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Abstract
Video-based detection of moving and foreground objects is a

key computer vision task. Temporal differencing of video frames
is often used to detect objects in motion, but fails to detect slow-
moving (relative to the video frame rate) or stationary objects.
Adaptive background estimation is an alternative to temporal
frame differencing that relies on building and maintaining sta-
tistical models describing background pixel behavior; however, it
requires careful tuning of a learning rate parameter that controls
the rate at which the model is updated. We propose an algorithm
for statistical background modeling that selectively updates the
model based on the previously detected foreground. We demon-
strate empirically that the proposed approach is less sensitive to
the choice of learning rate, thus enabling support for an extended
range of object motion speeds, and at the same time being able to
quickly adapt to fast changes in the appearance of the scene.

Introduction
Foreground detection refers to a set of techniques that aim

at distinguishing foreground objects from background or station-
ary areas in video streams. Motion detection techniques exploit
the assumption that objects of interest are often in motion and
rely on finding largely dissimilar regions across temporally ad-
jacent frames. Consequently, such techniques may fail to detect
slow-moving or stationary objects. Background estimation and
subtraction techniques construct statistical models describing the
pixel behavior of the stationary background, and perform detec-
tion by finding differences between the current video frame and
the constructed background model. According to this approach, a
historical statistical model describing the behavior of each pixel is
constructed. Once constructed, the background model may be up-
dated (e.g., in adaptive techniques) or left unchanged (e.g., in non-
adaptive techniques). Non-adaptive methods have been largely
abandoned due to the fact that the accuracy of the static back-
ground model usually decreases over time. Adaptive methods
update the background model continuously with each incoming
frame at a rate controlled by a predetermined learning rate factor.
Foreground detection is performed by determining a measure of
fit of each pixel value in the incoming frame relative to its con-
structed statistical model: pixels that do not fit their correspond-
ing background model are considered foreground pixels. Adap-
tive background estimation models are thus able to detect slow-
moving and stationary objects. However, selecting the learning
rate involves a tradeoff between how fast the model is updated and
the range of motion speeds that can be supported by the model:
too small a learning rate results in background estimates which do
not adapt quickly enough to fast changes in the appearance of the
scene; conversely, too large a learning rate causes objects that stay

stationary for extended periods (relative to the frame and learning
rates) to be absorbed into the background estimate.

Related Work
Applications that perform analytics from video captured us-

ing stationary cameras are amenable to foreground and motion
detection algorithms. The two most commonly used methods for
motion detection are frame differencing (FD) [1, 2] and back-
ground estimation and subtraction [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13]. FD methods compromise detection performance in favor of
computational efficiency, given that the rate at which the frames
are processed determines the range of object speeds that can be re-
liably supported. On the other hand, background estimation and
subtraction methods tend to be more agnostic to the time scale
and parameter values.

Over the past few decades, various background estimation
and subtraction algorithms have been proposed, each with its own
pros and cons. These methods construct a background appear-
ance model from either a single frame or a temporal sequence
of frames. Popular techniques used to obtain and maintain the
background model for adaptive background subtraction methods
include: 1) temporal median filtering [3], where a sequence of im-
ages are median-filtered to obtain a background model; 2) running
Gaussian averaging [4], where the past behavior of each pixel is
modeled with a Gaussian distribution; 3) modeling via GMMs,
which describe the probability of observing a certain pixel value
at a given instant in time by means of a mixture of Gaussians with
a fixed [5] or an adaptive number of components [6]; 4) kernel
density estimation [7, 14], where the background distribution is
given as a sum of Gaussian kernels. Other methods have been
proposed to model background, including sequential kernel den-
sity approximation [15], co-occurrence of image variations [16],
Eigen backgrounds [17], MinMax [18], etc. More recently, Lo-
cal Binary Pattern (LBP)[19]-like features have been explored for
background subtraction [10, 11, 12, 13]. Once the background
model is available, foreground detection can be performed by de-
termining a measure of fit of each pixel value in the incoming
frame relative to its constructed model. For an in-depth discussion
of various background modeling methods, we refer the reader to
[8, 9].

One of the main limitations of background estimation ap-
proaches is that slow-moving or quasi-stationary foreground ob-
jects may get absorbed into the background model. Inspired by
the context-driven model that incorporates motion information
obtained from FD [20], a context-aware background subtraction
method [21] was proposed wherein motion information (from FD)
is used to determine the confidence level of a pixel belonging to
the foreground, and only low-confidence pixels are used to up-
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date the background model. This method works effectively only
on the edge regions of the foreground object due to the detection
holes that are inherent to FD techniques. A split GMM model was
proposed where two GMMs are used to model background and
foreground separately [22]. A similar scheme was also adopted
in [23]. In [24], an additional moving object classification step
is conducted so that the background model is only updated after
the foreground object moves away. In [25], a statistical approach
that fuses temporal and spatial information was proposed, where
temporal occurrence analysis of foreground/background data is
performed.

Contributions
The main contribution of this paper is an algorithm for adap-

tive background estimation that is robust to the value of the learn-
ing rate. This robustness is achieved by closing the loop on the
background estimation and foreground detection pipeline. Tradi-
tional adaptive background estimation algorithms are open-loop
since the outcome of decisions based on the model are not used
to make decisions about the model itself. We propose a closed-
loop alternative that feeds back the foreground detection mask and
updates the models corresponding to different pixels at different
rates based on the detected foreground. The proposed algorithm
is robust to the choice of learning rate by slowing down the model
updating process at locations where foreground objects are de-
tected, and speeding it up at other locations. As a secondary con-
tribution, empirical validation of the improved robustness of the
proposed algorithm is presented.

Traditional Statistical Background Modeling
Let Ft denote the t-th video frame represented as an array

of pixel values (single or multiple color channels), where t repre-
sents a temporal index. Let BGt denote the t-th background model
represented as an array of pixel-wise statistical models. Statisti-
cal background model BGt+1 is estimated by updating the cur-
rent background model BGt based on current and previous video
frames F1 through Ft . Foreground mask FGt is a binary mask
indicating the location of detected foreground (ON pixels) and
background (OFF pixels) areas. FGt is estimated by performing a
pixel-wise fit test between the values in Ft and the statistical mod-
els in BGt ; specifically, pixels that do not fit their corresponding
background model are considered foreground pixels, and vice-
versa. Fig. 1(a) illustrates the traditional process for adaptive
background estimation and foreground detection.

Foreground-Aware Statistical Background
Modeling

In this section we describe the proposed method for back-
ground modeling and foreground estimation. A high-level sys-
tem schematic that illustrates inputs and output of each module is
shown in Fig. 1(b).

Pixel Modeling
The temporal sequence of pixel values in a video stream

can be interpreted as the instantiations of a random variable with
a given distribution. Background estimation is achieved by es-
timating the parameters of the distributions that accurately de-
scribe the historical behavior of pixel values for every pixel in
the scene. Specifically, at frame T , what is known about a partic-

(a) (b)

(c)

Figure 1. Flowchart of three background estimation/updating and
foreground detection methods: (a) traditional, (b) proposed, (c) a
more general algorithm.

ular pixel located at coordinates (i, j) is the history of its values
X1,X2, . . . ,XT = F(i, j, t),1≤ t ≤ T . Ft is the collection of pixel
values F(i, j, t) for all 1≤ i≤Nr and 1≤ j≤Nc, where Nr and Nc
are the number of rows and columns of the frames in the incoming
video sequence.

While the historical behavior of the values of a pixel can be
described with different statistical models including parametric
models that assume an underlying distribution and estimate the
relevant parameters of the distribution, and non-parametric mod-
els such as kernel-based density estimation approaches, we dis-
cuss and implement the proposed algorithm with Gaussian Mix-
ture Models (GMM), and note that our approach is equally appli-
cable to other online modeling techniques. We model the recent
history of behavior of values of each pixel as a mixture of K Gaus-
sian distributions, so that the probability of observing the current
value is

P(Xt) =
K

∑
k=1

wktΦ(Xt ,µkt ,Σkt) (1)

where wkt is an estimate of the weight of the k-th Gaussian com-
ponent in the mixture at time t, µkt is the mean value of the k-th
Gaussian component in the mixture at time t, Σkt is the covariance
matrix of the k-th Gaussian component in the mixture at time t,
and Φ(·) is the Gaussian probability density function. Once ini-
tialized, the model is updated according to the strategies described
below.

Foreground Pixel Detection via Goodness-of-Fit
Testing

Foreground detection is performed by determining a mea-
sure of fit of each pixel value in the incoming frame relative to its
constructed statistical model. At time t, fit testing is performed
by reading incoming frame Ft and the current background esti-
mate BGt and, for each pixel in the incoming frame, determining
whether it belongs to the foreground or to the background accord-
ing to its value and to its corresponding mixture model. The out-
put of this stage is a binary mask FGt with the same pixel dimen-
sions as the incoming frame, with ON (OFF) values at foreground
(background) pixel locations.
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Foreground-Aware Background Model Updating
The foreground-aware background model update stage

stores the current background model BGt and updates it according
to the foreground mask FGt output by the foreground pixel detec-
tion stage, and the incoming frame Ft . The result is an updated
background model BGt+1 to be stored and used in the processing
of the new incoming frame Ft+1. One of the main limitations of
traditional model-based background estimation algorithms is that
the learning parameter α has to be carefully selected for the ex-
pected range of object velocity in the scene relative to the frame
rate. In the proposed framework, the weights of the distribution
are adjusted according to

wl(t+1) = f gtwlt +(1− f gt)[(1−α)wlt +αM(l,k)t ] (2)

where α is the learning or update rate and M(l,k)t is an indica-
tor variable equaling 0 for l 6= k and 1 for l = k, so that only the
weight factor for the matching component in the mixture is up-
dated; lastly, f gt is the binary value of the foreground mask FGt
at the pixel whose model is being updated ( f gt = 1 and f gt = 0
for foreground and background pixels, respectively.) Similarly,
mean and covariance estimates for the matching components in
the model distributions are updated according to

µt+1 = f gt µt +(1− f gt)[(1−ρ)µt +ρXt ], (3)

σ
2
t+1 = f gtσ

2
t +(1− f gt)[(1−ρ)σ2

t +ρ(Xt−µt+1)
T (Xt−µt+1)]

(4)

where Xt is the value of the incoming pixel and ρ =
αΦ(Xt |µk,σ

2
k ) is the learning rate for the parameters of the

matching component of the distribution, k. The mean and co-
variance estimates for the non-matching components are left un-
changed. The effect of performing the updates in the manner de-
scribed is that only models for background pixels get updated at
each frame, which mitigates the risk for a foreground model be-
ing absorbed into the background, thus negatively affecting the
background model for that pixel.

The model update approach described by Eqs. 2-4 uses the
values in the foreground mask to make a hard decision as to
whether a given model is to be updated or not. However, fit tests
often yield probabilities that are indicative of the confidence of a
pixel belonging to its respective background distribution. In some
cases, it may be desirable to perform smoother model updates
based on these probabilities, as illustrated in Fig. 1(c). In the fig-
ure, probability matrix Pt indicates the probability that each pixel
value in frame Ft belongs to its respective distribution; a thresh-
olding operation results in a foreground mask equivalent to that
described above.

When intermediate probabilities are available, the updating
rules implemented by the foreground-aware background model
update module are as follows:

wl(t+1) = (1− pt)wlt + pt [(1−α)wlt +αM(l,k)t ] (5)

µt+1 = (1− pt)µt + pt [(1−ρ)µt +ρXt ] (6)

ρ
2
t+1 =(1− pt)ρ

2
t + pt [(1−ρ)σ2

t +ρ(Xt−µt+1)
T (Xt−µt+1)]

(7)

where pt is the output of the fit test for the pixel whose model is
being updated. These modified update rules reflect the estimated
confidence of a pixel belonging to its respective background dis-
tribution.

Experimental Results
The described algorithm was applied to a one-hour long

video acquired in a challenging transportation scenario where
multiple lanes merge into a single lane; this scenario is repre-
sentative, for example, of a situation that is prevalent in multilane
tolls. Foreground/motion detection is first performed to detect ve-
hicles that are subsequently tracked. In this scenario, vehicles
drive to and stop at a check point and then pull forward. Con-
sequently, the length of time vehicles stay stationary varies from
short (a few seconds) to relatively long (several minutes), and ve-
hicle speeds span a range from 0 mph to roughly 15 mph. Such
stop-and-go patterns of motion poses challenges to motion detec-
tion for the reasons elucidated above. The performance of our
algorithm was compared to that of the foreground detector from
[6]. We tested both algorithms at four different learning rates,
namely α = 1×10−k, for k = 2,3,4,5.

Fig. 2 compares the estimated background images of both
methods with different learning rates by the end of the video. As
can be seen, the proposed foreground-aware background mod-
eling method manages to maintain a clean (i.e., no foreground
objects having been absorbed) background across the video re-
gardless of learning rate α (between 1×10−2 and 1×10−5) cho-
sen (top row images). In contrast to the results obtained with the
proposed method, the quality of the background model using the
traditional foreground detection method is highly sensitive to the
chosen learning rate α . Foreground objects are clearly present in
background estimates for the three largest values for α (Figs. 2(e)-
2(g)), and slight smearing is visible for the smallest value of α

(Fig. 2(h)). Wrongly estimated backgrounds will lead to erro-
neous foreground object detection, as illustrated in Fig. 3, which
depicts the detection results in the form of red contours outlining
the perimeter of foreground blobs. Since the vehicle at the service
station was absorbed into the background model in the traditional
approach (Figs. 2(e)-2(g)), it is not detected as a foreground object
(Figs. 3(e)-3(g)). This is not an issue with the proposed method,
regardless of the value of the learning rate (Figs. 3(a)-3(d)).

A quantitative performance analysis was also performed.
The performance of the algorithms was measured as suggested
by [26]: TP, the number of true positives (i.e., number of fore-
ground blobs detected that correspond to an actual vehicle), FP,
the number of false positives (i.e., number of foreground blobs de-
tected that correspond to no vehicles), and FN, the number of false
negatives (i.e., number of vehicles without a corresponding fore-
ground blob) were counted on a frame-by-frame basis across five
thousand frames. The results are summarized in Table 1, where P
stands for precision and R for recall.

Although the performance of the method in [6] (in terms of
blob-level precision and recall) seems to approach that of the pro-
posed method when the learning rate is set to 1×10−5, the num-
bers from Table 1 do not reflect the pixel-level magnitude of its
detection inaccuracy. Fig. 4 shows the detection of foreground
objects by two methods. The proposed method outperforms the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Top: background estimates obtained via the proposed
method with learning rates (a) 1× 10−2, (b) 1× 10−3, (c) 1× 10−4

and (d) 1× 10−5; bottom: background estimates obtained via the
method from [6] with learning rates (e) 1× 10−2, (f) 1× 10−3, (g)
1×10−4 and (h) 1×10−5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Top: annotated video frame obtained via fit tests be-
tween displayed frame and estimated background with the pro-
posed method and with learning rates (a) 1× 10−2, (b) 1× 10−3,
(c) 1×10−4 and (d) 1×10−5; bottom: estimated foreground with the
method from [6] and with learning rates (e) 1×10−2, (f) 1×10−3, (g)
1×10−4 and (h) 1×10−5.

traditional one in terms of pixel-level precision and recall even
though the blob-level performance numbers are similar.

Among the four different learning rates tested, the proposed
method achieves its best performance when α = 1× 10−4 while
the traditional method requires α = 1×10−5, which could affect
its capability to adapt to fast changes in the scene. The proposed
method is less sensitive to the choice of learning rate α in that
it provides almost equally satisfactory foreground detection per-
formance for a wide range of learning rate values (from 1×10−2

to 1× 10−5) whereas the traditional method requires a carefully
selected learning rate in order to perform well. This selection pro-
cess would depend on camera geometry, frame rate and expected
speed of motion of objects in the scene, and would only work ro-

Comparison on foreground detection performance
Learning Rate Method TP FP FN P R

1×10−2 Traditional 793 84 7608 90.42% 9.44%
Proposed 8384 41 17 99.51% 99.80%

1×10−3 Traditional 1839 87 6562 95.48% 21.89%
Proposed 8385 4 16 99.95% 99.81%

1×10−4 Traditional 5173 13 3228 99.75% 61.58%
Proposed 8396 0 5 100.0% 99.94%

1×10−5 Traditional 8352 16 49 99.81% 99.42%
Proposed 8369 10 32 99.88% 99.62%

(a) (b)

Figure 4. Sample annotated frame by (a) the proposed method,
and (b) the traditional method, both with learning rate 1×10−5.

bustly if the range of object motion speeds is somewhat narrow.
The proposed method outperformed the traditional approach for
every learning rate tested.

CONCLUSIONS
In this paper, we proposed a closed-loop approach to statis-

tical background modeling for foreground estimation that lever-
ages the additional information provided by foreground mask or
fit test results. The proposed method robustly supports an in-
creased range of motion speeds of objects for a given learning
rate, and consequently is less sensitive to the choice of learning
rate than existing methods. In particular, the proposed method
greatly improves the detection performance with a relatively large
learning rate value by preventing foreground object absorption,
which in turn enables responsiveness of the background model to
fast changes in the appearance of the scene.

References
[1] Jain, R. and Nagel, H.-H., “On the analysis of accumulative dif-

ference pictures from image sequences of real world scenes,” IEEE
PAMI PAMI-1, 206–214 (April 1979).

[2] Haritaoglu, I., Harwood, D., and Davis, L., “W4: real-time surveil-
lance of people and their activities,” IEEE PAMI 22, 809–830 (Aug
2000).

[3] Zhou, Q. and Aggarwal, J., “Tracking and classifying moving ob-
jects from video,” IEEE Workshop on Performance Evaluation of
Tracking and Surveillance (Jan 2001).

[4] Wren, C., Azarbayejani, A., Darrell, T., and Pentland, A., “Pfinder:
real-time tracking of the human body,” IEEE PAMI 19 (Jul 1997).

[5] Stauffer, C. and Grimson, W. E. L., “Adaptive background mixture
models for real-time tracking,” in [CVPR ], 2, 246–252 (1999).

[6] Zivkovic, Z., “Improved adaptive gaussian mixture model for back-
ground subtraction,” in [ICPR ], 2, 28–31 (Aug 2004).

[7] A. Elgammal, D. H. and Davis, L., “Non-parametric model for back-
ground subtraction,” in [ECCV ], 751–767 (Jun 2000).

[8] Piccardi, M., “Background subtraction techniques: a review,” in
[Systems, Man and Cybernetics, IEEE International Conference
on ], 4, 3099–3104 (Oct 2004).

[9] Benezeth, Y., Jodoin, P.-M., Emile, B., Laurent, H., and Rosen-
berger, C., “Review and evaluation of commonly-implemented
background subtraction algorithms,” in [ICPR ], 1–4 (Dec 2008).

[10] St-Charles, P.-L., Bilodeau, G.-A., and Bergevin, R., “Subsense: A
universal change detection method with local adaptive sensitivity,”
IEEE TIP 24, 359–373 (Jan 2015).

[11] Yao, J. and Odobez, J., “Multi-layer background subtraction based
on color and texture,” in [CVPR ], 1–8 (June 2007).

[12] Nonaka, Y., Shimada, A., Nagahara, H., and Taniguchi, R., “Eval-
uation report of integrated background modeling based on spatio-
temporal features,” in [CVPRW ], 9–14 (June 2012).

[13] St-Charles, P.-L., Bilodeau, G.-A., and Bergevin, R., “A self-

454-4
IS&T International Symposium on Electronic Imaging 2019

Intelligent Robotics and Industrial Applications using Computer Vision 2019



adjusting approach to change detection based on background word
consensus,” in [WACV ], 990–997 (Jan 2015).

[14] Elgammal, A., Harwood, D., and Davis, L., [ECCV ], ch. Non-
parametric Model for Background Subtraction, 751–767, Springer,
Berlin, Heidelberg (2000).

[15] Han, B., Comaniciu, D., Zhu, Y., and Davis, L. S., “Sequential
kernel density approximation and its application to real-time visual
tracking,” IEEE PAMI 30(7), 1186–1197 (2008).

[16] Seki, M., Wada, T., Fujiwara, H., and Sumi, K., “Background sub-
traction based on cooccurrence of image variations,” in [CVPR ], 2,
II65–II72 (June 2003).

[17] Oliver, N., Rosario, B., and Pentland, A., “A bayesian computer
vision system for modeling human interactions,” IEEE PAMI 22,
831–843 (Aug 2000).

[18] Haritaoglu, I., Harwood, D., and Davis, L., “W4: A real time system
for detecting and tracking people,” in [CVPR ], 962–962 (Jun 1998).

[19] Ojala, T., Pietikainen, M., and Harwood, D., “Performance evalua-
tion of texture measures with classification based on kullback dis-
crimination of distributions,” in [ICPR ], 1 (Oct 1994).

[20] Desa, S. M. and Salih, Q. A., “Image subtraction for real time mov-
ing object extraction,” in [Proceedings of the International Confer-
ence on Computer Graphics, Imaging and Visualization], 41–45,
IEEE Computer Society, Washington, DC, USA (2004).

[21] Garcia, A. and Bescós, J., “Real-time video foreground extraction
based on context-aware background substraction,” in [Technical Re-
port TR-GTI-UAM-2007-02 2007 ],

[22] Wang, R., Bunyak, F., Seetharaman, G., and Palaniappan, K., “Static
and moving object detection using flux tensor with split gaussian
models,” in [CVPRW ], 420–424 (June 2014).

[23] Chen, Y., Wang, J., and Lu, H., “Learning sharable models for robust
background subtraction,” in [ICME], 1–6 (June 2015).

[24] Phuong, L. T. and Binh, N. T., [Human Object Classification
Based on Nonsubsampled Contourlet Transform Combined with
Zernike Moment ], 212–222, Springer International Publishing,
Cham (2016).

[25] Boulmerka, A. and Allili, M. S., “Background modeling in videos
revisited using finite mixtures of generalized gaussians and spatial
information,” in [ICIP ], 3660–3664 (Sept 2015).

[26] Smith, K., Gatica-Perez, D., Odobez, J., and Ba, S., “Evaluating
multi-object tracking,” in [CVPRW ], 36–36 (June 2005).

Author Biography
Edgar A. Bernal received the M.Sc. and Ph.D. degrees in Electri-

cal Engineering from Purdue University, West Lafayette, IN, in 2002 and
2006, respectively. He is the Associate Director for the Rochester Data
Science Consortium at the University of Rochester, in Rochester, NY. Prior
to joining UofR, he was a Principal Scientist at the United Technologies
Reseach Center in E. Hartford, CT, and a Senior Research Scientist with
the Palo Alto Research Center, Webster, NY. His current research inter-
ests include computer vision, machine and deep learning, and multimodal
data fusion.

Qun Li received the M.S. and Ph.D. degrees in Electrical Engineer-
ing from the University of Illinois at Chicago (UIC), IL, in 2012 and 2013,
respectively. She joined Microsoft Researchm Redmond, WA, as a Data
Scientist in 2016. Before that, she was with Palo Alto Research Center
, a Xerox Company, Webster, NY, since 2013, as a Computer Vision Re-
search Scientist. Her research interests include high-order data analysis,
image and video analysis, computer vision, pattern recognition, compres-

sive sensing, 3D imaging, and deep learning.

∗1This work was performed while the authors were with PARC, A
Xerox Company

IS&T International Symposium on Electronic Imaging 2019
Intelligent Robotics and Industrial Applications using Computer Vision 2019 454-5



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


