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Abstract
Change detection from ground vehicles has various appli-

cations, such as the detection of roadside Improvised Explosive
Devices (IEDs). Although IEDs are hidden, they are often ac-
companied by visible markers, which can be any kind of object.
Because of this, any suspicious change in the environment com-
pared to an earlier moment in time, should be detected. Little
work has been published to solve this ill-posed problem using
deep learning. This paper shows the feasibility of applying con-
volutional neural networks (CNNs) to HD video, to accurately
predict the presence and location of such markers in real time.
The network is trained for the detection of pixel-level changes in
HD video, compared to an earlier reference recording. We in-
vestigate Siamese CNNs in combination with an encoder-decoder
architecture and introduce a modified double-margin contrastive
loss function, to achieve pixel-level change detection results. Our
dataset consists of seven pairs of challenging real-world record-
ings with geo-tagged test objects. The proposed network archi-
tecture is capable of comparing two images of 1920×1440 pixels
in 150 ms on a GTX1080Ti GPU. The proposed network signif-
icantly outperforms state-of-the-art networks and algorithms on
our dataset in terms of F-1 score, on average by 0.28.

Introduction
Roadside Improvised Explosive Devices (IEDs) have the

highest casualty rate per incident among Dutch military in
Afghanistan [1]. IEDs are often accompanied by markers, which
can be any kind of object, to time the detonation of an IED when a
vehicle passes it [2]. In order to reduce casualties by IEDs, identi-
fication of IED placement is normally conducted by Mission Pay-
load Operators (MPOs), by using environmental cues. However,
experienced MPOs are limited in number [3]. This motivates the
desire for real-time automated detection.

Real-time automated systems for the detection of IED cues
or markers have been explored in the past, such as by us-
ing LiDAR systems [4], ground-based monocular camera im-
agery [5–7], ground-based stereo imagery [8][9], or imagery from
unmanned aerial vehicles [10]. All methods have in common that
they search for small environmental changes compared to a pre-
vious patrol, under the assumption that the placement of an IED
causes small appearance changes in the environment. However,
none of these methods are sufficiently capable of detecting small
object changes in the dynamic forest environments of our dataset.

This research focuses on change detection between two
aligned videos from different moments, with robustness to illu-
mination differences, dynamic surroundings and small alignment
errors, using a novel Convolutional Neural Network (CNN) ar-

chitecture. The videos are acquired from a moving ground ve-
hicle. Image alignment is performed using the registration ap-
proach of [8] (to be published, earlier version: [11]). This ap-
proach consists of a processing chain using GPS-based image re-
trieval, depth image generation from stereo cameras, and image
alignment based on both features and depth information. After
alignment, 2D change detection is performed. Previous work used
heuristics and post-processing for decision making, which offered
insufficient quality of detection under challenging recording con-
ditions. The purpose of this paper is to replace the decision mak-
ing by our novel CNN architecture, aiming at improved detection
while maintaining real-time operation.

Our contributions are twofold. First, we propose a novel
CNN architecture that can perform change detection in real
time (around 150 ms per frame) on high-resolution imagery
(1920×1440 pixels) and that exploits ideas from related domains,
i.e. object detection, patch matching, and semantic segmen-
tation networks. Second, we propose the use of an extended
double-margin contrastive loss function for the training of gen-
eral Siamese networks for change detection. Both proposals are
experimentally validated on our own datasets of ground-based im-
ages, containing changes in the form of static objects.

Related work
CNNs can be used for change detection in various ways. In

the absence of training data, CNNs pretrained on the ImageNet
dataset [12] may be used as a feature extractor. The Euclidean
distance in feature space is then used to generate a difference im-
age. This is shown to outperform handcrafted features [13]. How-
ever, the CNN features were never specifically trained to be well-
separable by Euclidean distance, which may limit change detec-
tion accuracy. Our preliminary experiments have shown that pre-
trained feature extractors are not suited for the complex outdoor
scenes in our dataset due to poor accuracy.

If training data are available, supervised networks can be
used to learn change detection features directly from the train-
ing data [14–16]. However, none of them use pretrained weights
to initialize their networks, even though it has a proven value for
classification and object detection tasks, especially when only a
limited amount of annotated data are available [17]. Our dataset
is relatively small, hence pretrained weights are essential.

Because existing change detection networks are less suited
for our use case, we prefer building a network from more basic
components, by borrowing techniques that have been proven to
work well in other computer vision tasks. The research fields
from which we draw inspiration for our network are classifica-
tion, semantic segmentation and patch matching.
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Canziani et al. [18] provide an overview of speed consider-
ations for recent popular classification networks. This overview
supports a base network choice that operates in real time. It shows
that especially ResNet variants [19] have high performance for
relatively low computational cost.

Change detection requires creating a pixel-level prediction
based on image data, which makes it closely related to the field
of semantic segmentation. Recent work focuses on segmentation
networks that can operate in real time, e.g. ERFNet [20], which
achieves surprisingly good performance compared to state-of-the-
art expensive semantic segmentation networks.

Patch matching is closely related to change detection, as it
compares two patches and determines their similarity score. In
general, three main architecture options exist for patch match-
ing: Siamese, Pseudo-Siamese and stacked (or ‘2-channel’) net-
works [21]. Combining Siamese networks with concepts from
semantic segmentation and an efficient base network will allow
us to perform pixel-level change detection in real time.

ECDNet: Proposed architecture
This section introduces our novel Efficient Change Detec-

tion Network (ECDNet) architecture for real-time change detec-
tion between aligned images. The network consists of a Siamese
encoder-decoder architecture, as shown in Fig. 1. The diagram
portrays all feature maps with their corresponding resolution and
layer depth (number of used filters in that layer) of both the en-
coder and decoder.

This section is structured as follows. First, it describes how
to achieve efficient pixel-level features through a smart choice of
encoder and decoder. Second, we show how to extend this basic
network to be suited for change detection, including the definition
of an appropriate loss function. Third, a post-processing operation
to suppress invalid detections is proposed, which is uniquely cou-
pled to our network architecture. Finally, all parameters are listed
for reproducibility.
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Figure 1. Proposed architecture for change detection (ECDNet). White

blocks refer to the encoder. Colored blocks highlight the decoder, consist-

ing of transposed convolution blocks (blue, bold) followed by residual blocks

(red). Top and bottom networks share parameters, indicated by vertical lines.

The numbers show activation map sizes after each block.

Achieving efficient pixel-level features
Finding a good trade-off between computation speed, perfor-

mance and memory requirement is crucial to allow for real-time
processing of high-resolution images. The most impactful com-
ponent for this trade-off is the encoder, which acts as a feature
extractor. Less impactful is the choice of the decoder network,
which upsamples the features back to original resolution.

This work employs a ResNet-18 based encoder architecture,
based on the accuracy versus speed trade-off analysis from [18].
In the proposed architecture, ResNet-18 is cut-off after the fourth
residual block. This enables the detection of small objects, which
may otherwise vanish due to excessive downsampling.

A decoder is employed to expand the downsampled en-
coder features back to pixel-level features.The decoder from
ERFNet [20] is adopted for its simplified one-dimensional (1D)
residual blocks, which split the residual blocks into multiple 1D
convolutions for faster processing at the cost of memory.

Extending the network for change detection
An encoder-decoder Siamese architecture enables pixel-level

change detection. In contrast to pretrained network features, the
network optimizes to maximal Euclidean distance separability be-
tween outputs, provided that it is used with the right loss function.

Loss function
The contrastive loss that has been proven effective in patch

matching [22] can be re-defined to pixel-level operation to make it
useful for change detection, similar to [14]. The pixel contrastive
loss as a function of network parameters W and training inputs X
is then defined as a sum over pixel coordinates (i, j) as follows

L (W,X) =
1
2

P

∑
k=1

∑
i, j
(1−y(k)i, j )(D

(k)
i, j )

2+y(k)i, j max(0,m−D(k)
i, j )

2,

(1)

where P is the batch size, k the image number in the batch, y(k)i, j is
the pixel label of the kth image at position (i, j), with 0 indicating
no change and 1 denoting change. Parameter D is a 2D change
map, and m > 0 is a margin parameter beyond which changed
pixels no longer influence the loss [22]. The margin parameter m
can be chosen arbitrarily, as the network will accommodate itself
to the margin [23]. The change map D is defined as the Euclidean
distance between two network output feature maps GW (X1) and
GW (X2), for the two aligned input images X1 and X2, giving

D(X1,X2) = ‖GW (X1)−GW (X2)‖2. (2)

A binary change mask can then be generated by thresholding this
change map with some threshold T .

The above-defined regular contrastive loss suffers from three
problems. First, as images cannot be matched perfectly, for exam-
ple, due to differing occlusion under different viewpoints, aligned
images will have unmatched pixels. These pixels should receive
a ‘don’t care’ label y(k)i, j = 2. The loss function is altered such
that pixels with this label do not contribute to the loss, regardless
of the value of D(k)

i, j , which is a simple masking operation on the

per-pixel loss with valid mask M(k)
i, j = (y(k)i, j 6= 2). The total loss

is normalized to the number of valid pixels, to ensure that it does
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not depend on the number of ‘don’t care’ pixels and the input res-
olution.

Second, our dataset is severely imbalanced, where less than
1 out of 5,000 pixels is a change pixel, hence class balancing is
crucial. Class balancing is implemented as average frequency
balancing on a per-image basis. To be partially invariant to ob-
ject size, the balancing weights are computed per image instead
of over the entire training set. This results in balancing weights
wC, where C == 1 for changed pixels and C == 0 for unchanged
pixels, which assign weights to the individual loss terms by the
inverse of the frequency of these pixels ( f (k)C ) as

w(k)
C =

K

f (k)C

=
0.5

ε + 1
N ∑i, j(y

(k)
i, j ==C)

, (3)

where N is the number of valid pixels (M(k)
i, j == 1), K is a con-

stant to avoid balancing for a perfectly balanced dataset (0.5 for 2
classes) and ε is a small constant to prevent division by zero.

Third, the margin only affects changed pixels. Unchanged
pixels contribute to the loss, even if their distance is already close
to zero. This can lead to deteriorated performance, as has been
shown for patch matching networks by Lin et al. [24]. Because
of this behavior, they propose a double-margin contrastive loss,
which adds an additional margin to the left side of the loss equa-
tion. In contrast to [24], we leave the squaring operations at the
same positions as in the regular contrastive loss. This slightly in-
creases computation time, but prevents non-differentiable points
and non-convexity in the loss graph.

The final loss function now becomes as follows:

L (W,X) =
1

2PN

P

∑
k=1

∑
i, j

M(k)
i, j {

(1− y(k)i, j )w
(k)
0 max(0,(D(k)

i, j )−m1)
2

+y(k)i, j w(k)
1 max(0,m2−D(k)

i, j )
2}.

(4)

Post-processing
The network architecture is able to distinguish between ob-

jects added or removed from a scene, even though this informa-
tion was not annotated in the training data. The assumption is
that a single Siamese network branch learns a low-magnitude re-
sponse for uninteresting areas and a high-magnitude response for
potential suspicious changes (a sort of ‘objectness’ score). Then,
if |v1| > |v2|, where v1 and v2 are feature vectors for a single
pixel of the output of the first (live) and second (reference) branch
respectively, the change will have been caused by strong features
in the live frame that were not present in the reference. Network
responses for which this does not hold can be suppressed, as we
are generally not interested in objects removed from the scene. In
case an object has been replaced by a different object, the relative
feature map magnitudes are no longer informative. To prevent
filtering out an arbitrary half of these cases, all pixels of the live
frame that have sufficient response by themselves are kept, regard-
less of the relative magnitude. This results in a post-processing
mask Mpost defined by

Mpost = (|v1|> |v2|)∨ (|v1|> T ), (5)

where T is the same threshold as the one used for obtaining the
final binary change map.

Network Training
All networks are trained with the dual-margin contrastive

loss as defined before. The Adam optimizer [25] with learn-
ing rate 10−4 is used. We initialize the encoder with ImageNet-
pretrained ResNet-18 weights and the decoder with Xavier initial-
ization [26]. All networks are trained for 10 epochs.

Batch size is set to unity to allow a large input image res-
olution. To cope with limited memory, 512×512-pixel crops are
used during training for all network comparisons unless otherwise
specified. The crops are chosen such that at least one change pixel
occurs in each training crop to speed up training. Additionally,
on-the-fly data augmentation in the form of random horizontal
mirroring is applied. Batch normalization layers in the encoder
are allowed to update in a moving-average sense.

Experimental results
This section describes the experimental validation of both

our network and several state-of-the-art alternatives. In this work,
all networks are implemented in the Caffe framework [27] and the
reported test times are achieved on a GTX1080Ti. The first two
subsections provide general information about all experiments.
Then, the following experiments are described: (1) investigation
of the impact of architectural choices on the speed and accuracy
of the network , (2) an impact assessment of our changes to the
loss function , (3) a comparison to state-of-the-art methods , and
(4) experiments to better understand network behavior.

Dataset acquisition
The training and validation dataset consists of four pairs of

videos (1,882 image pairs), with a resolution of 1920×1440 pix-
els, captured in forest-like environments. A single video pair fea-
tures a recording prior to the placement of test objects (the refer-
ence images) and one afterwards (the live images). The 57 unique
test objects consist of, amongst others, colored blocks, bottles,
rope, and a large tree trunk, which serve as the changes to be
detected. Reference images are aligned to their corresponding
live images, as in [8], but without optical flow refinement. This
alignment cannot match all pixels, hence the unmatched pixels are
masked out. The pixel-level annotated train/validation dataset is
split randomly into a training set (80%) and validation set (20%).

A separate dataset consisting of three videos (1,884 image
pairs) is employed to test the system and highlight the strengths
and weaknesses of the network. This involves: (1) a video pair
obtained by driving twice the exact same trajectory, resulting in
a pair of videos with practically no alignment errors (‘Test Easy
Objects Small Misalignment’); (2) a video pair with a deliberate
5-meter offset in driver path between live and reference videos,
causing larger alignment artifacts (‘Test Easy Objects Large Mis-
alignment’); (3) a video pair in a dunes environment instead of
a forest environment, which features different objects compared
to the training set (‘Test Hard Objects’). The three test videos
contain 50 unique objects.

Evaluation metrics
The effectiveness of change detection networks is generally

reported via F-1 score or Intersection over Union, both com-
puted at pixel level. For fairest comparison to these networks,
we also report pixel F-1 score. Additionally, we report object
F-1 scores, based on the number of objects detected. In the con-
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text of IED detection, the number of correct objects is a far more
relevant metric, since it is important to find all objects without
being biased to larger objects. The F-1 score is computed by
F1 = (2 ·Precision ·Recall)/(Precision+Recall), where Recall is
the fraction of real pixel/object changes that is correctly detected
and Precision is the fraction of the total pixel/object detections
that is correct.

Speed versus performance trade-off
There are three main choices that affect the speed and per-

formance of the network, in descending order of importance: the
choice of encoder network, the cut-off point of the encoder, and
the choice of the decoder network. To achieve an extensive trade-
off analysis, a parameter sweep over all combinations of these
three architectural choices is performed.

For the encoder, both deeper and shallower networks than the
theoretically good ResNet-18 are tested: ResNet-10, ResNet-18,
ResNet-50, ResNet-101, ResNet-152. Next, each point immedi-
ately after a residual block of the ResNet architecture is consid-
ered as a cut-off point. Only two decoder options are investigated,
the entire ERFNet decoder and a simple bilinear upsampler.

The results of the parameter sweep are shown in Fig. 2. Sev-
eral interesting interpretations can be made from Fig. 2. First,
deeper networks do not necessarily perform better on our dataset,
likely because of both the small size of the objects and the small
number of frames in the dataset. The deepest networks (those
whose timings do not fit on the axes in Fig. 2) also require smaller
training crops to fit in memory, which cause them to see less con-
text during training, so that they perform worse. Second, at first
sight it may appear that blockwise processing is the cause of re-
duced F-1 scores. However, this is unlikely, since applying it to
the ResNet-10 or ResNet-18 networks reduces F-1 scores by only
0.1%. Blockwise processing primarily negatively affects execu-
tion time. Third, the inclusion of the ERFNet decoder blocks im-
proves performance in all cases over a regular bilinear upsampler.
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Figure 2. Performance impact of architectural choices of the encoder
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Impact of the chosen loss function
The effectiveness of our alterations to the contrastive loss is

evaluated in an ablation study. The results are portrayed in Ta-

ble 1, which shows that class balancing is crucial for good perfor-
mance. At first glance it appears disabling ‘don’t care’ masking
slightly improves performance, albeit by less than one standard
deviation. However, disabling ‘don’t care’ masking slows train-
ing convergence by almost a factor two, hence enabling it is still a
valid improvement. The double-margin addition achieves no ob-
vious gain. Thus, in a pixel-level change detection setting, the
singularity problem as mentioned in [24] is apparently much less
impactful, probably due to the large number of different back-
ground pixels in the dataset. Hence, by Occam’s razor, maintain-
ing a single margin is the best solution with fewest parameters.

Next, the proposed contrastive loss is compared with the
commonly used softmax cross-entropy loss (with class balancing
and masking). Table 1 shows the results. As we expected, the
contrastive loss is more powerful for the current architecture.

Table 1. Ablation study of our contrastive loss function.

Loss Function Comparisons Object F-1
Validation

Object F-1
Test

Baseline: Our contrastive loss 0.67 0.60
- no class balancing 0.22 0.17
- no ‘don‘t care’ masking 0.69 0.60
- no double margin 0.67 0.60
Softmax cross-entropy loss 0.49 0.29

Comparison to the state-of-the-art
The proposed network is compared to the state-of-the-art in

both conventional methods and CNNs in Fig. 3: (1) a baseline dif-
ference image-based change detection method of Van de Wouw et
al., (2) CDNet by Sakurada et al. [16], which is a stacked architec-
ture, and (3) a Siamese network by Zhan et al. [14], who present
the only other Siamese change detection architecture. The imple-
mentations have been performed as follows.

Van de Wouw’s Adaptive YUV: Van de Wouw’s method con-
sists of adaptive thresholding on a difference image in YUV color
space [8] with alignment refinement through optical flow.

Zhan’s Siamese Network: The network from [14] is imple-
mented and altered to improve its performance on our dataset. We
use our improved contrastive loss with class balancing and ‘don’t
care’ handling and tune their parameters to our dataset. Their net-
work also results in noise pixels in the change map, which we
remove using an additional morphological filtering step.

Sakurada’s CDNet: CDNet [16] is implemented without
the additional optical flow input, which according to their paper
should only change performance by a few percent. The following
additional design assumptions are made for parameters not ex-
plicitly mentioned in [16]: concatenate-skip connections, ReLU
in decoder, convolution padding to maintain feature map size,
default dropout parameters, and the Adam optimizer [25] with
default parameters. Furthermore, to achieve good results on our
dataset, the following additions are necessary: morphological fil-
tering, replacement of the L1 loss by the softmax loss, removal of
the deepest three layers, training for four times as many epochs.

The resulting F-1 scores and execution speeds in Frames
Per Second (FPS) are shown in Fig. 3. The error bars indicate
standard deviations for 5-fold cross-validation. The proposed ap-
proach outperforms all earlier work in terms of F-1 score, while
having a smaller computational cost than other CNN approaches.
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Figure 3. F-1 scores and execution speed of our network versus state-of-the-art methods when applied to our validation dataset, sorted on speed. *Execution

time for Zhan and Sakurada is computed using overlapping 1024x1024 blocks due to memory constraints. With sufficient memory the FPS values would increase

to 3.7 and 2.2 respectively.

Both Zhan’s and Sakurada’s networks perform poorly under
large misalignment errors due to the vast numbers of false pos-
itives. In contrast, our network performance is not strongly af-
fected by alignment errors, since a single network branch approx-
imately falls back to being an ‘objectness’ detector if the mis-
alignment is large. For example, neither grass nor roads result in
‘objectness’, hence poor alignment that causes these two to over-
lap does not result in false positives in our network.

Our network’s pixel F-1 score on the ‘Hard Objects’ video is
similar to Zhan’s and Sakurada’s networks, because ours has diffi-
culty finding all pixels of a large change. This means our network
likely contains less scale invariance than Sakurada’s and Zhan’s.
The pixel F-1 scores of their networks on the ‘Hard Objects’ video
are high due to a few well-detected large objects. Generally Saku-
rada’s network is better at finding an accurate object outline, while
our network is better at finding objects as blobs, not necessarily
with an accurate outline.

Are we just detecting objects?
It is possible to use a single branch of the network and ignore

the output of the other, resulting in an object detector. Comparing
the use of the network as an object detector versus change de-
tection mode shows that change detection achieves higher object
F-1 scores than pure object detection by as little as 5% for the
‘Large Misalignment’ video, up to as much as 21% for the ‘Hard
Objects’ test video. Manual inspection of the frames reveals that
false positives are primarily caused by non-objects looking like
objects in either the live or reference frames, but not in both.
These types of false positives indeed cannot be filtered by com-
paring ‘objectness’. Furthermore, certain shapes of sharp hard
shadow edges are sometimes detected as false positives, though in
general the network is robust to lighting differences and shadows.
These results appear to confirm our suspicion that the network
has primarily learned to be an ‘objectness’ detector that simply
compares the ‘objectness’ score between two images to determine
changes. This also explains the robustness of the system to most
dynamic backgrounds. A significant disadvantage to change de-
tection based on ‘objectness’ is that an object that is replaced by a
different, yet same-sized object will not be detected as a change.

Discussion
Despite its good performance on our dataset, the trained net-

work also contains several limitations. First, the network is closer
to an object detector than a pure change detector, as the decision
for change is mostly based on ‘objectness’. This causes the net-
work to fail in recognizing the change type ‘object replaced by
a different object’, as both objects will have a high ‘objectness’
score. The network has never learned this change type, because it
is not present in the training set.

Second, almost all objects in the dataset are non-natural ob-
jects that would normally not belong in the scene. This is not
necessarily the case for general IED markers in practice. It is un-
likely that the trained network will perform well on more natural
changes, as the current ground-truth annotations mark all natural
changes as ‘no change’, which means the network is rewarded for
suppressing them actively.

Finally, while some of our improvements to the contrastive
loss are powerful, the addition of the second margin is ineffective
for change detection. Since the single-margin loss is both simpler
and achieves equal results (for pixel and object F-1 scores), we
recommend employing a single margin.

Conclusion
We are the first to propose a neural network architecture for

object-like change detection from high-resolution ground-based
vehicle imagery in real time, including the following contribu-
tions. First, we have designed an efficient Siamese encoder-
decoder network based on ResNet-18 and ERFNet that signifi-
cantly outperforms state-of-the-art change detection networks for
IED marker detection. Second, we have developed extensions to
the contrastive loss function, by making it applicable to pixel-level
problems, adding class balancing, and allowing ‘don’t care’–label
processing. These extensions are suitable for improving perfor-
mance of any Siamese change detection network. Our architec-
ture can be useful for general mobile change detection platforms
with imperfect alignment.

Our experimental results have shown that for small-object
change detection, our network outperforms the state-of-the-art
considerably on our datasets, both in terms of pixel F-1 score and
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object F-1 score. Furthermore, the network is only slightly slower
than a non-CNN baseline and more than a factor two faster than
other CNN approaches.

Future work can focus on expanding the dataset, such as
through artificial data, and on investigating the generalization
strength over more diverse object types.

Overall, we conclude that the application of deep learning
for roadside IED detection can significantly improve robustness
of existing counter-IED change detection systems.
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