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Abstract 

Recently, the semantic inference from images is widely used 
for various applications, such as augmented reality, autonomous 
robots, and indoor navigation. As a pioneering work for semantic 
segmentation, the fully convolutional networks (FCN) was 
introduced and outperformed traditional methods. However, since 
FCN only takes account of the local contextual dependency, it does 
not reflect the global contextual dependency. In this paper, we 
explore variants of FCN with local and global contextual 
dependencies in the semantic segmentation problem. In addition, 
we tried to improve the performance of semantic segmentation 
with extra depth information from a commercial RGBD camera. 
Our experiment result indicates that exploiting the global 
contextual dependencies and the additional depth information 
improves the quality of semantic segmentation	

Introduction 
Owing to the visual recognition system in the human brain, 

people can easily segment the entire image into meaningful sub-
regions and exploit the semantic information to complete specific 
tasks, such as navigation, exploration, and grasping. Interestingly 
enough, this semantic segmentation problem is very simple to 
human beings, but it is very difficult to robotic agents. There are 
various attempts to solve the semantic segmentation problem in the 
computer and robotic vision fields. By virtue of the recent 
advancement in deep learning algorithms, semantic segmentation 
results have been improved significantly. 

As a pioneer work for semantic segmentation using the deep 
learning approach, the fully convolutional networks (FCN) was 
introduced and outperformed traditional methods [1]. On top of the 
VGG-16 networks, the fully connected layer at the end was 
replaced by the convolutional operation to maintain a spatial 
context and the skip connections were constructed to preserve the 
feature maps from the intermediate layers. However, this fully 
convolutional architecture misses the global contextual 
dependencies through the entire image.  

With the advent of the commercial RGB-D cameras, such as 
Microsoft Kinect, Asus Xtion, Intel Realsense, and Orbbec Astra, 
the complementary depth information can be easily obtained; thus, 
employing the depth value in semantic segmentation has now 
become very beneficial. 

In this paper, in order to overcome the drawback of FCN over 
the global contextual dependencies, we have explored its variants 
with a variety of input feature encoding. In addition, we have 
tested the variants extensively with the publically available RGB-D 
datasets (NYUDv2 and SUNRGBD) based on popular evaluation 
measures (mean accuracy, overall accuracy, and mean intersection-
over-union). 

 
 

Related Works 
A fully convolutional network (FCN) architecture has been 

introduced by [3]. This combines semantic information from a 
deep, coarse layer with appearance information from a shallow, 
fine layer to produce accurate and detailed segmentation by 
applying end-to-end training. However, this approach only 
considers the local contextual dependencies due to the 
convolutional operation, which limits the performance 
improvement. 

The global contextual dependencies indicate the correlation 
among spatially distant semantic labels in the image. For example, 
if the sky appears on the top of the image, it is less probable that 
the microwave oven shows in the bottom of the image. In order to 
reflect the global contextual dependencies, the ReSeg algorithm 
employs recurrent neural networks in the 2D spatial domain along 
the vertical and horizontal axes [2]. This achieves a better result 
than the conventional method. 

As the depth information is easily available from commercial 
RGB-D cameras, the LSTM-CF approach made use of the depth 
information to estimate the semantic meaning correctly from the 
image [3]. Moreover, the memorized context layer and memorized 
fusion layer learn the global context to make a better quality. 

On top of the encoder-decoder type network, the FuseNet 
algorithm incorporated the depth information in the sparse and 
dense fusion block. The sparse fusion inserts the fusion layer 
before each pooling, and the dense fusion adds after each 
activation. They mathematically proved that the proposed fusion 
technique can produce a stronger signal for training [4]. 

The masked convolution is a kind of the auto-regressive 
model that estimates future values by using a joint probability 
distribution of previous sequences [5]. It is originally used for the 
image generation. However, we applied it to the semantic 
segmentation problem since the masked convolution can learn the 
joint probability distribution over the input feature encodings. 

U-Net is convolutional neural networks for biomedical image 
segmentation [8]. The networks consist of a contracting path and 
an expansive path. A property of this networks is that it performs 
copy and crop between the two paths. Concatenate the result 
values before the max pooling in the expansive path in each layer. 
Also, there is no fully connected layer. Each input image is cut in 
each patch, and an overlap-tile strategy is used. Data augmentation 
makes a great contribution to improving the performance of this 
network. 
           In several later papers, CNN is more accurate with input and 
each layer closer together. Densely connected convolutional 
network is, some layers are grouped together into one block and 
dense connections are formed between layers within one block [9].  
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Proposed	Method 
 
A. FCN baseline 
 
FCN consists of a series of convolutional blocks containing 

the convolution layer, the ReLU activation function, and the max-
pooling layer, followed by the upsampling operation at the end. In 
order to respect the global structure, FCN combines the fine and 
coarse layers with an elementwise fusion. In our experiment, we 
take the FCN-8s model as the baseline since it shows better 
performance than the others (FCN-16s and FCN 32s). Fig. 1 
illustrates the network structure of FCN.  

Even though it respects the global structure by the layer 
fusion, this is not enough to get the consistent global contextual 
dependencies from the input. Thus, we present several FCN 
variants considering the global contextual dependencies and 
exploiting additional depth information. 

 
FIG. 1 NETWORK STRUCTURE OF FCN 

 
B. FCN with ReNet layer 
 
One of the methods capturing the global contextual 

dependencies is ReNet layer applying the recurrent neural network 
(RNN) to a 2D spatial domain [6]. After dividing the input feature 
into a grid structure, each information in a grid cell is fed into 
RNNs node in a vertical and horizontal direction and the two 
feature maps from each direction are concatenated. By the 
recurrent structure through the vertical and horizontal direction, the 
ReNet layer can learn about the global contextual dependencies. 
We finally combined it with FCN as shown Fig. 2. 

 

 
FIG. 2 THE NETWORK STRUCTURE OF FCN WITH RENET LAYER 

 
C. FCN with masked convolution 
 
Another method to capture the global contextual 

dependencies is masked convolution from Google Deepmind[5]. 

Masked convolution is one of the autoregressive models that 
predicts the output variable depends linearly on its own previous 
values. By using the convolution operation masked on the lower-
right from the center, it can learn the global contextual 
dependencies of the dataset. Fig. 3 shows the network structure of 
FCN with masked convolution. 

 

 
FIG. 3 THE NETWORK STRUCTURE OF FCN WITH MASKED 

CONVOLUTION 
 
D. FCN with RGB-D input 
 
An additional depth information can improve the performance 

of semantic segmentation. In order to consider the depth 
information, we construct Siamese networks for one channel depth 
input. The additional depth branch is same as the original FCN 
baseline but the channel of input layer should be changed to one 
channel since the channel of the input depth is one. The output 
feature maps from the color and depth branch are summed up by 
the elementwise operation. Fig. 4 represents the network structure 
of FCN with RGB-D input. 

 
FIG. 4. THE NETWORK STRUCTURE OF FCN WITH RGB-D INPUT 

 
E. FCN with RGB-HHA input 
 
The HHA representation is a geocentric feature encoding 

converted from the depth map [7]. It consists of three channels and 
each channel represents the height above the ground, the horizontal 
disparity and the angle with the gravity vector, respectively. This 
expressive feature encoding helps the network to learn the 
distinguishable representation from the ordinary depth information 
for the semantic segmentation. Fig. 5 shows the network structure 
of FCN with RGB-HHA input. As similar as the network structure 
of FCN with RGB-D input, it is composed of the Siamese 
networks and the late fusion at the end of the network. 
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FIG. 5 THE NETWORK STRUCTURE OF FCN WITH RGB-HHA INPUT 

 
F. Hybrid method 

 
The hybrid method is a combination of the masked 

convolution and ReNet layer. For the color branch, we exploited 
the masked convolution block to capture the global contextual 
dependencies. For the depth branch, we employed the ReNet layer 
to capture the global contextual dependencies. 

 

 

Experiment Results 
 
A. Evaluation dataset 
We explored the FCN variants with the publically available 

RGB-D datasets: NYUDv2 and SUNRGBD [7]. NYUDv2 dataset 
contains 795 images for the training and 654 images for the test 
from a variety of indoor scenes with 13 class labels. This dataset is 
relatively smaller then SUNRGBD dataset, therefore it is suitable 
for checking the tendency of the network performance.  

Next, SUNRGBD dataset contains 5285 images for the 
training and 5050 images for the test. This dataset was captured by 
four different RGB-D sensors and includes more images from 
diverse indoor environments with 37 class labels, therefore it is 
suitable for the extensive experiments for the semantic 
segmentation. 

Both datasets provide the RGB, depth images and the 
corresponding semantic label sets produced by the manual 
endeavor from annotation tools. Especially for SUNRGBD dataset,  

since it offers a toolbox for computing the HHA 
representation, we aggressively exploited the toolbox. 

 
B. Evaluation metric 

We evaluated the performance of the semantic segmentation by 
three different measures: overall accuracy, mean accuracy and 
mean intersection over union.  

The overall accuracy is the percentage of the correctly classified 
pixels, defined by 

 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝑁

𝑇𝑃0
0

, 𝑐 ∈ {1, … , 𝐾} (1) 

Next, the mean accuracy is the average of classwise accuracy, 
defined by 

 

𝑚𝑒𝑎𝑛	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝐾

𝑇𝑃0
𝑇𝑃0 + 𝐹𝑃00

	 (2) 

Lastly, the mean intersection-over-union (IoU) is an average 
value of the intersection of the prediction and ground truth regions 
over the union of them, defined by 
 

𝑚𝑒𝑎𝑛	𝐼𝑜𝑈 =
1
𝐾

𝑇𝑃0
𝑇𝑃0 + 𝐹𝑃0 + 𝐹𝑁00

	 (3) 

 
C. Hardware specification and hyperparameters 

In our experiments, we employed NVIDIA Geforce GTX 1080 
Ti with 11GB RAM. We used the stochastic gradient descent. The 
learning rate, momentum, and weight decay are 10>? , 0.99 and 
5>A  respectively. The number of epoch was 50 and the total 
training time was approximately one day for RGB variants and two 
days for RGB-D, RGB-HHA variants. 
 

D. Qualitative results 
Through Table 1 to 8, those show the exploring results from FCN 
variants with the different evaluation measures and the datasets. 

From the experiment, we can reach several conclusions. First, 
FCN baseline shows the better results when it exploits the depth or 
HHA encoding for the network. FCN with ReNet layer produces 
the growing trend like FCN baseline, this, however, indicates a 
slightly worse result than each of them.  

When we only compare the RGB input case, FCN with 
masked convolution shows the best result among the others but 
represents the worse result when it considers the depth branch. 
This shows the masked convolution is beneficial on the color 
branch but not the depth branch.  

Conclusion 
In this paper, we explored the variants of the fully convolutional 
networks with the local and global contexts and diverse input 
encodings. For the global contextual dependencies, we 
experimented the ReNet layer and the masked convolution. For the 
input feature encodings, we experimented RGB, RGB-D, and 
RGB-HHA. The test results indicate the masked convolution is 
good for the color branch but not the depth branch. Also, ReNet 
layer is compatible with the color and depth branch but not 
outperform the baseline network. We hope this inspiration is going 
to be beneficial future network models for semantic segmentation 
problem. 
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TABLE 1 VISUALIZATION OF THE RESULT FROM NYUDV2  
 NYUDv2 
 color image 

 

depth image 

 

HHA image 

 

label image 
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with ReNet Layer 
 

with masked conv. 
 

Hybrid 
 

   

 

 

    

     
 
 

TABLE 2 NYUDV2 MEAN IOU 
 Baseline with ReNet layer with masked convolution Hybrid method 

FCN RGB 0.33013 0.31877 0.36638  
FCN RGB-D 0.34947 0.33803 0.34644 0.37582 

FCN RGB-HHA 0.38284 0.37668 0.32541 0.40218 
 

TABLE 3 NYUDV2 MEAN ACCURACY 
 Baseline with ReNet layer with masked  convolution Hybrid method 

FCN RGB 0.46821 0.45994 0.51028  
FCN RGB-D 0.48753 0.47480 0.48485 0.51520 

FCN RGB-HHA 0.52087 0.51159 0.45208 0.54824 
 
 

TABLE 4 NYUDV2 OVERALL ACCURACY 
 Baseline with ReNet layer with masked  convolution Hybrid method 

FCN RGB 0.57633 0.56781 0.60167  
FCN RGB-D 0.59422 0.58880 0.56407 0.61135 

FCN RGB-HHA 0.61602 0.61288 0.56141 0.58121 
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TABLE 5 VISUALIZATION OF THE RESULT FROM SUNRGBD 
 SUNRGBD 
 color image 

 

depth image 

 

HHA image 

 

label image 

 
  

Baseline 
 

with ReNet Layer 
 

with masked conv. 
 

Hybrid 
 

   

 

 

    

     
 
 

TABLE 6 SUNRGBD MEAN IOU 
 Baseline with ReNet layer with masked  convolution Hybrid method 

FCN RGB 0.18282 0.18140 0.20674  
FCN RGB-D 0.21219 0.20585 0.21623 0.22468 

FCN RGB-HHA 0.19939 0.21550 0.20861 0.22995 
 

TABLE 7 SUNRGBD MEAN ACCURACY 
 Baseline with ReNet layer with masked  convolution Hybrid method 

FCN RGB 0.24742 0.24845 0.28679  
FCN RGB-D 0.28543 0.28500 0.31475 0.31371 

FCN RGB-HHA 0.26992 0.30084 0.29126 0.32084 
 

TABLE 8 SUNRGBD OVERALL ACCURACY 
 Baseline with ReNet layer with masked  convolution Hybrid method 

FCN RGB 0.57705 0.57918 0.59035  
FCN RGB-D 0.59416 0.59669 0.56568 0.59358 

FCN RGB-HHA 0.59615 0.59898 0.58167 0.59600 
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