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Abstract
This paper presents a novel method for 3D scene modeling

using stereo vision, with an application to image registration. The
method constists of two steps. First, disparity estimates are re-
fined, by filling gaps of invalid disparity and removing halos of
incorrectly assigned disparity. A coarse segmentation is obtained
by identifying depth slices, after which objects are clustered based
on color and texture information using Gabor filters. The sec-
ond step consists of reconstructing the resulting objects in 3D for
scene alignment by fitting a planar region. A 2D triangle mesh is
generated, and a 3D mesh model is obtained by projecting each
triangle onto the fitted plane. Both of these extensions result in
improved alignment quality with respect to the state of the art,
and operate in near real time using multi-threading. As a bonus,
the refined disparity map can also be used in combination with
the existing method.

Introduction
Image registration remains an important computer vision

challenge and involves the process of aligning pairs of images
into the same coordinate system. Typical registration applica-
tions include remote sensing [1],[2], image stitching [3], robotics,
medical domains [4] and change detection. Image alignment
techniques can generally be categorized as either global or lo-
cal. Global methods aim at computing a single transformation
between an image pair, such as a homography transformation.
These methods generally assume planar scenes, although they are
also often applied in remote sensing. In such a case, the scene
typically contains objects at large distances from the camera and
may be considered approximately planar.

A recent development is the use of Deep Learning and Con-
volutional Neural Networks (CNNs) for homography estimation.
Detone et al. [5] train a deep CNN called HomographyNet that
performs end-to-end learning of homography parameters from
two input images. A similar approach is used by Chang et al. [6],
which uses a CNN consisting of a feature point extractor, cas-
caded with a Lucas-Kanade layer. Both approaches learn the rele-
vant features and transformation computation simultaneously dur-
ing training, but these approaches are limited to a global transfor-
mation, which is not applicable to our problem.

Local methods, such as proposed by Lou et al. [7] first per-
form segmentation into planar regions in the image and then at-
tempt to find a transformation per segmented region. Computing
a transformation for each region is typically performed by match-
ing feature points, of which SIFT [8] is most widely used. Al-
ternatively, pixel-based methods such as optical flow can estimate
a local transformation, but generally lack illumination invariance

and cannot handle dynamic changes between the images. An in-
depth survey of image registration methods can be found in [9].

In this work, we investigate the alignment of video frames
recorded from a moving vehicle over the course of two separate
drives along the same trajectory. In the context of repetitive cap-
turing, our objective is to detect changes that have occurred in
the environment between the two recordings. For this purpose,
we aim to align a previously recorded frame, which we will re-
fer to as the ’reference’ frame, onto the live frame during driving.
Since the reference and live vehicle trajectories never exactly co-
incide and may be recorded under different recording conditions,
large illumination changes and viewpoint differences may occur.
The latter introduces parallax effects, where the relative position
and ordering of objects change with respect to each other and the
background. This invalidates the use of global alignment meth-
ods, as parallax effects cannot be compensated by a single affine
transformation.

Diego et al. [10] propose an algorithm for video frame align-
ment from a moving vehicle using inference on Bayesian net-
works. While results are promising, this approach is aimed at
driving trajectories within the same lane, corresponding to small
camera displacements of up to 2.5 m. Furthermore, it does not
take parallax effects into account. In order to obtain robust scene
alignment, we perform alignment in 3D, where a rigid transforma-
tion between the 3D scenes can be found. To this end, we mount
stereo cameras on our vehicle to capture the 3D scene geome-
try. Typically, scenes from two recordings can then be registered
by aligning the 3D point clouds obtained from this stereo camera
setup. Finally, the aligned point cloud can be projected back to
2D, resulting in an aligned image.

While alignment of 3D point clouds has been investigated in
numerous studies, most approaches assume accurate and densely
sampled point clouds, such as those obtained from a laser scan-
ner. However, disparity estimates generated from stereo images
are typically noisy and contain many outliers. Hence, when pro-
jecting back to 2D, noisy 3D points may be mapped to the wrong
2D coordinates. To circumvent this problem, point clouds can
be approximated by a noise-robust 3D surface model, onto which
texture can be projected. Such models typically outperform point-
based processing, as they may remove holes in the resulting im-
age.

Van de Wouw et al. [11] have proposed a registration ap-
proach using such a textured 3D model, which differentiates be-
tween a ground plane and objects, both being combined into a
single model. Although this approach produces accurate ground-
plane alignment, detailed object modeling remains a challenge.

In the field of 3D object modeling, many methods aim at
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creating a mesh model. Creating a mesh model from noisy data
is typically not feasible. Therefore, approximating a model using
piecewise planar regions is a commonly used method [12], [7].
Planar models can produce promising results when using multi-
view stereo data [13]. Therefore, we adopt this method of model-
ing 3D objects using planar regions.

In this work, we contribute with a novel method for mod-
eling 3D objects, which can be used to complement or even re-
place the modeling approach of [11]. In our approach, objects are
segmented from 2D disparity maps and refined using color and
texture information. We perform per-object 2D-triangulation and
project the resulting triangles onto a planar region to obtain a 3D
object mesh. Furthermore, we aim at near real-time execution of
our reconstruction algorithm, to allow for overnight processing of
recorded data.

This paper is structured in the following way: We first
present the baseline system from van de Wouw et al. [11] and
investigate its limitations. The proposed method is discussed in
the next section. Several experimental results are provided using
semi-automatic validation, and finally we draw conclusions and
provide recommendations.

Baseline scene alignment
In this paper, we build further upon the work of Van de

Wouw et al. [11], who have proposed a system for 3D scene mod-
eling by introducing a diorama-box model. Objects are modeled
by upright fronto-parallel rectangular super-pixels called stixels,
superimposed on a model of the ground surface. These stixels
are efficiently implemented by the Stixel World algorithm. Stixels
are constructed by first sampling the image horizontally along a
fixed grid. The resulting columns are then split in order to obtain
super-pixels corresponding to either ground or obstacles. Using
depth estimates obtained from the stereo camera, each stixel is
converted to a fronto-parallel 3D planar model. Next, a number
of post-processing steps are applied to improve the stixel model
quality. First, stixels are slanted according to the modeled object
orientation, and non-connecting stixels are interpolated in order to
guarantee a watertight model. Additionally, pixels that do not sat-
isfy the stixel orientation (such as background pixels) are rendered
as black pixels to prevent distorted pixels in the projected 2D im-
age. Although this model produces promising results, it contains
several limitations. First, stixels are only slanted with respect to
the viewing direction, creating an approximate projection of the
scene, which may introduce alignment errors for non-upright ob-
jects. Second, the rectangular grid-like nature of stixels requires
very thin stixels in order to be able to model thin (vertical) ob-
jects. This implies that a large number of stixels is required to
cover the entire scene. This method of sampling is therefore not
well suited for rendering non-vertically-oriented objects. In con-
strast, our proposed method is not restricted to vertical objects,
while containing only a minor preference for fronto-parallel ori-
ented objects. Moreover, the proposed method is better suited to
capture the shape of the object, as it is no longer restricted to rect-
angular models.

Another issue that accompanies the use of stereo cameras
is that of poor disparity estimates. Disparity is typically esti-
mated using a block matcher. However, it often produces incor-
rect results around edges of objects or in poorly textured areas.
The former produces areas of incorrect disparity around objects,

(a)

(b)
Figure 1: Examples of large halo effects caused by invalid dis-
parity estimates, where background pixels are assigned disparity
values of adjacent objects. This effect cause severe warping dis-
tortions in the aligned image. Left: disparity-based object seg-
mentation, Right: corresponding image region.

which we will refer to as halos. Examples are shown in Fig. 1,
which shows blobs where the block matcher cannot discriminate
between objects and background. These halos will result in dis-
torted pixels in the aligned image.

Our method
This section presents a novel method for 3D scene model-

ing for image registration. This method aims at accurate sur-
face reconstruction of 3D objects in the presence of noisy depth
data originating from a stereo camera. Our method consists of
two steps. First, the scene is accurately segmented by combin-
ing depth, color and texture information, and the disparity map is
refined in correspondence with the objects found. In this stage,
we also fill missing data in the disparity map (gaps of invalid dis-
parity), at points where no occlusion is present. Second, a planar
region is estimated per segmented object, which is then described
by a 3D mesh model. An overview of the proposed processing
steps is shown in Fig. 2, where each of the blocks is further de-
tailed in the next paragraphs.

An important advantage of this two-step approach is the pos-
sibility of using it as an extension to the existing method. When
applied as extension, the refined disparity map of the first stage
can be used to create an improved stixel-based model. In this
case, the refined disparity map is used as an input to the stixel-
based algorithm, thereby directly improving its results.

Object segmentation and disparity refinement
In this processing block, the disparity map is refined by re-

moving halos (Fig. 1) and filling gaps, i.e. regions of invalid dis-
parity. Each of the four processing steps will now be described in
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Figure 2: Block diagram of the proposed method

detail.

Depth-based segmentation
Although individual pixel disparity estimates may be unreli-

able, the overall disparity histogram contains important informa-
tion about objects present in the scene. Therefore, we first inden-
tify peaks in the histogram to obtain a coarse segmentation of the
scene into slices of similar depth. This is obtained by smooth-
ing the histogram, after which each slice is defined as the area
around a local maximum, up to the nearest local minimum. A
few of these slices are visualized in Fig. 3a. Note that a slice
may contain multiple objects, such as the fence poles in the first
layer of this figure. Each slice is represented by a binary mask in
the corresponding image, from which individual objects are then
segmented using connected components. This guarantees a full
segmentation, where every pixel is classified as an object or as
background.

Clustering and halo removal
In order to remove halos, background pixels should be classi-

fied. However, object or background appearances are not defined
and may change between scenes or even between objects within
a scene. Therefore, an unsupervised machine learning approach
is adopted, where each object is clustered into two clusters using
color and texture information. Color information is obtained by
RGB color, while texture information is extracted by Gabor fil-
ters at four orientations. Note that this approach requires small
intra-object variability compared to object-background variabil-
ity. Clustering is performed using the K-means algorithm, as it

has low computational complexity and allows real-time execution.
Clustering results for several objects are shown in Fig. 3b, where
the two clusters for each object are indicated. Note that due to
the random cluster initialization of K-means for each object, it is
a-priori unknown which cluster denotes the background. Deter-
mining the background cluster corresponding to a halo is not a
trivial task. For humans, the clusters of Fig. 3b are easily recog-
nized as trees or fence posts, but without a semantic interpretation,
distinguishing the object cluster from the background becomes a
challenging task. Assumptions cannot be imposed on size, shape
or appearance of the halos, except that halos only occur at the
edges of objects. A number of methods may be applied to find this
outer region, such as region growing, active contours or snakes.
However, we can also take prior scene information into account.
In scenes recorded from a moving vehicle, we may assume that
objects are connected to the ground plane. This is a robust check,
independent of halo size or shape. Additionally, it is computation-
ally less expensive than any contour-based approach, since it can
be implemented by removing the least ground-connected cluster.
This can be efficiently computed by dilating the object mask and
performing a binary AND-operation with the ground mask. A
small fraction of objects may not satisfy the constraint of being
connected to the ground plane, such as small branches or over-
head traffic signs. For these objects, the smallest contour cluster
is classified as the object cluster, with an additional condition that
the cluster must be partially included in the background cluster.
By this condition, we impose a preference of no refinement over
the risk of removing the object itself.

Disparity gap filling
The last disparity refinement step consists of gap filling.

Candidate gaps are extracted using connected components on the
missing-disparity mask (denoted by black pixels in Fig. 4). While
it is possible to construct a gap-free disparity estimate, we specifi-
cally choose not to fill all gaps in the disparity map. For example,
missing disparity estimates originating from occlusion do present
meaningful information about the scene. Therefore, we only fill
disparity gaps up to a maximum size of 50×50 pixels. This size
was empirically determined. To ensure that only similar-colored
regions are being filled, we impose a threshold on the median
color difference between the gap and its surrounding area. This
color difference is defined as the sum of individual channel differ-
ences. For robustness, thresholding was performed as a function
of the standard deviation of the surrounding area:∣∣MedianRGB(I)−MedianRGB(J)

∣∣< Tcolor ·σRGB(J) (1)

where I denotes the gap area, J indicates the contour area sur-
rounding the gap and σ represents the standard deviation. The
subscript RGB indicates that the RGB color space was used. Fi-
nally, filling should be careful, to avoid filling background gaps
between objects with different disparity values. Therefore, gaps
outside the ground plane are only filled if the disparity around the
gap is uniform, hence

σD(J)< Tdisparity ·µD(J) (2)

Again, index J incidates the gap contour area, and µ denotes the
image mean. The subscript D indicates disparity processing. By
imposing a threshold on its standard deviation dependent on the

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 465-3



Figure 3: (a) Visualization of depth slices found from peaks in the disparity histogram. Note that for visualization purposes, slices are
shown as having a single disparity, while in reality each slice represents a range of disparities. (b) Object refinement using K-means
clustering. Each individual object is clustered into two clusters, shown in different colors. Note that the order of the clusters is non-
deterministic, a result of the random initialization in the clustering algorithm.

Figure 4: Intermediate results of disparity refinement. (a) Input
disparity. (b) Disparity after object refinement. (c) Disparity after
gap filling. Note the large refinement changes in the trees and de-
tailed refinement of fence poles, corresponding to the clusters of
Fig. 3b. After hole filling, occlusions (e.g. close to trees) remain
intact.

mean, we incorporate the knowledge that disparity resolution pro-
gressively deteriorates for low disparity, as depth and disparity are
inversely related. Additionally, for increasing depth, less pixels
become available for matching. Therefore, the disparity unifor-
mity constraint can be relaxed for low disparity. The remaining
candidate gaps are now filled by an inpainting approach. Gap pix-
els are ordered into a priority queue according to an inward-facing
spiral, after which each invalid pixel is replaced with a linear in-
terpolation of the surrounding valid pixels.

Object modeling
3D scene reconstruction is performed on object basis, which

can now be distinguished accurately from the object segmentation
created in the disparity refinement algorithm. We would like to
directly reconstruct each object with a 3D mesh model, but this
is invalidated by the noisy depth estimation produced by a stereo
camera, typically containing many outliers. Therefore, we choose

Figure 5: Triangulating a complex object (a tree with small and
detailed branches).

to model each object by a planar structure. This approach consists
of three steps: triangulation, plane fitting and mesh generation for
each object, which are now briefly discussed.

Triangulation
First, a 2D polygon triangulation is constructed for each in-

dividual object from its 2D contour. We apply the ear-clipping
algorithm [14] for triangulation, which operates in O(n2) time.
Faster algorithms exist [15], but they are are not required for our
use case, since triangulation time is negligible compared to com-
putationally expensive vision tasks (like contour extraction).

Planar Region Fitting
Each segmented object is now approximated by a single

plane, using Random Sample Consensus (RANSAC) on the noisy
3D data, which is robust to outliers. In contrast with the baseline
approach, we have no assumptions on the plane orientation.

Mesh Generation
Once the 2D triangulation and the planar estimation are

available, the final 3D mesh model can be obtained. This is per-
formed by projecting each 2D triangle onto the fitted plane, by
casting rays from the camera through each triangle corner, and
computing the intersection with the plane. In this way, creating a
mesh model enables modeling of arbitrarily shaped objects, such
as tree branches, while the planar region guarantees that meshes
connect in 3D. Projecting entails computing a new disparity esti-
mate d′ for each corner point (x,y), such that the resulting projec-
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Method TPR TNR Halos/obj
Stixel-based (Baseline) 0.515 0.990 0.738
Refined, Stixel-based 0.511 0.987 0.511
Refined, Mesh-based (ours) 0.528 0.988 0.585

Table 1: Performance of several algorithmic combinations on
manually annotated data.

tion (X ,Y,Z) by the camera projection matrix Q lies on the fitted
plane. In homogeneous coordinates, this reduces to computing d′

from 
X
Y
Z
W

= Q


x
y
d′

1

 , (3)

such that

Z = aX +bY + cW (4)

where a, b and c represent the fitted plane coefficients. Solving
this system for each triangle corner point results in a set of 3D
triangle meshes along the plane that models the object.

The final step of the algorithm consists of obtaining an
aligned image from the scene model. First, the reference image
texture is projected onto the mesh model. Then, a rigid trans-
formation is estimated between the live and reference 3D point
clouds, which is outside the scope of this paper. This transforma-
tion then allows the reference scene to be rendered from the live
viewpoint.

Experimental results
The proposed method was evaluated on pairs of videos,

recorded in a rural environment. Stereo cameras were mounted
on a vehicle to record the environment while driving. The vehicle
was equipped with GPS, which enables the automatic selection of
a reference frame for each live frame, i.e. the reference frame with
the most similar viewpoint with respect to the current viewpoint.

Evaluation
The proposed method can both be used as an extension

to the existing algorithm and as a replacement of the baseline
stixel-based model. Therefore, we perform experiments for three
algorithmic combinations: (1) baseline stixel-based registration
method; (2) disparity refinement in combination with the stixel-
based model, where the refined disparity map is used as input to
the baseline registration; and (3) the proposed method (including
disparity refinement). An example of the aligned image for each
method is shown in Fig. 6.

Validation of halo removal
Evaluation of image alignment algorithms is not a trivial

task. In halo removal, we intend to find changes at pixel level,
which invalidates common evaluation methods, such as keypoints.
Instead, for six pairs of images all objects were manually anno-
tated at pixel level. Corresponding objects were assigned the same
color, while an additional color was used for the background.
The annotated reference image was then transformed using the
alignment transformation found for the original image, which pro-
duced an annotated aligned image. In this image, all objects were

Figure 6: Aligned images (cutout) for different algorithmic con-
figurations. Top-l: baseline, top-r: baseline with refined disparity,
bottom-l: proposed method, bottom-r: Target image.

still represented with their respective color, while any background
remaining in the image now indicates a halo.

A quantitative evaluation was now performed by comparing
this image to the annotated live image. To this end, we define
three performance metrics commonly used in classification and
segmentation: the true-positive rate (TPR) denoting the ratio of
object pixels that are correctly aligned, and the true negative rate
(TNR) giving the fraction of background pixels that are correctly
ignored. Finally, we denote the ratio of halos to object pixels
as the halo rate, which should be minimized. By defining the
halo rate in this way, the metric is not affected by the class in-
balance present in these images, since there are typically many
more background or ground pixels than object pixels. The mea-
sured TPR/TNR/halo results are depicted in Table 1. Clearly, the
number of halos per object is sharply reduced by 15-20%, while
the mesh-based and stixel-based rendering method perform on the
average equally well.

Finally, it should be noted that the proposed algorithm exe-
cutes in near real-time, allowing for overnight data processing.

Discussion
The proposed algorithm for halo removal by K-means clus-

tering imposes no assumptions on appearance of objects or back-
ground. However, it is required that inter-object variability is
larger than intra-object variability. While this is generally valid
in rural scenes, this assumption often fails in urban scenes, result-
ing in holes in the model. Additionally, this problem can occur
when large lighting differences are present within a single object.
Therefore, future work should explore extending of the proposed

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 465-5



clustering algorithm using more than two clusters. Here, the extra
complication again lies in finding the background cluster(s) from
the object cluster(s).

Conclusions
We have proposed a novel 3D scene-modeling method for

image registration based on a stereo camera. This approach con-
sists of two parts. First, the disparity map from the stereo camera
is refined by correcting for common errors in disparity estima-
tion. Incorrect disparity estimations around objects (halos), i.e.
background pixels that have been (incorrectly) assigned disparity
values of the object, are identified from a coarse segmentation us-
ing machine learning. Next, gaps of missing disparity are filled,
while informative invalid regions such as occlusions remain in-
tact. This first part results in a refined disparity map thus serving
as an extension, but it can also be applied as independent input to
the existing baseline method, thereby directly improving model
quality.

The second part consists of creating a 3D mesh model per
segmented object. A robust model for each object is created by
first fitting a planar region through noisy depth data, correspond-
ing to that object. A 2D triangle mesh is then generated using an
ear-clipping algorithm, and the resulting triangles are projected
onto the fitted 3D plane, to obtain the final mesh model. The pro-
posed method is better capable of modeling thin objects.

The novel algorithm has been evaluated on a set of image
pairs, recorded from a moving vehicle in a rural environment. All
objects present in these frames were manually annotated in order
to evaluate the proposed halo-removal algorithm. This resulted in
a reduction of the number of halo pixels per object of up to 20%.
Finally, a similar performance improvement was observed when
combined with the baseline (stixel-based) rendering method.

Both the disparity refinement and the 3D mesh model re-
sult in more accurate alignment. Finally, the algorithm operates
in near real time to allow for offline overnight processing, while
real-time online alignment is enabled during driving. Further im-
provement can be achieved by considering more clusters for halo
removal and fitting multiple planes per object, whereas further
speed optimization is obtained by exploiting GPU cores.
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