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Abstract 
Firefighting and rescue live victims operations are inherently 

dangerous, but the imminent danger of release of a hazardous 
substance creates an additional risk. Thus, identification of 
hazardous materials during robot assisted search and rescue 
missions can help e.g. firefighters or rescue teams to improve such 
rescue operations. The paper deals with the development of such a 
robotic machine vision system for hazmat label recognition. 
Classical computer vision methods but also state-of-the-art deep 
learning based detection algorithms were implemented and 
evaluated. Special focus was put on the robustness of detection and 
recognition with limited hardware resources and the influence of 
background image structures and light conditions. 

Introduction 
The automation of tasks is no longer only driven by industry. 

More and more everyday tasks are carried out by partly static and 
partly mobile machines. The aim is to have monotonous or 
repetitive tasks carried out by robots. This usually increases not 
only the throughput but also the quality of the work. 

In recent years, efforts have also been made to support rescue 
forces in their difficult and dangerous tasks. In order to advance 
research in this area, robot competitions have been launched to 
target precisely such scenarios. These efforts were reinforced by 
the incident at the Fukushima nuclear power plant in 2011. 
Specifically, the Rescue League was established at the end of the 
1990s as part of the RoboCup challenge. The idea for this league 
came after the earthquake in Kobe City [1]. Subsequently, the test 
methods for such competitions became more and more 
standardized in order to make the robots comparable with each 
other [2]. In recent years, also the DARPA Robotics Challenge has 
provided sensational results in the field of robot development [3]. 

In these challenges various test methods are provided that 
measure robot manoeuvring, mobility, sensors, energy, radio 
communication, dexterity, durability, logistics, semi- and full 
autonomy functions and operator proficiency. These tests are a 
possibility to evaluate also quantitatively, whether robotic systems 
are capable and reliable enough to perform operational tasks. This 
is very important for first responders, as they should actively use 
these machines. Another benefit, from a technical point of view, is 
to push integration of on board sensors and intelligent controls to 
improve remote operator capabilities.  

The World Robot Summit (WRS) in Tokyo also belongs to 
the group of robot competitions described above. Here, among 
other things, special operations are being tested which stand in 
connection with accidents in nuclear power plants. The WRS sees 
itself as a worldwide platform to share knowledge for robot 
developers, researchers, official government agencies and private 
industry [4]. A lively exchange is to take place between these 
groups and thus the development of modern robot technology is to 
be advanced. In addition to the actual competition, there are also 
exhibitions related to robotics. 

 

 
At the WRS, robot developers have to solve various vision 

and dexterity tasks. These are tested in different categories and 
according challenges: 

 
1. Industrial Robotics: this challenge is addressed to robots in 

manufacturing and component construction. 
2. Service Robotics: here the tasks in the area of cleaning 

habitats, housekeeping and interaction between robots and 
humans are set. 

3. Disaster Robotics: in this category, robots must perform 
preventive tasks in a factory environment to prevent an 
accident. In addition, the robots are intended to support 
emergency personnel in scenarios like tunnel accidents, after 
earthquakes or incidents in power plants. 
 

The main objective of robotic competitions is to hold challenging 
and fair competitions that inform teams of the tasks necessary to be 
effective for the task forces and first responders. The challenge 
progress of each robot system must also be measured to highlight 
breakthrough skills that respondents can understand and 
appreciate. Ten or more successful repetitions typically indicate a 
reliable skill. 

In this context, special focus is on treatment of hazardous 
materials, which are usually stored in a variety of containers of 
different sizes, shapes and types. Typically, they are transported 
and stored in these trailers but also in the form of sacks, cartons 
and barrels up to tanks and bottles. When looking at the 
recognition and identification process, first responders should be 
alert when arriving at an incident, i.e. it should be the 
responsibility of robots to identify such hazardous substances as 
quickly and accurately as possible to inform first responders of 
possible dangers. The robot system will therefore serve as a digital 
helper with built-in autonomous systems such as robust recognition 
and identification of hazard materials to ensure safe operation and 
recovery in different environments.  

One common labelling system, which is used to identify 
hazardous materials, is the NFPA 704 system. It groups all 
chemical hazards (health, flammability, reactivity) and special 
hazards into a single type of sign. Figure 1 shows an example of an 
NFPA rating criterion and a typical NFPA 704 label, where 
different types of hazards are represented by different colors. A 
numerical rating system is provided to evaluate various hazards, 
where 0 represents the lowest hazard and 4 the most dangerous.  

Thus, the purpose of the work done is to develop and evaluate 
a mobile robot based system for hazardous materials detection and 
localization. The objective is to develop a robust vision system 
which robustly identifies the nine hazard classes and the hazards 
associated with each hazard class. The location and quantity of 
hazardous substances is also important information for the 
investigation and recovery of such materials  
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Figure 1: Example of a NFPA 704 Label [18] 

Mobile Robot System: Hardware and 
Computing 

In order to solve all these mobility, dexterity and exploration 
tasks, teams need a high mobility robot equipped with powerful 
onboard computing for autonomous operation.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
Figure 2: UGVs for rescue and exploration applications. 

The Unmanned Ground Vehicles (UGVs) used in this work are 
self-developed rescue robots which are equipped with a chain drive 
(Figure 2). The robots are connected to an operator station via 5 
GHz WLAN and via 433 MHz. They are primarily developed for 
the use in the field of security and emergency applications. The 
aim is to build autonomous and tele-operated robots, which are 

able to drive through an unstructured environment and search for 
potential human victims. This includes generating a map of the 
explored environment and characterizing and locating victims as 
well as ‘recognizing’ dangerous situations and hazardous materials 
(e.g. caused by fire and gas).  
The computing platforms used in our tests are a NVIDIA Jetson 
TX2 mobile computer (onboard the robot) and a laptop with a 2.6 
GHz i7-6600U CPU (remote operator station). To create a map of 
the current scenario, different 2D- and 3D-sensors are mounted on 
the robot. A realsense™ camera system in front of the robot arm is 
used for readiness tests in identification- and dexterity tasks. A 
Velodyne VLP-16 Lidar is used for 2D and 3D mapping of the 
environment and to localize/visualize the hazmat labels in a 3D 
map (Figure 3). 

 
 

 
Figure 3: Typical identification tasks 

Related Work 
There are several computer vision algorithms, which are used 

to perform object detection in images. Some examples for these 
methods are image segmentation with blob analysis, simple pattern 
matching, or feature extraction based algorithms like SIFT, SURF, 
GLOH, HOG, BRIEF, etc. supported by classification algorithms 
like SVMs (support vector machines) [5-16].  

New deep learning approaches such as Convolutional Neural 
Networks (CNNs) have now mostly replaced traditional methods 
and provide a new range of computer vision tools. It was the 
emerging technology of GPUs that finally enabled deep learning to 
become one of the most powerful computer vision tools for object 
detection today. 

In this work, we first applied the classic detector algorithm 
from Viola and Jones, which was further improved by Lienhart 
[14], and additionally two keypoint-feature based algorithms, 
namely Speeded Up Robust Features (SURF) and Scale Invariant 
Feature Transform (SIFT) [9,10,13]. Finally, we implemented a 
new and fast CNN based image object detector named YOLOv3 
[17]. 

After the successful detection of a hazmat label, the detection 
location must subsequently be marked on a generated map. So-
called SLAM (synchronous localization and mapping) algorithms 
are available for this purpose, which usually create such maps 
based on 3D sensors. Here we extrinsically calibrate the RGB 
camera with a 3D depth camera (realsense™ camera) to obtain the 
relative distance of the detected hazmat label to the robot. Using 
the SLAM algorithm for self-localization of the robot, this relative 
position can then be related to the map created.   
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Hazmat Label Detection 
In order to solve all the rescue tasks described above, not only 

a high mobility of the robots but also a very robust perception of 
the environment is required. Camera systems are increasingly 
being used as a cost-effective supplement to 3D laser sensors. Our 
mobile robot uses a low-cost RGB-camera (640x480 pixels) and 
ROS-based (Robot Operating System [20]) implementations of the 
above mentioned keypoint-detectors: AffineSIFT [9] and SURF 
[10]. We also used a Qt/OpenCV based software named Find 
Object by Mathieu Labbé (http://introlab.github.io/find-object/). 
We then compared these results with those of a recently developed 
algorithm based on deep learning (YOLOv3) [17].  

Another focus, beside robust recognition results, is on the 
necessary computing capacity needed for these different 
algorithms (due to the correspondingly compact design and the 
limited onboard power supply). The aim is to evaluate qualitatively 
the differences between keypoint-feature based detection 
algorithms and newly developed deep learning algorithms, also 
with respect to possible video real-time performance. Especially, 
poor or changing lighting conditions and slight changes of 
perspective should not affect the detection results. In addition, the 
vision system should cope with large variations in object distances 
(large scale invariance). 

 

Method I: “Classic” Vision Approaches 
SURF is a keypoint detector that is invariant to image scaling 

and rotation and builds on the widely used SIFT detector, but is 
considered to be much faster. Using integral images, the SURF 
algorithm applies average filters instead of the Gaussian filters of 
the SIFT detector. This speed-up plays an important role especially 
in the video real-time application considered. 

 
 

 
 

Figure 4: Typical result of the SURF detector (OpenSurf) - only a very little 
number of keypoints can be detected. 

As exemplarily shown in figure 4, the OpenSURF detector 
hardly recognizes any points under difficult light conditions, 
whereas the AffineSIFT algorithm assigns nearly all feature points 
correctly (Figure 5, left) – even when the camera perspective is 
changed (Figure 5, right). 

Although the real-time performance of these algorithms was 
satisfactory, we soon encountered severe problems with the 
robustness of detection. In real world test drives in our test arena 
these approaches could simply not achieves acceptable results. 

           
Figure 5: Comparison of AffineSIFT: front view (left) and object rotated (right). 

The decision then was to implement deep learning methods, 
as they have proven to be extremely robust in many other real 
world applications, such as autonomous driving. In addition, we 
argued that the vision system should be very flexible so that it can 
be adapted easily to new scenarios by a simple learning process 
(e.g. for different robot challenges).  

 

Method II: Deep Learning  
A general challenge in deep learning is the enormous amount 

of learning data needed to produce good results. CNNs are 
supervised learning approaches, i.e. labeled images that constitute 
the basic truth must be initially provided to train the neural 
network.  

 
Training Data and Image Labelling 

We used a software named darklabel 
(https://darkpgmr.tistory.com/16) for image labelling. This 
software provides an easy to use GUI. It supports basic object 
tracking functionalities which substantially simplifies the 
otherwise time consuming work of object labelling in images as a 
once marked image object can be recognized again in the 
following images and a new drawing of the object borders is done 
automatically.  

We defined 12 hazmat object classes (Table 1) and we used 
about 5500 training images (450 images/class) which we made 
from videos of real hazmat labels placed on a wall. In this context, 
we have also consciously taken care to include appropriately 
rotated and blurred images in the training data set. 

Table 1: Hazmat Label Classes 

− corrosive_8 
− dangerous_4 
− explosive_S_1_4_1 
− flammable_liquid_3 
− flammable_solid_4 
− infectious_substance_6 
− inhalation_hazard_2 
− non-flammable_gas_2 
− organic_peroxide_5_2 
− oxidizer_5_1 
− radioactive_II_7 
− spontaneously_combustible_4 
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Figure 6: Very good detection results of YOLOv3 even under blurred image 
conditions (right).  

Detection of Test Objects 
Neural network training was done on a desktop PC (i7 single 

core, OS Ubuntu 16.04) with a NVIDIA 1080Ti GPU which took 
approx. 8 hours (until there was no significant improvement in the 
loss value). The neural network architecture and weight-
/configuration files were then transferred to a NVIDIA Jetson TX2 
(OS: Ubuntu 16.04), where we achieved frame rates of approx. 2-3 
images/sec. with a 640x480 pixel webcam. Using a ‘light-weight’ 
version of the original YOLOv3-network (named tiny yolo) 
resulted in slightly reduced detection performance but with frame 
rates of approx. 10 images/sec (which in both cases is sufficient for 
the proposed task). 

The recognition of all learned label classes was excellent 
(Figure 6 left) – even under difficult lighting conditions or poor 
camera image quality (mostly due to blurring, Figure 6 right). 
During our tests only 2 problems could be observed: 

- Whenever the hazmat labels were arranged too close to 
each other (Figure 7) the detection completely failed.  

- If the image background (in our case in the form of a 
brown wooden wall) had changed during testing 
(compared to the training, i.e. when the hazmat labels 
were mounted on e.g. a white wall), a significant 
reduction in the recognition rate could be observed. This 
can clearly be traced back to a training bias, since when 
labelling with rectangular ROIs, especially with twisted 
object versions, image background structures are always 
necessarily 'trained' with them (Figure 8).  
 

 

 
 

Figure 7: Detection completely failed when objects were arranged too close to 
each other. 

Conclusions 
Based on deep learning algorithms (YOLOv3), the presented 

system is able to localize and classify relevant hazard labels in the 
working area very robustly. This vision system enables the 
detection of first concrete evidence of the presence of hazardous 
materials regardless of the particular lighting situation (day, night, 

fog, etc.), over a wide range of distances and under strongly 
varying degrees of rotation. 

The algorithm for robust real-time hazard label detection, 
recognition, identification and localization is running onboard a 
power-efficient AI computing device (NVIDIA Jetson TX2) 
onboard a mobile rescue robot.  

 

     
 
Figure 8: Image labelling for neural network training: when annotating rotated 
versions of an object (right), inevitably also background image structures are 
learned (indicated in red). 
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