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Abstract 
Towards the actualization of a disaster response robot that can 

locate and manipulate a drill at an arbitrary position with an 
arbitrary posture in disaster sites, this paper proposes a method that 
can estimate the position and orientation of the drill that is to be 
grasped and manipulated by the robot arm, by utilizing the depth 
camera information acquired by the depth camera. In this paper’s 
algorithm, first, using a conventional method, the target drill is 
detected on the basis of an RGB image captured by the depth camera, 
and 3D point cloud data representing the target is generated by 
combining the detection results and the depth image. Second, using 
our proposed method, the generated point cloud data is processed 
to estimate the information on the proper position and orientation 
for grasping the drill. More specifically, a pass through filter is 
applied to the generated 3D point cloud data obtained by the first 
step.  Then, the point cloud is divided, and features are classified so 
that the chuck and handle are identified.  By computing the centroid 
of the point cloud for the chuck, the position for grasping is obtained.  
By applying Principal Component Analysis, the orientation for 
grasping is obtained.  Experiments were conducted on a simulator.  
The results show that our method could accurately estimate the 
proper configuration for the autonomous grasping a normal-type 
drill. 

Introduction   
Once severe disasters such as large scale earthquakes and 

nuclear power plant accidents occur, the disaster sites are extremely 
dangerous for people.  In particular, after the disasters, tasks such as 
repairs of collapsed buildings and destroyed plants etc. and rescues 
of victims are very difficult and dangerous. To solve this issue, 
disaster response robots are desired to be actualized.  The DARPA 
Robotics Challenge (DRC) [2], which is a contest for disaster 
response robots, was held in the US. The authors’ group also have 
developed a disaster response robot called WAREC-1 [1], which has 
four arms, two of which can work also as legs. Among various tasks 
after the disasters, the disaster response robot is expected to drill 
holes or cut objects such as walls using a drill to repair broken 
facilities and/or buildings.  Using a drill is included in the DRC.  In 
disaster sites, even if drills were put back to the proper place such as 
store rooms, the drills could not stay at the original positions: e.g. 
fall down to the floor.  The disaster response robot needs to find a 
drill placed at an arbitrary position with an arbitrary pose.  In 
addition, the robot needs to estimate the proper configuration for 
grasping the drill and to manipulate it to execute the task.  

Conventional disaster response robots participating in the DRC 
detect the objects (tools), with which the tasks are completed, by 
exploiting 3D point cloud data obtained by depth cameras. In many 

cases, the operators detect the objects by fitting 3D models to the 
captured 3D point cloud data through graphical user interfaces. 
Obviously, it is clear that such a system is not autonomous enough 
for detecting the drill and estimating the information on the proper 
position and pose for grasping the drill; in addition, in unknown 
environments, the robots have difficulty in detecting target objects 
that do not necessarily fit the 3D model due to differences in their 
shapes, even if they are of the same category (tool). As Norton et al 
indicated in [3], the robots participating in the DRC strongly 
depended on 3D models such as 3D CAD models, supplied by the 
contest organizers in advance to complete the required tasks, in 
which they needed to use some objects or tools; should be more 
general when applying them in unknown environments in real 
disaster sites. For these reasons, a method for recognizing or 
detecting a drill without a precise 3D model of the target is 
obviously required. 

In this paper, we propose a method for autonomously detecting 
a drill and estimating information on the position and orientation for 
properly grasping the drill with the disaster response robot called 
WAREC-1 based on the information captured by a depth camera, 
without a detailed 3D model such as 3D CAD information. 

Proposed Method 
Fig. 1 shows the algorithm that can estimate the position and 

orientation of the drill for grasping.  Note that the blocks that 

 
Fig. 1. The entire flow of estimating the position and orientation of the drill.  
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correspond to the conventional (existing) method [4] and our 
proposed method are discriminated by the dotted lines.  As shown 
in the existing method in Fig. 1, first the target drill in the 2D RGB 
image captured by the depth camera is detected using Faster RCNN 
[5]. Second, 3D point cloud data is generated by combining the 
depth image captured by the depth camera and a bounding box 
which encloses the target in the RGB image, which is obtained from 
the detection result of Faster RCNN. In our proposed method shown 
in Fig. 1, we process the obtained point cloud data on the basis of a 
category from the detection result of Faster RCNN because the 
proper configuration for grasping which enables robots use the tools 
or objects, is heavily depending on the category, therefore, the 
processing methods for 3D point cloud data are different from each 
category for achieving properly grasping the objects in the category. 
In this paper, we assume that a drill which should be detected can 
be split into three parts; the chuck, handle, and battery. Therefore 
we exploit k-means to classify the point cloud data representing the 
drill into each cluster representing each part mentioned above. In 
addition, for grasping, we define the position as the 3D centroid of 
the point cloud representing the handle in the drill and the 
orientation as the direction of the chuck, which means the first 
eigenvector obtained by applying the principal component analysis 
(PCA) to the point cloud data representing the chuck. 

Faster RCNN for detecting a drill in a 2D RGB image 
To detect a drill serving as the target object without a precise 

3D model, such as a 3D CAD model, we utilize Faster RCNN [5] 
which detects a drill in the RGB image captured by the depth camera. 
To design Faster RCNN for detecting a drill, we use 
VGG_CNN_M_1024 as the feature extractor in the network 
architecture, which is initialized with a pre-trained model on 
ImageNet, and we fine-tune it with our own dataset. We created the 
dataset by gathering RGB images of five different types of valves 
and one type of drill which are available in the Internet and manually 
annotating. The reason why we gathered not only images of drills 
but also those of five different types of valves and fine-tune this 
framework with them is that we will exploit this detection system 
which generates the 3D information about other objects necessary 
to be detected in a disaster site without any detailed 3D model, in 
order to be more general to an unknown environment. We also 
conducted data augmentation of our original dataset to increase the 
robustness against changes on orientation and scale by mirroring, 
rotating and scaling the images. In this paper, because we exploit 
this fine-tuned framework to detect only one category, which is a 
drill. 

Generating 3D point cloud data representing target 
To estimate the position and orientation for grasping in the 3D 
coordinate system, 3D point cloud data  by combining the depth 
image captured by the depth camera and the bounding box output 
from the fine-tuned Faster RCNN, which is a rectangle enclosing the 
detected object as [4]. Concretely, the pixels in the area enclosed by 
the bounding box in the given RGB image are recorded and the 
corresponding pixels from the depth image whose resolution is 
equivalent to that of the given RGB image are extracted. After that 
the extracted pixels in the depth image are projected to the 3D 
coordinate system to obtain the point cloud data represents the target 
and objects close to it.  

Processing 3D point cloud data on the basis of a 
category 

After obtaining the generated 3D point cloud data by exploiting 
the part of the method proposed in [4], we process the data to 

estimate the information for properly grasping a drill, such as the 
position and orientation for grasping. The entire flow of the 
processing method is shown in Fig. 2, which corresponds to the 
originality of this paper. In general, how to process the generated 
point cloud data depends on the “category” which output from the 
detection in a 2D image shown in Fig. 1. in our proposed method. 
In this case the “category” is “a drill”, so we choose the method for 
estimating the position and orientation for grasping.  

Preprocessing point cloud data using Pass through filter 
In this paper, we assume that a drill which should be detected 

is standing on a floor or ground plane, and an optical axis of a depth 
camera which is mounted on the robot is parallel to the floor. 
Therefore we simply remove the point cloud data representing a 
plane such as the floor or ground plane with Pass through filter [6]. 
This filter removes the point cloud data which is not belonging to 
the specified rectangular area. First, the 3D box minimally enclosing 
the entire point cloud data is computed. Second, we increase the 
height of the bottom surface so as to recreate the 3D box which does 
not contain the point cloud representing the floor or ground plane. 
By doing this, the point cloud data only representing the drill is 
obtained. The generated point cloud data and the processing result 
by Pass through filter is shown in Fig. 3(a) and (b), respectively. 

Dividing preprocessed point cloud data along z-axis 
A drill which should be detected consists of three parts; chunk, 

grasping part, and battery. Therefore, the point cloud data 
representing a drill also consists of the three parts. To divide the 
point cloud data, we divide it along z-axis in a resolution. The z-axis 
means the axis whose direction is parallel to the normal of the plane 
which the drill stands on. After the division, we compute the 
minimum 3D box enclosing each divided point cloud data and 
extract a feature that is four dimensional vector, using each box. The 
feature consists of the 3D center coordination of the box and the area 
of the surface of the bottom. The process for the division is shown 
in Fig. 3(c). 

Classifying point cloud data based on extracted features 
To obtain the point cloud data which is divided into three parts, 

we classify all of the obtained boxes into each class which 
corresponds to each part in a drill on the basis of the features 
extracted from the boxes. For classifying the features, we exploit k-

 
Fig. 2. The flow of processing 3D point cloud data   
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means. In our proposed method, we specify the three features as 
initialing vector when applying k-means method for classifying the 
boxes to make the classification stable. Those three features are 
selected from the one of the box whose center coordination is 
highest, middle, and lowest in z-axis. After classifying all the boxes, 
the three clusters containing the classified boxes are obtained. To 
assign each cluster to each part of a drill, these clusters are sorted on 
the basis of the z-value of the center coordination of the box because 
a drill has its parts in the ascending order of the battery, handle, and 
chuck. The classified point cloud data is shown in Fig. 3(d).  

Estimating position and orientation for grasping 
After the classified point cloud data is obtained, the position 

and orientation for grasping are estimated. For estimating the 
position, we compute a centroid of the point cloud data representing 
the handle of the drill. For estimating the orientation for grasping, 
we apply the PCA to the point cloud data representing the chuck of 
the drill and regard the vector which the first eigenvector is projected 

in x-y plane. The visualized result of the estimated orientation for 
grasping a drill is shown in Fig. 3(e).  

Experiments and Discussion 

Experimental Environment 
We conducted our experiments on the GAZEBO simulator [7]. 

We used an ideal depth camera already prepared in the simulator, 
whose calibration had already been completed. We prepared two-
types drills. The one of the drills used for our experiments was also 
prepared in the simulator in advance, and the other was prepared by 
downloading 3D CAD models from the free download website 
called GrabCAD [8]. The drills for our experiments are shown in 
Fig. 4. The patterns of the position and orientation of the drills for 
our experiments are shown in Fig. 5(a) and (b), respectively. The 
ground-truth of the position for grasping is manually specified. In 
both of the drills used for our experiments, the ground truth of the 
positions are corresponding to the position of the drills and that in 
the direction of the normal to the ground is -0.12 meter from the 
sensor coordination. 

 Experimental Results 
Detection in 2D images 

We show both successfully detected patterns and failures in the 
detection phase on the supplied 2D image. The result of the 
detection on each pattern is shown in Table 1 and 2 on both of 
prepared drills. In Table 1 and 2, S indicates that the detection was 
successful, and F indicates the detection failed.  

         
(a)                                              (b) 

Fig. 4 The drills used for our experiments                              
(a) type-A   (b) type-B  

   
(a)                                                

(b) 

 

   
(c)                                            (d)    
 

        
(e) 

 
Fig. 3 The processing of the 3D point cloud data                             
(a) The generated point cloud data                                                  
(b) The result of Pass through filter.                                                     
(c) The division of the point cloud data along z-axis. Each pink-
colored box contains each divided point cloud data.                              
(d) The point cloud data classified into three parts; The blue part is 
the chuck, green part is the handle, and red part is the battery.      
(e) The position and orientation for grasping. The point is the 
starting point of the pink-colored arrow, and the direction of arrow is 
the orientation.

 
(a)                                  

(b)                        
Fig. 5 The patterns of the positions and orientatins of a drill                
(a) The positions of a drill. Each green point indicates each position.  
(b) The orientations of a drill. The red arrow indicates the orientation of 
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Error in estimation of the position and orientation for 
grasping 

We chose the drills that were successfully detected in the phase 
of detection on the 2D image. The errors in estimating the position 
and orientation are show in Table 3, 4, 5 and 6. We computed the 
error in position, 𝑒௣, as follows: 
 

𝑒௣ ൌ  ฮ𝒄௘ െ 𝒄௚ฮ               (1) 
 
where 𝒄௘ the estimated 3D centroid coordinate position for grasping, 
𝒄௚ is the ground truth of the position for grasping, which we specify 
in advance. Equation (1) compute the Euclidean distance between 
given two points in the 3D coordinate system. Also, we computed 
the error in orientation, 𝑒௢ as follows: 
 

𝑒௢ ൌ 180 ൈ arccosሺ𝒐௘ ∙ 𝒐௚ሻ 𝜋⁄             (2) 
 

where 𝒐௘  the estimated orientation vector for grasping, 𝒐௚  is the 
ground truth of the orientation vector for grasping. Both of above 
vectors are unit vectors. Equation (2) computes the angle between 
given two vectors. The units in Table 3 and 4 are meter and, in Table 
5 and 6 are degree, respectively. In these tables, patterns for which 
detection failed or failed processing the 3D point cloud data for 
estimation, even if the detection in 2D image, was successful are 
indicated by diagonal lines. 

Discussion 
Detection in 2D images 

According to Table 1 and 2, 31 out of 32 patterns were 
successfully detected using fine-tuned framework of Faster RCNN. 
However, at the same time, there was also a pattern for which 
detection failed. The results of both failed detection and successful 
one are shown in Fig. 6 for comparison. The failed pattern is shown 
in (a), and the successful ones are shown in (b). In our experiments, 
we regard a successful detection as one whose confidence is greater 
than 80 %. However, the confidence in the failed detection was 
about 50 %. To increase the confidence in detection in 2D image, it 
is reasonable that the data augmentation about an image of a drill 
whose orientation is 0 degree as shown in Fig. 5 and fine-turning a 
framework for detection in 2D image should be executed. 

3D point cloud data processing for estimating the position 
and orientation for grasping 
 As shown in Tables 3, and 5, in the case of type-A drill, the 
estimation error of the position and orientation is small. In [9], they 

target robotic grasping of a drill for their disaster response robot and 
evaluate how their prepared 3D model of a drill fit to the point cloud 
data representing their target drill which is 60 cm away from their 
sensor. Their acceptance criteria for the alignment is the error in the 
position is less than 5 cm and that in the orientation is less than 10 
degree. In our results, the almost cases are close to their acceptance 
criteria even in the situation where we did not use any prior-detailed 
3D information such as 3D CAD model of a drill, in the situation 
where the drill is both 60 and 80 cm away.  
 As shown in Tables 4, and 6, in the case of type-B drill, the 
almost cases in the estimation of the position were accurate, even if 
our results were compared with the acceptance criteria. There were, 
however, some cases where the estimation error of the orientation 
was larger than 60 degree. In addition, the range of error was from 
about 20 to 60 degree. It seems to be relatively wide. The reason 
why this occurred was because type-B drill had the handle not only 
between the chuck and the battery, but also on the side of the chuck. 
If the handle on the side of the chuck is observable in both of a 2D 
RGB image and a depth image captured by a sensor, the point cloud 
data representing it can be appeared. After obtaining the point cloud 
data above mentioned, we use the data to compute the PCA for 
estimating the orientation. The PCA outputs eigenvector on the basis 
of the covariance of the supplied point cloud data. Therefore it is 
reasonable that point cloud data representing the handle on the side 
of the chuck has the variance in the direction which is perpendicular 
to the dominant direction of the chuck and this affects to accurately 
estimating the dominant axis as shown in Fig. 7. To increase the 
robustness against the variance of the shape of the targeted drill, it 
is necessary to take applying a clustering algorithm to the obtained 
point cloud data and computing the density or the dominating space 
of extracted clusters into our consideration to distinguish the parts 
of drill, because those features are largely different from each parts. 

Conclusion 
In this paper, we proposed a method for estimating the position and 
orientation for grasping a drill on the basis of a depth camera 
information without using any detailed 3D model information about 
a target such as 3D CAD model. In our proposed method, along the 
part of the conventional method, we detected the drill in an RGB 
image captured by a depth camera by using Faster RCNN and 
combined the detection result and a depth image to generate 3D 
point cloud data representing our target and objects close to it. After 
obtaining the point cloud data, we processed the point cloud data to 
classify it into three parts of the drill which are the chuck, handle, 
and battery on the basis of classifying extracted feature vectors by 

           
(a)                                             (b) 

Fig. 6 The detection result in both of a failed pattern and successful one. 
(a) The detection was failed. The numerical value in this figure is the 
confidence in detection.                                                                              
(b) The detection was successful. The confidence in detection is higher 
than that of (a).  

 
 
Fig. 7 The estimation error of the orientation of type-B drill.                   
The pink colored arrow indicates the estimated orientation of a drill. The 
blue part is the chuck of the drill.   
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using k-means. We estimated the position and orientation for 
grasping by computing the centroid of the point cloud data 
representing the handle of the drill and the first eigenvector by 
applying the PCA to the point cloud data representing the chuck. In 
our experiments, we confirmed that the estimations in the almost 

patterns of the position and orientation were accurate in the case 
which one of the drills we prepared for the experiments was used. 
However, in the case which the other one which has the handle on 
the side of the chuck was used, though the estimation errors of the 
positions were so small, those of the orientations were not small. To 

Table 1: The result of detection in 2D image in drill type A 

Orientation 

pattern 

Position pattern  

0.6 0.8 

0 S S 

45 S S 

90 S S 

135 S S 

180 S F 

225 S S 

270 S S 

315 S S 

Table 2: The result of detection in 2D image in drill type B 

Orientation 

pattern 

Position pattern 

0.6 0.8 

0 S S 

45 S S 

90 S S 

135 S S 

180 S S 

225 S S 

270 S S 

315 S S 

Table 3: The error in estimation of the position in drill A 

Orientation 

pattern 

Position pattern 

0.6 0.8 

0 0.01293 0.01239 

45 0.02987 0.03439 

90 0.04215 0.04344 

135 0.05802 0.05958 

180  0.05354 

225 0.05471 0.05081 

270 0.03592 0.03595 

315 0.02706 0.02722  

Table 4: The error in estimation of the position in drill B 

Orientation 

pattern 

Position pattern 

0.6 0.8 

0 0.01066 0.02858 

45 0.02677 0.02722 

90 0.04822 0.04443 

135 0.06747 0.06906 

180 0.05644 0.05713 

225 0.04578 0.04740 

270 0.02021 0.03565 

315 0.02679 0.01925 

Table 5: The error in estimation of orientation in drill A 

Orientation 

pattern 

Position pattern 

0.6 0.8 

0 0.000 0.7239 

45 7.050 7.302 

90 4.536 4.501 

135 1.781 1.851 

180  0.1481 

225 2.023 2.226 

270 4.360 4.542 

315 7.092 6.895 

Table 6: The error in estimation of orientation in drill B 

Orientation 

pattern 

Position pattern 

0.6 0.8 

0 68.27 59.14 

45 8.120 13.83 

90 3.706 3.747 

135 1.239 1.025 

180 36.71 41.50 

225 19.51 23.90 

270 30.74 5.622 

315 80.7  10.25 
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increase the robustness against the variance of the shape of the target, 
we will take a clustering algorithm into a method for processing the 
3D point cloud data. 
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