark 
position and 3D-2D projection function. Figure 1 shows the 
comparison of local patches and projected local patches in 2D face 
images. 

 

   

   
Figure 1. The comparison of local patches and projected local patches in 2D 
face image. In each pair, the left one is a circle local patch around each 
landmark, the right one is the projected local patch from 3D face model, which 
is much cleaner than the left one. The landmark is marked with a blue point. 

Furthermore, local patches of a fixed landmark in 3D face 
models for different 2D images cover the same region of faces 
anatomically except for the minor marginal difference due to shape 
variances (i.e. identification variances and expression variances). 
Therefore, the projected local patch of one 2D image corresponds 
to the same patch from another image anatomically. Figure 2 
shows the projected local patches of some image examples from 
300W database. These correspondences between different images 
contribute to improving the accuracy of landmark related features, 
which will be testified in our experiments.  
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After the projection, features are extracted in the projected 
local patches for visible landmark. For invisible landmarks, the 
features can be extracted in the local patches of their symmetric 
landmarks due to the symmetry of face shape, or set to zero to 
eliminate the influence of inaccurate features of invisible 
landmarks. The local patches in 3D model are pose invariant, so 
the extracted landmark related features are robust to large pose 
variation. 

 

 
Figure 2. The projected local patches of the 17th landmark in different images 
have the same anatomically meaning 

In this paper, we adopt 2D LBF method for feature extraction, 
and propose 3D-Assisted LBF (3DALBF) method for face 
alignment. In 2D LBF, the feature mapping function is learned by 
using regression random forest, whose trees are trained with the 
pixel-difference feature. The pixels are sampled in a local region 
around each landmark. Such a local region is critical to LBF, since 
it has been proven to be more effective to only consider candidate 
features in a local region instead of the global face image [14]. The 
local region is defined by a circle around the landmark of 
interested, and the radius of the region gradually shrink from early 
to later stage. In 3DALBF, the local region is redefined by the 
projected local patch from 3D face model, which is much cleaner 
and has anatomical correspondence across different images. The 
region of projected local patch depends on the radius of the ball on 
3D face model, which will decrease with the cascaded regression 
stage. In our training, the optimal radius of the 3D ball is estimated 
by cross validation on a hold-out validation set at each stage. 

The local feature mapping function k
lφ  is learned in the 

projected local patch via random forest, which is further used to 
generate local binary features for each landmark. Local features of 
all landmarks are then concatenated to form the 3DALBF via a 
global feature mapping function, i.e. 1 2[ , , , ]k k k k

Lφ φ φ=Φ  . More 
specifically, a sample traverses the trees until it reaches one leaf 
node for each tree. The 3DALBF is a vector indicating whether a 
leaf node is reached or not. Supposing the total number of leaf 
node is Q, 3DALBF will be a Q-dimension binary vector. For each 
dimension in 3DALBF, its value is 1 if the sample reaches the 
corresponding leaf node and 0 otherwise. 

After we obtain the 3DALBF, a linear regressor Wk at stage k 
is learned by minimizing the sum of alignment errors, 

( ) 21 1
2

1
arg min ( , )

N
k gt k k k

i i i i
i

λ− −

=

= − + +W
W U U WΦ I U W  (8) 

where iI is the ith training sample, gt
iU is the ground truth shape of 

iI , and 1k
i

−U is the estimated shape in previous stage, N is number 
of training samples,. A dual coordinate descent method [25] is 
adopted to deal with the sparse linear problem. The training 
procedure of 3DALBF is summarized in Algorithm 1.  

 
 
 

Algorithm 1: The training procedure of 3DALBF 

Input: Training data { }
1

,
Ngt

i i i=
I U , initial landmarks with their 

visibility { }0 0
1

,
N

i i i=
U V  , 3D model and bases { }0 exp, ,idS S S  

Output: Feature mapping functions { }
1

Kk
k =

Φ  , cascaded 

regressors  { } 1

Kk
k =

W  

For k = 1: K do 
1: Compute the projection parameter k

ip  and shape 
parameter k

ic  via Eq. (6);  
2: Update 3D model k

iS  for each sample iI  via Eq. (2);  
3: Compute the visibility of each landmark via Eq. (7); 
4: Project the local patch around each landmark on 3D 
face model to 2D image: ( ):,l k k k l k

ik i i ik is= +Patch PR S d t ,

( ):,k l
i ikS d  is the local patch of landmark l in image i at 

stage k on 3D model, and l
ikPatch is the corresponding 

projected local patch in 2D image plane; 
5: Learn feature mapping function 1( , )k k

i i
−Φ I U  by using 

random forest with pixel-difference features extracted in 
projected local patches; 
6: Learn global linear regressor Wk via Eq. (8);    
7: Update 2D shape for each image: 

1 1( , )k k k k k
i i i i

− −= +U U W Φ I U  
End for 

 

Experiments 
In this section, we evaluate the performance of 3DALBF in 

three databases, i.e. 300W, 300W-LP and AFLW2000-3D. 

Databases 
300W: 300W [26] is created from multiple databases, 

including AFW [27], LFPW [28], HELEN [29], IBUG [26] and 
XM2VTS [30]. Each image in the dataset is annotated with 68 
landmarks. We adopt the same training set (3148 images) and 
testing set (689 images) as in [14]. The testing set is further split 
into three subsets: the common subset which consists of the test 
subsets of LFPW and HELEN (554 images); the challenging 
subset which consists of the IBUG dataset (135 images); the full 
set which is the summation of common subset and challenging 
subset (689 images).  

300W-LP: The 300W-LP database [10] is a large pose 
extension of the 300W database, which contains 61225 samples 
from four databases (1786 from IBUG, 5207 from AFW, 16556 
from LFPW and 37676 from HELEN). 

ALFW2000-3D: AFLW dataset [15] contains 21080 in-the-
wild face images, and each image is annotated with up to 21 
visible landmarks and a bounding box. Zhu et al. [10] choose the 
first 2000 AFLW samples and construct a database called 
ALFW2000-3D for 3D face alignment. The new database contains 
the ground truth 3D faces and the corresponding 68 landmarks in 
2D images for each sample.  

 

403-4
IS&T International Symposium on Electronic Imaging 2019

Imaging and Multimedia Analytics in a Web and Mobile World 2019



 

 

Medium pose face alignment 
The experiments for medium pose face alignment are 

conducted on 300W database, following similar protocol in [14]. 
Data augmentation is adopted to enlarge the training data and 
improve generalization ability: each training image is augmented 
to multiple training samples by randomly sampling the initial 
shape among the training set multiple times [12]. 

There are a few parameters in the proposed 3DALBF method: 
the number of stages T, the number of trees in each stage N, and 
the tree depth D.  For comparison with the original LBF, we set the 
parameters as follows:  T = 5, N =1224 (i.e. 68×18), D = 6. We 
set the number of trees N to 1224 (N=1200 in LBF), which is an 
integer multiple of the number of landmarks in 300W database (i.e. 
68). In the training process, we find that the time cost of training 
random forest grows exponentially with the tree depth. So we set 
the tree depth D to be 6 instead of 7 in the original LBF to reduce 
time cost, and the performance degradation is negligible in our 
experiments. In addition, the data augmentation number is set to be 
15 in our implementation, instead of 20 in LBF.  

We compare 3DALBF method with five methods that are 
based on cascaded regression framework. ESR [12], SMD [6], 
LBF [14], CFSS [7] are 2D methods, and 3DDFA [10] is a 3D 
method. The alignment accuracy is evaluated by the Normalized 
Mean Error (NME), which is the mean of the landmark distance 
error normalized by the inter-pupil distance.  

We use the original results of the compared methods in the 
literature [10] for comparison. Table 1 lists the NME results of all 
compared methods on 300W testing sets. We can see that the 
proposed 3DALBF method achieve the best performance on the 
common subset and full set, and competitive performance on the 
challenging subset. 3DALBF achieve a significant error reduction 
comparing with the original LBF on all testing subset. This can be 
attributed to the more accurate local features extracted in the 
projected local patches around each landmark.  

Table 1:  The NME (%) of compared methods on 300W 

Method Common 
subset 

Challenging 
subset Full set 

ESR 5.28 17.00 7.58 

SDM 5.57 15.40 7.50

CFSS 4.73 9.98 5.76 

LBF 4.95 11.98 6.32

3DDFA 6.15 10.59 7.01 

3DDFA+SDM 5.53 9.56 6.31 

3DALBF 3.69 10.03 4.93 

 

Large pose face alignment 
We further conduct experiment for large pose face alignment 

in this section.  In the following experiment, we adopt 300W-LP as 
the training set and AFLW2000-3D as the testing set. With the 
ground truth 3D models, the bounding boxes enclosing all the 

landmarks are provided for initialization in the testing set. The 
parameters of 3DALBF are set to the same in the 300W 
experiments, except that no data augmentation is performed in the 
training process.  

The alignment accuracy is evaluated by the NME, which is 
normalized by the bounding box size [9, 10]. The NME results of 
the compared methods are listed in Table 2.  Compared with 
3DDFA, 3DALBF demonstrates competitive performance in large 
pose face alignment task. It is worth noting that 3DALBF achieves 
a significant alignment error reduction of 48% comparing with the 
original LBF method.  NME result in Table 2 testify the robustness 
of 3DALBF to large pose variations. 

Table 2:  The NME (%) of compared methods on ALFW2000-3D 

Method ALFW2000-3D 

ESR 7.99

SDM 6.12 

LBF 10.19

3DDFA 5.42 

3DDFA+SDM 4.94

3DALBF 5.32 

 

Time cost 
We compare the time cost of our proposed 3DALBF with 2D 

LBF and 3DDFA on a single core CPU with a frequency of 
3.20GHZ. Both the time costs of LBF and 3DDFA are the results 
in literature [14] and [10], and both their experiments are 
conducted on 3.40GHZ CPU. From Table 3, we can see that the 
time cost of 3DALBF is higher than LBF, but it is still much lower 
than 3DDFA. The increased time cost of 3DALBF over LBF focus 
on the reconstruction 3D face model and estimation of landmarks’ 
visibilities, which can be further optimized in the future. The 
superior performance of 3DALBF in alignment accuracy and time 
cost make it suitable for subsequent face analysis tasks in practice. 
One more thing, the number of cascaded stage is set to 3 in 
3DDFA, which is 5 in both LBF and 3DALBF. 

Table 3:  The time cost of compared methods on 300W testing 
set for one image 

Method Time cost (ms)

LBF 3.13 

3DDFA 75.72 

3DALBF 18.28 

 

IS&T International Symposium on Electronic Imaging 2019
Imaging and Multimedia Analytics in a Web and Mobile World 2019 403-5



 

 

Conclusion 
In this work, we have presented a practical 3D-assited face 

alignment framework based on cascaded regression. Different from 
traditional 2D methods, the landmark related features are extracted 
in the projected local patches from 3D face model in the novel 
framework. Visibilities of 2D landmarks are estimated to enhance 
the robustness of 2D features to large pose variations. We further 
employ LBF as the feature extractor and propose 3DALBF method. 
By incorporating 3D facial information, 3DALBF achieves better 
alignment results than the original 2D method and maintain the 
speed advantage of 2D method over 3D method. Experiments on 
300W and AFLW2000-3D show the superiority of the propose 
method. Furthermore, it is worth exploring more 2D feature 
descriptors, such as SIFT and HOG, to fit in this framework.  
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