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Abstract 
Safe and comfortable travel on the train is only possible on 

tracks that are in the correct geometric position. For this reason, 
track tamping machines are used worldwide that carry out this 
important track maintenance task. Turnout-ta.mping refers to a 
complex procedure for the improvement and stabilization of the 
track situation in turnouts, which is carried out usually by 
experienced operators. This application paper describes the current 
state of development of a 3D laser line scanner-based sensor system 
for a new turnout-tamping assistance system, which is able to 
support and relieve the operator in complex tamping areas. A 
central task in this context is digital image processing, which carries 
out so-called semantic segmentation (based on deep learning 
algorithms) on the basis of 3D scanner data in order to detect 
essential and critical rail areas fully automatically.  

Introduction 
Tamping Process 

When a train drives along the railway, it generates enormous 
forces. The entire track consisting of rails, sleepers and ballast is an 
elastic system that deforms and then returns to its original position. 
In the end, this high load leads to a deterioration of the track 
geometry. This can lead to anomalies, because of which the ideal 
geometry of the track can no longer be guaranteed. In these areas, 
for example, temporary speed restrictions must be imposed. To 
avoid such a situation, tracks have to be maintained at regular 
intervals. This ensures that the ideal geometry of the track is 
restored. In this context, the so-called ‘track tamping’ represents the 
most common maintenance task on railway tracks. 

 
 

 
 

Figure.1: A typical tamping machine during work. 

Lining refers to correcting the horizontal and vertical alignment 
of the track, and lifting to the compaction and displacement of the 
substructure with complete removal of cavities under the sleepers. 
The combined lifting-lining unit works with a measuring system, 
gripping the track, raising the track to a predetermined height, 
correcting for vertical misalignment and simultaneously pivoting 

the track to correct horizontal alignment (= simultaneous leveling 
and alignment). Subsequently, the tamping units are lowered and the 
tamping tines dip into the ballast. The tamping unit vibrates to 
fluidize the ballast so that it can rearrange and settle in a dense 
matrix. Controlled vibration reduces the force required to insert the 
tamping tines into the ballast without damaging or crushing the 
ballast stones. A special cylinder arrangement additionally exerts a 
force on the tamping arms, which results in an additional movement 
of the tamping tines (squeezing). The tamping compactifies then the 
ballast below the sleeper, i.e. into the cavity created by the lifting 
process. Thereafter, the tamping machine moves forward to the next 
sleeper and the process is repeated. Finally, behind the tamping 
machine, the result is a track at the correct geometric level, on a 
homogeneous ballast bed and with restored elasticity (Fig. 2). [1] 

 
 

 
 
Figure 2: Tamping unit used for improving the rail track quality (base 
construction). 

Autonomous Tamping  
To date, many years of experience and skill of the operator are 

necessary to achieve a high-quality tamping result in turnouts. The 
tamping process, especially in turnout areas, is characterized by a 
large number of manual interventions. High working speeds, 
combined with the highest possible quality of work, are only 
achieved by an experienced or well-trained operating staff. For this 
reason, extensive knowledge in various specialist areas (track 
surveying, mechanical engineering, superstructure technology, 
regulations) for the ideal tamping process is necessary. Among the 
most important tasks of the two operators are: control of the tamping 
unit including rotation and pitch spreading or pivoting, control of 
the lifting and lining unit and operation of additional lifting in the 
area of the diverging track, etc. 

The purpose of the turnout-tamping assistant is to develop an 
automatic assistance system comparable to level 3 of the SAE J3016 
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standard (which was originally defined to characterize the 
autonomous driving of road-bound motor vehicles). Generally, the 
focus is on the automated support of tamping in difficult 
environments such as switches and crossings (but not restricted to). 
At this level of automation, the system creates action 
recommendations that the operator can confirm prior to each action. 
The aim is to relieve the operator, to increase the working speed and 
to stabilize the quality of work at a consistently high level. Basically, 
the tamping assistance system is also suitable for higher degrees of 
autonomy. [2] [3] 

 

Deep Learning in Rail Track Maintenance 
To our knowledge, this is the first published attempt of a 

semantic segmentation based on deep learning with 3D laser scanner 
depth images in the field of automated rail tamping. The literature 
describes various deep learning approaches based on the analysis of 
color images (RGB images). In most cases, the methods described 
there treat applications in the field of rail inspection or rail track 
infrastructure management (e.g. [4] [5] [6] [7] [8] [9]). 

 

Relevant object information from 3D scanner 
image data 

The environment (i.e., mainly the superstructure directly in 
front of the tamping machine) is scanned with a 3D line scanner 
mounted on the tamping machine roof (Figure 3). The individual 
scans deliver accurate 3D data, which is computationally merged 
with information such as the position or timing of the recording. At 
the same time, the position of the machine and each individual unit 
are constantly updated. In this way, position data of all relevant 
machine parts are fused in a 3D overall model. This then forms the 
basis for every further control decision during operation. 

 
 

 
 

Figure 3: Tamping machine with a roof-mounted 3D laser scanner. 

The central task of digital image processing is now the exact 
detection of the relevant infrastructure components within the 
working area of the machine (such as ballast, sleepers, rails, 
fasteners, etc.) For example, the hydraulic tamping tines must only 
penetrate into suitable ballast areas, but they must not hit rails or 
sleepers (which could then be seriously damaged). On the other 
hand, non-critical areas (such as plants or the like) should not 
interrupt the work process by indicating a pseudo obstacle. 

The decision was to apply state-of-the-art deep learning (DL) 
methods to this demanding image analysis problem, as it has proven 
to be extremely robust in many other areas (such as autonomous car 
driving) and far surpasses other traditional image-based 
segmentation approaches. 

 
Figure 4: Picture of the relevant track area (top); typical 3D scan depth image 
(bottom). 

The system should be flexible enough to be easily adapted to 
completely new scenarios. It should e.g. cope with unknown forms 
of vegetation or different track infrastructures (characterized by a 
wide range of variants worldwide) through a simple learning process 
that can be handled even by non-expert staff. Traditional methods 
can work quite well, but they often require a high level of expertise 
and very specific domain knowledge to create hand-crafted features. 
In contrast, DL approaches learn from the data itself, which means 
the expertise for feature engineering is replaced (partially or 
completely) by the DL and in some application cases can outperform 
humans and human-coded features. [11-14] 

3D Depth Image Acquisition by Laser Scanner  
The image analysis process described here uses only 3D depth 

images as input data (see Fig. 4, right). The different gray values 
correspond to different distances to the sensor (i.e., the brighter the 
image pixels, the closer). The advantage of using depth images is 
that the appearance of the objects does not vary (for example due to 
different light conditions), as would be the case with standard RGB 
cameras, although the 3D scanner system is of course more 
expensive compared to RGB cameras. However, since the scanner 
is also used for various other purposes during machine operation, 
this disadvantage is not significant in the concrete application. 

The 3D depth images are provided by a rotating 3D laser 
scanner. The scanner itself delivers single line scans with millimeter 
depth accuracy, which are then continuously merged into a depth 
image with a typical resolution of approximately 4000 x 1000 
pixels. The working speed during tamping is approx. 1000m/h, 
which leads to a lateral scan resolution of approx. 2mm. This is 
sufficient to create detailed scan images that also allow visualization 
of small objects (such as fasteners, etc.). The scanner head is 
mounted directly in front of the train whereas the actual tamping unit 
is located approximately in the middle of the machine. Thus, due to 
moving of the vehicle, there is a small time offset between the 
scanning of a certain region and the actual tamping process at this 
particular position, which provides a time window of about 10 
seconds for all necessary data processing tasks. Additionally, the 
raw line scans have to be geometrically corrected as the scanning 
laser spot moves in a helix-like trajectory along the railway tracks 
(Fig. 5). This correction is of course speed-dependent.  
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Figure 5: Helix-like trajectory of the laser scanning spot while driving. 

Semantic Segmentation of 3D-Scanner Data  
Fully Convolutional Neural Networks for Image 
Segmentation 

An extension of image classification is the so called semantic 
segmentation. It generally plays a crucial role in computer vision 
and enables a computer to not only recognize objects in images, but 
also to locate them pixel-exactly. The recognition and exact 
delineation of objects in the image is achieved by the classification 
of each individual pixel, i.e. each pixel is assigned a defined object 
class (Fig. 6). Our original segmentation approach is based on a 
Fully Convolutional Network (FCN) [13], a popular algorithm for 
semantic segmentation. 

 
 

 
Figure 6: 3D scanner image (left). Desired result image (right) with pixel-exactly 
segmented areas representing the relevant image contents such as ballast, 
rails, plants, etc. 

The idea behind an FCN is to extend a classic Convolutional 
Neural Network (CNN), which is commonly used for image 
classification, by replacing the fully connected layer with a 1x1xn 
convolution layer and adding a convolution transpose layer (Fig. 7). 
In detail, this network model uses various convolution and pooling 
layers to analyze an image and reduce it to a fraction of its original 
size (usually 1/32). This compressed intermediate result contains a 
class prediction at this resolution level. Finally, it uses so-called 
convolution transpose layers to rescale the image to its original 
dimensions. By extending a CNN to an FCN, the classification part 
is replaced by a convolution part. When creating a larger image, the 
net now not only gives probabilities for each trained class, but a 
whole array of such probabilities. An element of this array then 
stands for the recognized class of a subarea of the input image. After 
scaling up this array to the original size of the input image using the 
Convolution-Transpose layer, one finally obtains a heat map of the 
local distribution of the detected classes, since each pixel in this 
result image corresponds to a classified feature vector. 

 
 

 
Figure 7: Basic structure of a fully convolutional neural network (FCN) for 
semantic image segmentation. 

Image annotation  
A general challenge in deep learning is the large amount of 

learning data needed to produce good results i.e. enough annotated 
images must be provided to train the network. Especially, in 
semantic segmentation the according effort is considerable, since a 
pixel-precise marking of the image objects is necessary. For this 
reason, a special annotation tool was developed which supports the 
user in this time consuming work by semi-automatic marking 
functions. As the depth images considered are very often 
characterized by homogeneous image areas (like rails, sleepers, etc.) 
and not so much by rich texture, the supporting tool offers intuitive 
region labelling functionalities with a dedicated focus on processing 
this specific type of images (e.g. watershed algorithms,  super-pixel 
algorithms or contour tracking algorithms, Fig. 8).     

 
 

 
 

 
 

Figure 8: Image annotation software tool for generating ground truth 
segmentation images. 

Our experiments have also shown that in addition to segmented 
full-frame images, small (jittered) image patches are also 
appropriate for training, since the FCN architecture allows input 
data in various image sizes. This makes it possible to generate a 
large number of additional training image patches from just a single 
acquired depth image (Fig. 9). One more challenge is the fact that 
we have to deal with a very imbalanced dataset. The images 
typically consist of large areas of ballast structures whereas only 
very few pixels represent objects like rail screws.   

 
 

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 462-3



 

 

 

 
 

Figure 9: Typical image patches used for learning (ballast, sleeper, rail, plant, 
fasteners, clamps). 

Besides real world data we also used artificially generated 
depth images from a virtual simulation environment (this simulator 
was originally intended for machine operator training purposes thus 
providing very realistic 3D scenarios), see Fig. 10. Thus, no manual 
labelling of the images was necessary and we were able to provide 
large quantities of images very quickly (and we could even vary 
image structures specifically, such as different gravel sizes, etc.). On 
the other hand, with the help of the simulator, we were also able to 
intensively test and improve the functionality of the entire assistance 
system (digital twin). 

 
 

 
 

Figure 10: Automatically labelled images provided by a 3D simulator. This 
software was originally intended for machine operator training purposes thus 
providing very realistic scenarios. 

Results 
The hardware setup used is as follows: 

-  Intel® Xeon® CPU E5-1630 v4 @ 3.70GHz 3.70GHz 
-  128GB RAM 
- 2x GTX 1080Ti (not cooperative, but for simultaneous    
   trainings) 

 
We have experimented with different deep learning 

frameworks (like MatConvNet, DIGITS and TensorFlow) and 
various network architectures. However, the most time consuming 
part was the tuning of the hyper parameters (learning rate, batch-
size, training epochs, etc.) to minimize overfitting and loss in the 
validation dataset. Fig. 11 shows the typical evolution of a 
segmentation result during learning (shown are the results at epochs 
5, 20, 40, 100 and 500).  

For training we have generated about 11.500 image patches in 
the size of 256x256 from about 350 labelled full-size depth images 
(500x4000). The training time was typically 22 minutes per epoch 
over about 50 epochs. The inference time in the application software 

is currently 0.8 sec for a 1000x4000 image (on a GTX 1080Ti 
graphics card). Increasing the number of training images clearly 
improved the segmentation results considerably. Another 
observation was that retrospectively adding a new class (that is 
visually very similar to an existing class) has no effect on the 
recognition performance of the original classes within an existing 
network.  

 

 
Figure 11: Improvement of the segmentation result during learning (ballast - 
black, track - yellow, screw - blue, ties - pink, red - unknown). 

Finally, from the segmentation result relevant informations for 
the tamping process are derived, e.g. exact ballast areas (into which 
the tamping tines can penetrate) but also sleeper positions and 
orientations, which are important for correct control of the tamping 
units. Additionally, the beginning and ending of turnout sections are 
identified automatically. Also, special equipment along the rail track 
(like switch rods, etc.) can be identified robustly.  

 
 

 
 

Figure 12: Typical result of the segmentation process. Different segmented 
classes such as ballast (green), sleepers (yellow), tracks (white), screws 
(purple) and plants (green) are shown as a half transparent overlay on the depth 
image. Also shown are automatically derived informations like sleeper 
orientations or the beginning and ending of turnout areas.   
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Summary and Outlook 
In this article, an image processing system for a semi-

autonomous tamping assistance system was presented. Based on 
deep learning algorithms, it is able to localize and classify relevant 
infrastructure in the working area of a tamping machine. A 3D laser 
scanner is used, which enables accurate and robust scanning of the 
machine environment, regardless of the particular lighting situation 
(day, night, fog, etc.). First tests in real operation confirm the 
excellent suitability of the method described. In conclusion, deep 
learning based semantic segmentation enables the practical 
realization of very robust machine vision solutions without which 
robust outdoor applications would not be possible especially under 
very harsh conditions as those described above. The algorithms used 
are constantly being improved - for example, a new generation of 
network architecture with an improved segmentation approach is 
currently being worked on which promises to further improve the 
detection properties even for very small or thin objects (such as 
cables, etc.). Active learning approaches will further improve the 
results. 
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