
Change Detection in Cadastral 3D Models and Point Clouds and
Its Use for Improved Texturing
Sander Klomp; Eindhoven University of Technology, SPS-VCA group of Electr. Eng., Eindhoven, the Netherlands
Bas Boom; CycloMedia Technology, Zaltbommel, the Netherlands
Thijs van Lankveld; CycloMedia Technology, Zaltbommel, the Netherlands
Peter H.N. de With; Eindhoven University of Technology, SPS-VCA group of Electr. Eng., Eindhoven, the Netherlands

Abstract
By combining terrestrial panorama images and aerial im-

agery, or using LiDAR, large 3D point clouds can be generated
for 3D city modeling. We describe an algorithm for change detec-
tion in point clouds, including three new contributions: change
detection for LOD2 models compared to 3D point clouds, the ap-
plication of detected changes for creating extended and textured
LOD2 models, and change detection between point clouds of dif-
ferent years. Overall, LOD2 model-to-point-cloud changes are
reliably found in practice, and the algorithm achieves a precision
of 0.955 and recall of 0.983 on a synthetic dataset. Despite not
having a watertight model, texturing results are visually promis-
ing, improving over directly textured LOD2 models.

Introduction
Since increasingly more municipalities use 3D cadastral

data, the correctness of 3D models is becoming crucial for var-
ious city-management applications. Today, many modern cities
maintain databases of 3D Level Of Detail 2 (LOD2) [1] models
of buildings for cadastral applications, such as real-estate evalua-
tion, city planning, or property visualization. However, many of
these models are either poorly constructed, or no longer represent
reality because cities continuously change. By combining terres-
trial images and aerial imagery, or using LiDAR, large 3D point
clouds can be generated to update existing 3D city models.

Large-scale image and LiDAR data is highly suited for de-
tecting changes at city scale, as has been shown for aerial pho-
tographs [2], LiDAR [3], terrestrial images [4], or combinations
[5]. Especially LiDAR is useful for detecting small geometric dif-
ferences, due to the geometric accuracy of LiDAR point clouds
[5]. Post-processing of changes, by filtering out uninteresting
changes such as pedestrians, cars and vegetation, is a further pos-
sibility [6][7]. For cadastral data, change detection has also been
performed, by using 2D image projections [8]. Opposed to using
projections in 2D photographs, performing the change detection
on 3D point clouds has the advantage of being less sensitive to the
accuracy of the 3D data [9]. This is especially important if aerial
imagery are used for creating the point cloud.

This paper explores the possibility of using 3D point clouds
for accurate change detection in cadastral city models. Directly
meshing the point cloud for creating an LOD2 model leads to
noisy surfaces and model imperfections. Our first contribution
is the detection of coarse-scale changes from 3D point clouds at
the level of 3D cadastral models of buildings. The second, most
novel contribution, directly extends the LOD2 model with pla-
nar surfaces found in point clouds. A new implementation of

Cyclorama
point cloud

data

LOD2 mesh

Data
Selection

Pre-
Processing

Find
Building
Clusters

Find
Extension

Clouds

Find Planes
and

Intersections

Find 2D
Polygon
Shapes

Triangulate
Planes

Add Meshes
to LOD2
Model

Texture
Extended

LOD2 Mesh

City Block Level Extension
Level

Plane
LevelSample

MeshBounding Box

Cyclorama
Sensor

Position Data

A B C

E
G

Neighbor
Filtering

Normal
Correction

D

F

Meshing

Building Level

INPUT

PROCESS

OPTIONAL

Legend:

Figure 1. Extension detection and texturing pipeline. Capitals below pro-

cesses are noted as ’stages’ in the text.

generalized alpha hull [10] is employed, which creates a simpli-
fied polygon with a minimal number of vertices. Both contribu-
tions apply to Method 1. The third contribution is a point-cloud-
based change detection in urban environments, which is resilient
to noise (Method 2). The algorithm for detecting extensions to
LOD2 models is evaluated both visually on real data, and quanti-
tatively on a synthetic dataset, yielding attractive visual results.

Method 1: Cadastral change detection and
model correction

Given a cadastral LOD2 3D model of a building and a set
of aerial and terrestrial images, the objective of our algorithm is
to find an extended LOD2 model, which has been corrected us-
ing the urban point cloud from the images. To achieve this, we
find the significant differences between the LOD2 model and ur-
ban point cloud and create simple planar representations of these
differences. The algorithm employs the framework as depicted
in Fig. 1. First a building of interest is selected, i.e. an LOD2
mesh, whose bounding box is used to filter the point cloud. After
that, the ground plane is removed to reduce false positives, and
point cloud clusters of buildings are extracted. The LOD2 model
is point-sampled and compared to the detected building clusters
to find extensions. Then, planes are fitted to the extensions, con-
verted to simple meshes, added to the LOD2 model, and finally
textured. Each of the pipeline stages of Fig. 1 is explained below.

Data selection
The LOD2 models are triangular meshes of simple building

blocks, while the input city data is a point cloud. Relevant regions
are selected, based on their intersection within an extended axis-
aligned bounding box around the LOD2 model. Note that this
means that extensions having dimensions larger than the bound-
ing box extension are not guaranteed to be entirely detected. We
assume that such large extensions are special cases, and are not
relevant to the rest of the algorithm.

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 455-1

https://doi.org/10.2352/ISSN.2470-1173.2019.7.IRIACV-455
© 2019, Society for Imaging Science and Technology

Pre-processing
The LOD2 model location and point cloud coordinates

are accurate enough without registration. This leaves two pre-
processing steps: downsampling of the point clouds to ensure that
further processing thresholds work well, and ground removal to
individually cluster building point clouds.

First, downsampling is applied if needed. The framework
uses many thresholds that depend on the density of the data.
Hence, downsampling the point cloud to match the density for
which all default parameter values are intended, is simpler than
retuning all thresholds. As only coarse differences are desired,
data loss due to downsampling is not an issue. The downsam-
pling is performed using a voxel grid, where each downsampled
point is the centroid of all points contained in the voxel. Second,
ground removal is required to prevent region growing beyond the
building of interest. Hence, the ground points are removed from
the point cloud. This process consists of three steps.

1. Compute point normals by applying PCA on the covariance
matrix of the neighboring points within radius r.

2. Remove points that have insufficient neighbors to compute
the normals. This serves as outlier removal.

3. Remove points whose z-coordinate is within a margin
around an estimated ground level and simultaneously the
normal is close to a vertical orientation. Both the margin
and allowed normal range are computed from a maximum
ground slope.

Extension detection
Finding the separate extension point clouds consists of first

splitting the point cloud into separate buildings, then sampling the
LOD2 model to allow comparison, and finally detecting extension
clusters by comparing the buildings to the sampled LOD2 model.
These three processes use various Euclidean distance-based tech-
niques to cluster and filter points.

From the groundless point cloud, the building of interest can
be separated from the other buildings with Euclidean clustering
[11]. Connected buildings will still be included in this cluster,
which will be compensated at a later phase. Directly comparing
a point cloud to a mesh can be expensive without intelligent and
complex use of octrees. Instead, the LOD2 mesh is converted to
a point cloud by simply sampling its faces. This sampling adds
points randomly on all triangular mesh faces, with uniform dis-
tribution. Theoretically, this means that ’holes’ may occur in a
triangle when the added points are randomly placed only near
the edges of the triangle. However, when sampling is sufficiently
dense, this is not a problem in practice. All mesh vertices are in-
cluded in the sampled model, as these corner points are often rel-
evant when computing distances between point clouds. Now that
all data are in point cloud format, the LOD2 model cloud can be
’subtracted’ from the building cloud, by removing all points from
the real point cloud within a thresholded distance to the sampled
LOD2 model point cloud. This leaves only points that are exten-
sions, strong noise, or connected neighboring buildings.

Neighboring building filtering
Discovered extensions may contain neighboring buildings

due to the Euclidean clustering. Connected neighboring build-
ings are removed by using their corresponding LOD2 models. It
is assumed that any extension that is above a neighbor’s ground

face should be part of that neighbor, and not the current build-
ing. The extension points are projected to the ground plane, and
filtered based on their distance to the neighbor ground face. Af-
ter filtering, floating extensions are removed. ’Floating’ refers to
point clusters that no longer connect to the original LOD2 model
after neighbor filtering. It is still possible that an extension in-
cludes (part of) a neighbor extension, if it is directly connected
to the main building and not above the neighbor’s footprint. This
limitation could be remedied if full parcel data is available.

Extension meshing
Meshing the detected extension clusters consists of the four

processes shown in Fig. 1 Stage E. Note that we are not interested
in a standard mesh from point cloud, e.g. directly triangulating
the cluster point cloud, but desire a simplified representation that
fits the supplied LOD2 model. Hence, the extension is split into
simple planar polygon shapes prior to triangulation.

Find planes and intersections
A standard method for finding planes (or other shapes) in

point cloud data, is Random Sample Consensus (RANSAC) [12].
This performs well if only a single plane in the data should be
found, but fails if a split of complex data into local planes is de-
sired. A solution to this problem has been implemented by Schn-
abel et al. [13], and is called ’Efficient RANSAC’. This algorithm
splits the extension into several plane-like point clouds.

Optionally, the full building cluster can be used for the Effi-
cient RANSAC plane fitting, represented by the dashed arrow in
Fig. 1. This ensures that extension planes approximately aligned
with an existing wall will also be fitted to match this existing wall,
instead of risking skew due to only fitting on the smaller noisy ex-
tension data.

For better meshing and texturing results, we should ensure
that the discovered planes will, when meshed, connect to their
neighboring planes and the LOD2 model. For each plane in the
extension, the neighboring planes are found and plane intersec-
tions are computed. Similarly, each plane is compared to neigh-
boring planes in the LOD2 model. Splitting the sampled LOD2
model into planes can be done directly from the original mesh, by
merging neighboring triangles based on their normals until only
non-coplanar polygon faces remain.

Find 2D polygon shapes
Creating a simplified planar mesh from the point cloud re-

quires two more steps after finding RANSAC plane inliers. First,
all plane inliers are projected onto the plane, and second, a shape
description is desired, to reduce the amount of triangles created
by triangulation. The outline of a 2D point cloud can be found
using the Alpha Hull algorithm [14]. However, the projection of
points on their planes causes some plane clouds to become visu-
ally disjoint from other plane clouds, which would introduce gaps
during meshing. These gaps can be reduced using the ’general-
ized alpha shape’ [10], with computed plane intersections. Our
method is inspired by this generalized alpha shape, though differs
slightly, because we maintain a fully point-based implementation
of the alpha shape. Fig. 2 portrays the extra steps taken compared
to a normal alpha shape. We project points within distance 2α of
the plane intersections, resulting in an alpha hull that is guaran-
teed to touch neighboring alpha hulls on the plane intersections.

455-2
IS&T International Symposium on Electronic Imaging 2019

Intelligent Robotics and Industrial Applications using Computer Vision 2019

α

Original point

Projected point

Alpha hull point

Intersection point

Alpha shape

Plane intersection line

2α distance line

Figure 2. Example of our implementation of the generalized alpha shape.

The circle shows the value of alpha (α) used in this example.

It may happen that a single plane is described by multiple sim-
ple polygons, if said plane contains very large holes. To improve
the simplicity of the resulting polygons, any points of a polygon
that are not already part of a plane intersection are approximated
by a RANSAC line, provided that sufficient inliers can be found,
shown by the green line in Fig. 2. This reduces the prevalence of
serrated edges in the mesh. Furthermore, to reduce the amount of
triangles after triangulation, all non-end points of the set of points
on a plane intersection line are removed from the alpha hull. Fi-
nally, if an intersection of lines, either RANSAC lines or plane
intersection lines, is close to the plane-projected point cloud, this
intersection point is added to the alpha hull, as shown in light blue
in Fig. 2. This step closes holes in the mesh, primarily around the
corners of buildings.

There are many options for triangulating simple polygons,
and we choose to use the simple Ear Clipping (EC) [15] method,
with an implementation based on FIST [16][17].

Triangular mesh normal correction
An additional challenge is determining the face direction of

the newly triangulated planes, because the extension meshes are
not watertight, hence there is no inherent definition of ’outside’.
All the points in the point cloud have been generated from either
terrestrial or aerial images, hence we can use the location of the
camera from where a point has been generated, as described in
Algorithm 1.

Algorithm 1 Algorithm for plane triangle facing correction
Input: triangulated plane, thresholds T1, T2
Output: corrected plane

1: for each triangle do
2: Compute centroid C and its normalized vector to sensor s
3: Find closest point cloud point to centroid and sensor loca-

tion generating this point
4: Compute dot product d of triangle normal nxyz and s
5: if (d < 0) then nxyz =−nxyz end if
6: end for
7: Flip triangles to match orientation of largest |d| and compute

average dot product dav
8: if dav < T1 and |nz| < T2 and nz < 0 then Flip all triangle

normals end if
9: return Corrected plane

Texturing
Once the extended LOD2 model mesh has correct triangle

normals facing outward, it can be textured. The texturing is per-

Old Point
Cloud Data

Data
Selection

Pre-
Processing

Find
Changes

Find Change
Clusters

City Block Level

Per Change
Cluster Level

Sensor
Position Data

1 2

3 4

New Point
Cloud Data

Data
Selection

Pre-
Processing

Filter
Curvature

Bounding Box

5

1 2

INPUT

PROCESS

OPTIONAL

Legend:

Figure 3. Flowchart of the change detection algorithm. The numbers de-

note ’stages’.

formed by mapping parts of the terrestrial panorama images and
aerial images to triangles of the model using texture atlases, and
UV-coordinates per vertex. The resulting textures are not ortho-
rectified, and have a pre-determined pixel size. Loopy belief prop-
agation is used to select the best textures from multiple cameras,
while reducing seams and small occlusions. The full texturing
method was developed by the company CycloMedia and has not
been published.

Method 2: Point cloud change detection
Parts of our algorithm for extension detection are also suited

for change detection on point clouds. The framework for change
detection is shown in Fig. 3, having strong similarities with Fig. 1.
Data selection adopts only the points that are present in the bound-
ing boxes of both datasets in each point cloud. Pre-processing
entails optional ground removal and optional downsampling. In
Stage 3 of Fig. 3, an old point cloud is subtracted from a new one
or vice versa, similarly to how the LOD2 model was ’subtracted’
from the point cloud earlier.

The resulting differences are often noisy, which is solved by
applying Euclidean clustering with minimum cluster size. Exe-
cuting the change detection both ways (new versus old and vice
versa) results in ‘added change’ and ‘removed change’ with re-
spect to the old cloud. Various thresholds make this algorithm
dependent on point cloud density, and the cloud should thus be
downsampled if necessary. Curvature filtering can be applied to
remove chaotic changes. Examples of changes that often can be
removed by this are trees or irregular bushes, while planar changes
such as new buildings or cars, are preserved.

Experimental setup
The LOD2 models for the experiments have been supplied

by the Dutch Cadastre, Land Registry and Mapping Agency
(Kadaster, Apeldoorn, The Netherlands), and the 3D point clouds
by the company CycloMedia (Zaltbommel, The Netherlands),
generated from their panoramic and aerial images. For the ex-
tension detection, ground truth is absent, hence we have created a
synthetic dataset to quantitatively evaluate the extension detection
algorithm. Change detection is tested on both 3D point cloud data
from images and LiDAR data. The entire framework is imple-
mented in C++, and makes use of the Point Cloud Library [11].

Synthetic dataset generation
The synthetic dataset consists of three parts: (1) synthetic

point cloud to resemble the 3D point clouds from CycloMedia
(2) synthetic LOD2 model without extensions, created by sim-
plifying a real LOD2 model, and (3) ground-truth building with
extensions, for which we use the non-simplified LOD2 model.

The synthetic point cloud is created in several steps:

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 455-3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

Pr
ec

is
io

n

Recall

Precision-Recall Curve

Planar

Point

Figure 4. Synthetic data Precision-Recall curve. ‘Planar’ refers to recall and

precision computed on per-plane basis, ‘point’ refers to recall and precision

computed on per-point basis.

1. Select an LOD2 building mesh of interest,
2. Collect neighbors (also LOD2 meshes) of the model of in-

terest,
3. Sample all meshes to achieve point clouds with similar den-

sity to point clouds from images,
4. Create a randomly sampled plane at ground height,
5. Add Gaussian noise and outliers.

Note that in this synthetic dataset various sources of real-world er-
rors are not present. Some examples of absent sources are: trees
and plants touching the building, cars parked very close to a build-
ing, or rather noisy points from aerial images. Manually creating
synthetic buildings with and without extensions is time consum-
ing. Instead, we apply Quadric Mesh Simplification [18] on the
building, which cuts-off multiple extrusions from the building, to
create a synthetic extension-less building. The difference between
an unsimplified and simplified building is the extension ground
truth.

Results
Extension detection and the LOD2 model extension are ver-

ified on the synthetic dataset, and textured results are validated
by visually comparing 167 3D-textured models, out of which a
complicated case is shown in this paper. Change detection on
point clouds is evaluated on both point clouds from terrestrial and
aerial images, and LiDAR data.

Extension detection on synthetic data
All tests have been performed on a set of 2,793 different

LOD2 models, taken from a small city center. Here, most build-
ings are row houses and flats, although special buildings like
churches occur. Generally, we are interested in whether all planes
making up the extension are reconstructed, not the individual
points. Hence, we define an extra precision (Pr) and recall (Rc)
metric, based on the generated planes. A ground-truth plane is
considered a false negative, when it is covered for less than 50%
by detected extension planes. A detected plane is considered a
true positive, if at least 50% of its points are within the distance
margin to a ground-truth plane. Determining plane overlap re-
quires a distance threshold, which is set to 50 cm.

Calculating planar Pr and Rc for various minimum extension-
cluster size thresholds (100, 200, 400, 800), results in the Pr-Rc

curve as shown in Fig. 4. These thresholds give only 4 perfor-
mance points, because going below 100 or above 800 is empiri-
cally not useful. Point-by-point Pr and Rc values are significantly
higher than their planar counterparts. Because the data points are
found reliably, low planar scores are a result of the plane-fitting
part of the algorithm, not the extension detection. The fact that
primarily Pr scores are worse, means that many small spurious
planes are fitted, which is supported by real-world results.

To determine more about the nature of the errors, the addi-
tional metrics shown in Table 1 are computed. The metric ‘av-
erage squared distance’ is a distance measure from each detected
point to the nearest ground-truth plane point. When planes are
shifted or mis-oriented in space with respect to each other, this
metric shows a larger value. The ‘weighted average inlier frac-
tion’ measures the fraction of points per found extension plane
that is within the distance threshold to its ground-truth plane. This
is a measure of plane overlap, and equals unity as long as the en-
tire plane is within 50 cm to the ground truth. Finally, ‘average
planar angle deviation’ computes the angle between found plane
and ground-truth plane. Table 1 shows increasing errors for grow-
ing minimum extension sizes.

Meshing and texturing
Various issues arise when fitting planes and meshing the dis-

covered extensions. Fig. 5a shows several of these issues on a
complicated extension.

Markers 1 and 2 indicate cases where a plane does not quite
extend to the black LOD2 model or ground, leaving a hole in the
mesh. This tends to happen wherever point cloud data is espe-
cially sparse in a large area, so that the plane intersection points
along with the alpha shape can no longer close the hole. Marker 3
shows a simple error caused by Euclidean clustering, where a car
has been included in the extension point cloud. Marker 4 shows
a common case of a plane fitted on noise. After fitting the front
of the building, enough points may remain to fit a plane perpen-
dicular to the wall surface and into the window ’alcove’. This
may be partially resolvable by fine-tuning the plane RANSAC-
inlier threshold and minimum inlier count. Markers 5 and 6 show
cases of plane over-extension, which result from plane intersec-
tion computations that are supposed to fill holes.

Textured models reveal some other errors more clearly, as
shown in Fig. 5b. Incorrect triangle facing is common, and causes
missing textures due to back-face culling, as shown in Fig. 5b
Marker 3. Another common issue is a roof that has a slightly dif-
ferent incline than its LOD2 counterpart. The extension will only
be detected from the points where the distance between the two
becomes too large, at which point-plane intersections between the
two will be too far away from the detected plane for the hole to
be closed by the alpha shape. This happens in Fig. 5b Marker 1,
though the result is still arguably better than the original. Marker 2
shows a large roof discovered solely from aerial points, which has
a small triangle missing, due to low density.

Figs. 5b and 5c allow for visual comparison of extended
and base textured model. This example is a complicated case,
though the resulting extended model represents the average im-
provement for many buildings. Buildings with extensions con-
necting to neighbor extensions will generally lead to poor cases,
while simple extensions such as dormers, are generally processed
without problems.

455-4
IS&T International Symposium on Electronic Imaging 2019

Intelligent Robotics and Industrial Applications using Computer Vision 2019

Metrics for finding extensions on the synthetic point cloud dataset. Table left side: point metrics, right side: plane-based metrics.
Min.
cloud
size

Point
precision

Point
recall

Average
squared
distance

Average
inlier
fraction

Average plane
angle deviation

Planar
precision

Planar
recall

100 0.955 0.983 0.565 0.949 5.07 0.944 0.828
200 0.905 0.988 2.04 0.894 14.16 0.789 0.954
400 0.831 0.991 3.99 0.813 28.39 0.586 0.969
800 0.743 0.991 4.97 0.789 39.09 0.454 0.978

(a) (b) (c)
Figure 5. Examples of textured building blocks. The numbers indicate various types of undesirable algorithm behavior. (a) Meshed complicated extension.

(b) Extended textured building block. (c) Original textured building block. (Best viewed in color.)

Change detection
Point-cloud-based change detection is a secondary result of

the extension detection algorithm, and thus not the focus of this
paper. However, testing has revealed some interesting results that
are worth analyzing.

The change detection algorithm is tested on datasets taken
from the same area, one year apart. For this, two types of data
have been used in tests: point clouds created from multiple ter-
restrial images, and colored LiDAR point clouds. Aerial data was
deliberately not included, due to the large error margin of up to
several meters. The result of the change detection on image-based
point clouds, with ground removal, is shown in Fig. 6. Markers
1 and 4 show undesirable changes, caused by strong wind and
edge effects, respectively. The red points near Marker 2 show a
small alley of which no updates were available, hence the algo-
rithms determine that a part of a wall must have been removed
here. Marker 3 shows a type of change one likely wants to de-
tect, namely a large block that was placed on the street. Whether
these detections are a problem depends on the application. Post-
filtering, for example based on curvature, could remove some un-
desired types of detections. The method is equally well applicable
to LiDAR point clouds, provided that they are downsampled first.

Conclusions and discussion
We have described an algorithm for change detection in

point clouds, including 3 new contributions: change detection for
LOD2 models compared to 3D point clouds, the application of de-
tected changes for creating extended and textured LOD2 models,
and change detection between point clouds of different years.

First, the detection of significant differences between a point
cloud and LOD2 model has been performed based on various Eu-
clidean distance-based metrics and repeated clustering. This point
cloud-based part of the algorithm performs well, although it tends
to find more than extensions. It achieves a recall of 0.983 with a
precision of 0.955 on a synthetic dataset, with the precision drop-

ping sharply if slightly more recall is desired.

Second, the extension of the LOD2 models using simple pla-
nar shapes, based on detected changes, has been investigated.
Texturing these extended models yields visually promising re-
sults, and provides a clear improvement over directly-textured
LOD2 models. However, the models are visually still far from
perfect. Additional work is required to achieve fully connected,
water-tight textured meshes.

Third, a modified version of the extension detection algo-
rithm is applied for change detection between two point clouds.
This algorithm is highly robust to noise, and capable of finding
large, significant changes.

The methods used also contain several notable limitations.
First, the synthetic dataset applied to evaluate the extension point
cloud finding algorithm lacks many sources of real-world artifacts
(vegetation, vehicles etc.), so that the precision results are too op-
timistic. A true quantitative measurement of the effectiveness of
the algorithm requires LOD2 models with and without extensions,
which are not freely available. Second, ground removal assumes
approximately horizontal ground, which can be remedied by fit-
ting a ground plane.

Future work should focus on two aspects. First, finding a bet-
ter discrimination between extensions of the current building and
neighboring buildings, so that any extension that is detected in the
point cloud is guaranteed to be correct. Second, water-tightening
post-processing techniques could be applied to allow for applica-
tions of the extended LOD2 model, as if it were a normal LOD2
model.

Acknowledgements
The authors would like to thank CycloMedia for providing

high-quality terrestrial and aerial images, as well as the cadastral
LOD2 models.

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 455-5

Figure 6. Change detection result on a point cloud, where the ground has been removed.

References
[1] G. Gröger, T. Kolbe, C. Nagel, and K.-H. Häfele, “OGC City Geog-

raphy Markup Language (CityGML) Encoding Standard,” Ogc, pp.
11 – 12, 2012.

[2] R. Qin, “Change detection on LOD 2 building models with very
high resolution spaceborne stereo imagery,” ISPRS Journal of Pho-
togrammetry and Remote Sensing, vol. 96, pp. 179–192, 2014.

[3] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault,
“Change detection on points cloud data acquired with a ground laser
scanner,” International Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, vol. 36, no. 3, p. W19, 2005.

[4] F. Pédrinis, M. Morel, and G. Gesquière, “Change Detection of
Cities,” in 3D Geoinformation Science: The Selected Papers of the
3D GeoInfo 2014, M. Breunig, M. Al-Doori, E. Butwilowski, P. V.
Kuper, J. Benner, and K. H. Haefele, Eds. Cham: Springer Inter-
national Publishing, 2015, pp. 123–139.

[5] R. Qin and A. Gruen, “3D change detection at street level using
mobile laser scanning point clouds and terrestrial images,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 90, pp. 23–
35, 2014.

[6] A. Taneja, L. Ballan, and M. Pollefeys, “Image based detection of
geometric changes in urban environments,” 2011 International Con-
ference on Computer Vision, pp. 2336–2343, 2011.

[7] a. K. Aijazi, P. Checchin, and L. Trassoudaine, “Detecting and up-
dating changes in Lidar point clouds for automatic 3D urban car-
tography,” ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. II-5/W2, no. November, pp. 7–12,
2013.

[8] A. Taneja, L. Ballan, and M. Pollefeys, “City-scale change de-
tection in cadastral 3D models using images,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pp. 113–120, 2013.

[9] R. Qin, J. Tian, and P. Reinartz, “3D change detection Approaches
and applications,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 122, pp. 41–56, 2016.

[10] T. van Lankveld, “Large Scale Shape Reconstruction from Urban
Point Clouds,” Ph.D. dissertation, Utrecht University, Netherlands,
2013.

[11] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipula-
tion in Human Living Environments,” KI - Künstliche Intelligenz,
vol. 24, no. 4, pp. 345–348, 2010.

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM, vol. 24,

no. 6, pp. 381–395, 1981.
[13] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-

cloud shape detection,” Computer Graphics Forum, vol. 26, no. 2,
pp. 214–226, 2007.

[14] H. Edelsdrunner and D. G. Kirkpatric, “On the shape of a set of
points in the plane,” IEEE Transactions On Inforamtion Theory,
vol. 29, pp. 551–559, 1983.

[15] H. ElGindy, H. Everett, and G. Toussaint, “Slicing an ear using
prune-and-search,” Pattern Recognition Letters, vol. 14, no. 9, pp.
719–722, 1993.

[16] M. Held, FIST: Fast Industrial-Strength Triangulation of Polygons,
2001, vol. 30, no. 4.

[17] “Earcut Github Repository,” 2016. [Online]. Available: https:
//github.com/mapbox/earcut.hpp

[18] S. Forstmann and C. Rorden, “Fast Quadric Mesh Simplifi-
cation,” 2015. [Online]. Available: https://github.com/sp4cerat/
Fast-Quadric-Mesh-Simplification

Author Biography
Sander Klomp received both his BS and MS from the Eindhoven Uni-

versity of Technology (2016,2018) with the designation Cum Laude. He is
now pursuing a PhD degree at TU/E in collaboration with ViNotion, with
a focus on efficient deep learning algorithms.

Thijs van Lankveld received his MSc in knowledge engineering from
the University of Maastricht (2007) and his PhD in computational geom-
etry from Utrecht University (2012). After working at INRIA - Sophia An-
tipolis and Geometry Factory, he now works at Cyclomedia Technology.
His work has focused on 3D scene processing; specifically point clouds,
shapes, surfaces, textured meshes, and scene projections.

Bastiaan Boom graduated at the Free University of Amsterdam in
Computer Science in 2005. He received his PhD at the University of
Twente (2010) in Electrical Engineering, where his thesis was entitled
Face recognition’s grand challenge: uncontrolled conditions under con-
trol. From 2011 until 2015 he worked as postdoc at University of Edin-
burgh on the Fish4Knowledge project. Currently within Cyclomedia, he is
cluster lead of the group where they develop computer vision and machine
learning algorithms.

Peter de With is Full Professor of the Video Coding and Architec-
tures group in the Department of Electrical Engineering at Eindhoven
University of Technology, which he leads since 2000. De With is a Fellow
of the IEEE, has (co-)authored over 400 papers on video coding, analysis,
architectures, 3D processing and their realization and has received multi-
ple papers awards. He is a program committee member of the IEEE CES
and ICIP and holds some 30 patents.

455-6
IS&T International Symposium on Electronic Imaging 2019

Intelligent Robotics and Industrial Applications using Computer Vision 2019

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

