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Abstract
Establishing accurate hair diagnosis at roots is a significant

challenge with strong impact on hair coloration, beauty person-
alization and clinical evaluation. The roots of hair - viz. the first
centimeter away from the scalp - represent clean hair fibers that
have not been subjected to color change due to hair dyeing or
environmental conditions. Therefore, they are a measure of a per-
son’s baseline hair characteristics, including natural hair tone. A
device that acquires high resolution macro images of hair roots
under a well-defined illumination geometry has been designed in
order to assess natural hair tones. Image analysis in this scenario
is not a trivial task since the acquired images present an overlap
of scalp and hair, with other possible artifacts due to dandruff and
hair transparency. In this paper, we propose to train a Convolu-
tional Neural Network (CNN) on a data-set composed of images
from subjects who had their hair tone evaluated by trained color
experts. Our method is compared with other popular CNNs as
well as conventional color image processing approaches devel-
oped for this task. We found that the proposed model not only of-
fers higher precision but also provides faster computation times,
due to its lighter architecture in contrast to popular CNNs. Thus,
we achieve sufficiently accurate results in real time on the low-end
chip embedded in our device.

Introduction
Cosmetics, one of the largest and constantly growing indus-

trial sectors, is going through a remarkable digital transformation
driving product innovation [1]. A highly diverse and globally con-
nected consumer market results in a constant demand for new
products and novel experiences. Personalized solutions are key
components in satisfying people who change rapidly their wishes
and needs.

A cosmetics sector that faces many challenges in this digi-
tal era is hair care and hair coloration. Due to the complex na-
ture of hair and the process of hair dyeing, accurate hair diag-
nosis is crucial in order to provide the clients with personalized
hair care and coloration products [2]. Currently at hair salons,
the first necessary step before applying any hair coloring product
or recommending a hair treatment is hair diagnosis. Among the
important features that the hairdresser needs to estimate are the
hair tone, white hair percentage, hair diameter and density. Hair
tone is the visual attribute of the hair lightness/darkness and is
related to the hair melanin concentration. It is traditionally mea-
sured using a logarithmic scale starting at 1, for very dark hair,
to 10 for very light blond hair [3]. The root of the hair (e.g. the
very first part of hair that emerges from the scalp) is commonly
the only region where we have access to hair that has not been al-

tered by external factors, such as natural/artificial colorants. It is
a region where we can measure natural hair color and white hair
percentage as well as hair density. However, images in the roots
region show not only hair but also the scalp that can vary highly
in color, oiliness, and dandruff content. In addition, the hair fibers
themselves are translucent, resulting in color dependence on the
scalp background, and have a certain natural variability both in
color and thickness. This diagnosis is currently made manually
by hairdressers, and despite their expertise and training they are
not always capable of making accurate estimations of all of these
features, especially under the variable lighting conditions of hair
salons. The high variability between different hairdressers regard-
ing hair tone estimation in real life conditions was studied and is
presented in Section Data Acquisition.

In order to help the hairdresser and improve client satisfac-
tion, we present here an automated hair diagnosis device that can
serve to accurately estimate hair and scalp attributes. The au-
tomation of the process is of paramount importance to ease the
life of hairdressers and equip them with new tools that guarantee
precision, robustness and efficiency. Moreover, such devices, as
“neutral observers”, go beyond the human visual perception and
offer an objective notation that does not vary depending on the
hairdresser and the conditions - in other terms, a standardized no-
tation.

In this paper, we propose an automatic image analysis
method we developed for this device in order to estimate the nat-
ural hair tone at roots. We focus on hair tone estimation since it
is one of the crucial attributes that need to be standardized. Pro-
cessing the hair-scalp images faces various computer vision chal-
lenges, as they present regions of scalp and hair pixels with var-
ious undesired effects, such as specularities, shadows, hair trans-
parency, dandruff and skin irritations/redness. In order to tackle
this challenge, we followed an approach that takes advantage of
deep learning in computer vision. It is evaluated against conven-
tional methods that are based on colorimetric features of hair and
color image processing, as well as other popular CNN methods.

The main contribution of this work is addressing the chal-
lenging and complex problem of hair tone estimation in the con-
text of an industrial application. Moreover, the proposed solution
achieves the most accurate estimation of the compared approaches
while guaranteeing low computation times, which makes the real-
time estimation on the device feasible.

Related Work
To the best of our knowledge, hair tone estimation has not

been covered earlier in the literature. However, related work that
this research builds upon can be separated in three categories: 1)
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imaging devices for hair diagnostics, 2) similar applications in the
fields of computer vision, recently benefiting from the advances
in deep learning.

Hair Diagnosis
In the last few decades, new technologies and digital process-

ing have been used to address an increasing demand for personal-
ized diagnosis and treatment, automatize and stabilize processes
and allow as well the measurement of properties that are either
significantly hard or impossible to assess by the naked eye. The
concept of creating a device that is used for hair analysis has been
mentioned several times in the literature. MacFarlane et al. [4]
introduced the idea of a method and a device for acquiring the
Hunter L, a, b values [5] of hair and use these to propose an appro-
priate coloring agent that can achieve the desired hair tone from
a predefined database. Leprince [6] presented the concept of an
apparatus that gets as inputs the percentage of senescent hair, the
natural hair tone, and a set of hair coloring products, in order to
estimate the feasible results and and suggest the appropriate hair
coloring solution. Ladjevardi [7] described a cosmetic color anal-
ysis system that analyzes the color of a three-dimensional object,
such as hair, through acquisition(s) by a camera sensor and pro-
duces a cosmetic color determination by relative weightings of
multiple cosmetic colors. In another approach, Sato [8] proposed
a method and an apparatus for displaying images of hair regions
in order to evaluate the hair styling using image processing.

However, despite the various patents and experimental tri-
als, a functional device that succeeds in proposing a reliable hair
diagnosis remains a challenging topic. The device presented in
this work provides hair-scalp macro images of unique quality and
resolution that allows the estimation of hair tone at roots. Hair-
scalp images have been used mainly in videodermoscopy [9] that
mostly focuses on skin analysis for identifying scalp or hair dis-
orders. To the best of our knowledge, it is the first time such an
estimation is proposed, which pushes the boundaries of hair treat-
ment/coloration further.

Similar Applications in Machine Vision
Making prediction from acquisitions of an imaging device,

such as the one proposed in this paper, shares the same principles
with other industrial applications in machine vision. The inter-
ested reader might find more information on such systems in the
survey of Malamas et al. [10]. Extracting features and classify-
ing attributes from color images in machine vision applications
usually relies on image processing paired with machine learning.

A well-studied problem that is relatively close to the one we
address here is the analysis of retinal images. This is due to the
nature of the features to be classified and the similar topology
between blood vessels in retina and hair on scalp. Goldbaum et
al. [11] presented a system of automated diagnosis of retina im-
ages. It consists in segmenting and extracting objects of interest
and classifying these objects using Bayesian networks that were
trained on example images of each disease. Staal et al. [12] intro-
duced a method for segmenting the vessels in color retina images.
Their approach is based on the extraction of image ridges and the
classification of pixel feature vectors using a kNN-classifier and
sequential forward feature selection. The authors in [13] applied
a cellular neural network in retina images for detecting various
symptoms of diabetic retinopathy. In another approach, Ravis-

hankar et al. [14] performed diabetic retinopathy detection using
image processing techniques based on morphological operations
and color properties. They performed their classification using an
extracted color model and the geographical relationships between
different features.

In other medical applications, Hance et al. [15] performed
unsupervised color image segmentation applied to skin tumor bor-
ders. Lezoray et al. [16] presented a method for color object seg-
mentation, feature extraction and classification for cellular sort-
ing. Using color watershed and choosing the most appropriate
color space, they performed the segmentation while the classi-
fication was carried out by a binary neural network. In [17], a
shallow neural network is used to classify lung cancer in images
after segmentation based on morphological operations.

An analogous concept to hair tone estimation is automatic
grading of beef marbling, where a beef meat image is being clas-
sified in respect to a discrete scale of a perceptual attribute. Under
this scope, Yoshikama et al. [18] proposed to segment the image
in lean and fat regions by histogram thresholding and to classify
the extracted features using regression on run-length histograms.
Pang et al. [19] presented another approach that uses morphologi-
cal operations and adaptive thresholding for fat segmentation and
a support vector machine (SVM) classifier for grading the images.

More recently, great advances have been made in the field
of computer vision by using deep convolutional neural networks
(CNNs) [20, 21, 22]. Due to these accuracy and performance
improvements of CNNs, a wider range of applications benefited
from deep learning the past few years. In particular, U-Net [23]
proposed a supervised neural network that segments cells on mi-
croscopic images, and achieved state-of-the-art results. A simi-
lar convolutional neural network has been applied for segmenting
vessels on retina images [24] and obtained promising results. In
skin applications, [25] recently outperformed skin cancer detec-
tion by using a convolutional neural network trained on melanoma
pictures, acquired by a medical imaging device. Even though the
previous architectures were proposed for classification and seg-
mentation, deep learning methods gave interesting results as well
in color-related problems. In the field of color constancy, [26]
outperformed previous approaches for estimating the illuminant
of a picture in-the-wild. However, the aspect of our work is to
estimate attributes of the object’s color and not the light source.

Despite the wide use of similar techniques in other computer
vision and machine learning applications in the literature, a sys-
tem for hair tone prediction remains an challenging issue that has
not been addressed sufficiently. The complex nature of hair re-
quires an appropriate method that is well optimized for this task.
In this paper we propose a method that is a based on a CNN and
provides sufficiently accurate results and low computation times.

Problem
The objective of this research is to automatically estimate

the natural hair tone of a person. This feature is expressed as a
value from 1 to 10, ranging from black hair to the lightest blond
(see Figure 1), as described in [27]. This perceptually linear nota-
tion applies well to most natural hair, since their color is directly
related to the two melanin pigments that are present in human
hair and is bound by the color space of hair colors existing in na-
ture [3]. In practice, the hair tone varies from the roots to the
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tips, mainly due to exposure to environmental conditions and the
possible application of hair coloration products. In this paper, a
special focus was made on hair tones at roots, since it is the area
where the natural hair color can be observed avoiding, for exam-
ple, color fading caused by the sun.

Figure 1: Hair tone color chart. For each hair tone from 1 to 10,
a natural hair swatch provides a standard example.

The common approach in hair salons is to visually assess the
hair tone. However, such assessment is difficult, since the human
visual system depends on the illumination environment and may
be perturbed by the background (e.g. the underlying scalp color).
To demonstrate this limitation, a study was conducted with 6 hair-
dressers assessing the hair tones of 35 volunteers, under various
light conditions. To compare with our reference notation, the hair-
dressers did the assessment twice, with and without the hair color
chart (Figure 1). This chart consists of 10 natural hair swatches as
described in [27]. We compare their average estimation with and
without using the standard hair swatches. Figure 2 shows their
predictions in the two cases; even for the same set of hairdressers
on the same volunteers, we see a low concordance between the
two protocols, with differences between two averages often close
to 1 hair tone. We expect that the estimation using the color chart
is more aligned to the standard hair tone notation [27], but we can-
not be certain after this study since no ground truth was included.
We observe that assessment by eye in salons is not standardized,
and that using a color chart is not sufficient. More conclusions
about the protocols based on this preliminary study will be dis-
cussed in the next section.

To solve this need for a standardized and accurate measure-
ment, a dedicated device was designed to better equip the hair-
dressers. Standard spectrophotometer devices are capable of mea-
suring the color with high accuracy but they are averaging its
value over the complete area under measurement, usually on the
order of 1 cm2. Such devices cannot be used near the scalp for
root measurements, as they would average the whole area, mix-
ing hair and scalp values and being highly dependent on the exact
area being measured. For this reason, we designed a non-invasive
device that takes images on the subject’s head. The device uses a
telecentric lens design allowing the detection of hair from a sin-
gle viewing angle over to the whole field of view. This allows
the uniformity in lighting while minimizing distortion effects over
the whole image. The illumination is done using High-CRI white
LED lights at an azimuthal incidence angle of 45deg and placed

Figure 2: Hair dressers’ discordance while evaluating hair tone
with and without the standard hair color chart.

Figure 3: The proposed imaging device for hair-scalp images.

in two 90deg quarter circles facing each other. The picture of an
object area 12×17mm is acquired by a 2000×1200 RGB CMOS
sensor. One typical resulting picture is shown in Figure 4. Be-
fore acquisition, a line is parted on the subject’s head in order to
have an unobstructed view on the hair roots. As a consequence,
pictures have an axial symmetry around their middle, and are thus
generally oriented, with scalp in the middle and more hair in top
and bottom.

The device has been designed to estimate an unbiased hair
tone value. However, this hair tone is not directly readable from
the acquired images since they present a mix between hair and
scalp. Moreover, because of hair transparency the scalp color can
influence the visible hair pixels. Hence, a method is required for
analyzing images with the specific objective of obtaining accu-
rate hair tones. For designing and evaluating such a model, we
acquired an extensive amount of data, as described in the next
section.

Data Acquisition
Before acquiring images at roots paired with hair tone val-

ues assessed by color experts, we conducted an initial experiment
to design the protocol. After concluding that hairdresser visual
assessment highly varies with and without using a standard color
chart (see previous section), we wanted to find the best conditions
for visual human estimation of hair tone at roots. To do so, we

Figure 4: Left side: Visual assessment of hair tone (low precision,
not calibrated). Right side: Estimate hair tone using our imaging
device.
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asked hairdressers to appraise the hair tone at roots on 35 volun-
teers. These hairdressers - hair colorists with years of experience
in their field - are not color experts, so their assessment is repre-
sentative of real-world salons. We compared 3 protocols:

• Protocol A : Hair salon conditions without hair tone chart
• Protocol B : Hair salon conditions using hair tone chart
• Protocol C : Controlled light conditions using hair tone chart

The uncontrolled light protocols were held inside two rooms
with non-standardized light, being cold for a first half (fluores-
cent lights) and warm for the second half (incandescent lights), to
reproduce the varying light conditions in salons. The last proto-
col was conducted in a gray room with standardized D65 illumi-
nants, which are simulating the sun’s mid-day spectrum and are
used as a standard in colorimetric measurements. For each sce-
nario, Table 1 shows the standard deviation among hairdressers.
We observe that the most reproducible conditions are the ones of
the last protocol stressing the importance of measurements under
controlled lighting conditions. Using the hair color chart increases
slightly the reproducibility as well, but mainly ensures that we are
more aligned with our reference notation.
Table 1: Comparisons of protocols with 6 hairdressers assessing
hair tone at roots of 35 volunteers. Standard deviation among
hairdressers is computed for each volunteer, then averaged across
all volunteers.

Protocol A B C
Average Standard Deviation 0.65 0.61 0.35

Figure 5: The acquisition protocol. Approximately 50 images
are taken at roots by the device, while a color expert assesses the
hair tone at roots using a hair color chart. Solid lines point to the
input and output of our model, while the dashed line represent the
relation that our model estimates.

During our data acquisition sessions, color experts assessed
the hair tone of volunteers in a controlled environment under D65
illuminant and using the standard color chart (Protocol C). The
first session was performed in our laboratory facility (St. Ouen,
France) with 4 color experts, and a standard deviation of 0.12
was obtained between experts notations. This evoked that trained
color experts were dramatically more reproducible and consistent
than hairdressers. Therefore, the following sessions were con-
ducted with a single color expert notation. Besides this hair tone
assessment, approximately 50 images of hair near the scalp were

taken on a parting line for each volunteer, as shown in Figure 5.
Five sessions were organized in various places around the world in
order to cover a wide range of hair tones in our data. Darker hair
tones where measured in St. Ouen, France and Shanghai, China;
and lighter hair in Warsaw, Poland; and, Karlsruhe and Munich,
Germany. The locations were chosen following world hair color
studies [28]. The diversity of the hair tones in our data set as well
as the number of participants can be seen in the histogram of Fig-
ure 6. The total data set is composed of 11,175 pictures from 407
different volunteers.

Figure 6: Volunteers histogram grouped by the 5 regions of our
data set. On x-axis is the hair tone, which shows the complemen-
tarity of each region.

The obtained data are essential in order to address the hair
tone estimation using statistical approaches. Our approach is de-
scribed in detail in the next section.

Model
In this section we present our method for hair tone estima-

tion. Since the hair tone is separated in 10 categories in our hair
color chart, one could address this problem as a classification
problem. However, color experts assessed tones with a precision
of 1/4 hair tone, so considering 1 to 10 classes would reduce this
accuracy in the labels h. Hence, we address the problem as a re-
gression, which assumes an order between the values of h. Con-
sequently, our models estimate a real-valued hair tone:

ĥ(I) ∈ [1,10] ,

where I is an input image acquired by our device.
We propose in the following a deep learning approach for

hair tone estimation ĥ(I). It is based on a Convolutional Neural
Network (CNN) which treats the image I in a holistic manner in
order to statistically find the relevant patterns that are related to
the hair tone h. It has no prior knowledge of the problem, but has
a total flexibility in the patterns it finds.

Convolutional Neural Network
Following recent advances of deep learning in computer vi-

sion (see Related Work), we present the architecture we designed
for this problem. The intuition behind such an approach is to
learn which patterns in the image are related to the hair tone, with
no prior assumption on the patterns to extract. In particular, the
model does not have prior knowledge of the problem, the opti-
mization process is purely statistical and learns the patterns in
an image I autonomously in order to estimate correct hair tone
ĥ(I). The basic idea of such a CNN is to apply successive linear
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Figure 7: Neural network architecture proposed for hair tone estimation.

operations, such as 3×3 convolutions, with non-linear functions
in-between them as well as operations reducing the spatial dimen-
sion of the image representation. Such operations produce feature
maps of the image, which is a representation into visual patterns.
Such representation is then taken as input of some linear regres-
sions, whose real-valued output is statistically mapped to labels
hi during the training process.

All the operations of the neural network we designed are rep-
resented as successive layers in Figure 7. It retakes the basic prin-
ciples of VGG16 architecture, enriched with residual connections
[21]. Indeed, they ease the optimization - direct links in back
propagation - and extend model representation with simpler pat-
terns. We opted for simple additions of some layers outputs to
a latter layer, since it is a light operation requiring no additional
weights.

Compared to state-of-the-art CNN models (see Related
Work), we opted for a lighter architecture in two aspects. First,
it has less convolutional layers; this is motivated by the fact that
we are looking for simpler patterns such as edges and thin fibers,
requiring fewer successive convolutions to be represented by the
network. The final dense layers are also reduced, since we have
an one-dimensional output ĥ(I). Second, for speed issues, we use
separable 2D convolutions, which has been proposed in [29] as
a lighter alternative to regular 2D convolutions. They have less
parameters to learn and require less computation. The idea is to
first apply a 3× 3 convolution channel by channel (also called
depthwise), thus lighter than a full convolution, and then combine
the resulting channels by a 1× 1 full convolution. This variant
of convolution will speed up the training process as well as the
embedded prediction on device.

We now briefly explain the optimization process of such a
model, in order to provide some intuition of how the neural net-
work learns the relevant patterns for our problem. If we take a
step back from the successive operations, we see that our esti-
mated hair tone can be written as

ĥ(I) = g(I,Θ) , (1)

where g represents all successive operations of our neural
network and Θ is a vector that regroups all the variable parame-
ters, viz. convolutions and dense layers weights. In order to find
appropriate values for Θ, we define a loss function L (ĥ(I),h) that

penalizes predictions ĥ(I) far from ground truth h. In our case, we
minimize the mean square error L (ĥ(I),h) = (ĥ(I)−h)2 over all
images Ii and hair tones hi of our data-set:

min
Θ

M

∑
i=1

L
(
ĥ(Ii) ,hi

)
= min

Θ

M

∑
i=1

(g(Ii,Θ)−hi)
2 . (2)

Our strategy to solve this minimization is to update Θ using
an iterative stochastic gradient descent:

Θ
′ = Θ+ ε ∇̂ΘL , (3)

where ε is the learning rate and ∇̂ΘL is an approximation
of the gradient on the full data set. Indeed, this complete gradient
= ∑i ∇ΘL

(
ĥ(Ii) ,hi

)
would be too long to compute for each up-

date. Using back-propagation [30], the gradient can be computed
efficiently for a mini-batch of size m images. Θ is thus updated at
each mini-batch by considering a moving average of the gradient

∇̂ΘL
′
= λ ∇̂ΘL +(1−λ )

1
m ∑

i∈B
∇ΘL

(
ĥ(Ii) ,hi

)
, (4)

where λ is the momentum and B is the set of indices i of the mini-
batch - B ⊂ {1..M} and |B|= m. Each mini-batch update of the
weights is thus based on a history of the gradient and not only
on the mini-batch gradient ∑i∈B ∇ΘL

(
ĥ(Ii) ,hi

)
, which presents

high variations through mini-batches.
In practice, we passed 800 times on all samples of our data

set, with a learning rate of ε = 10−4 and using a momentum of
λ = 0.9. At the end, in order to tune further the parameters Θ,
we passed 20 additional times on our data set with a learning
rate divided by 10. During each pass, each image Ii is randomly
flipped horizontally and vertically in order to augment artificially
our data set. For our successive layers and the optimization pro-
cess we used the implementation of Keras [31] based on the Ten-
sorflow back end [32]. We did not use pre-trained weights since
our architecture does not match those of existing CNNs. More-
over, ImageNet pictures and classes that are used for pre-training
are importantly different from our images. In particular, the vi-
sual patterns our model needs to focus on are simpler in terms of
shape, but more related to colors compared to available data sets.
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Experiments
Conventional Approaches

In order to better evaluate the proposed method various con-
ventional approaches were considered. The idea behind these ap-
proaches is to transform the imaging device into a colorimetric
device that is able to provide standard color values of hair and re-
late them with the perceptual attribute of hair tone. Two factors
whose impact was particularly tested are the segmentation of hair
pixels in the image and the color space under which the hair pixel
values are examined. These two steps are described in the two
following subsections.

Hair segmentation
The main objective of this step is to demonstrate the effect

of considering only the hair pixels in the image. Various segmen-
tation methods can be applied but in this section in order to avoid
outliers we tune our method to instead of segmenting all hair pix-
els in the image to robustly segment a large number of hair pixels.
This ensures that segmentation avoids specularities and other ar-

Figure 8: Our segmentation method for extracting a large number
of hair pixels while avoiding outliers.

tifacts such as dandruff. Our segmentation method is based on
adaptive thresholding [33] in order to vastly segment hair form
scalp areas. Before thresholding, a Gaussian filter is applied to
reduce the noise in the image. Finally, the resulting hair regions
are ranked by size using connected components analysis in or-
der to eliminate small detected areas that could be specularities
or other artifacts falsely segmented as hair. The output of this
method can be seen in Figure 8. Different segmentation methods
were considered and we found that the accuracy of the segmenta-
tion is not crucial. This is due to the fact that taking into account
the median hair value one can neglect possible outliers and the er-
ror in the final result is negligible. However, in order to isolate the
segmentation impact, in our experiments we consider this method
that eliminates outliers.

RGB to CIELAB
The device needs to be calibrated in order to transform

the device-dependent RGB values to a device-independent color
space. The CIELAB color space was selected for this transfor-
mation since it is relatively perceptually uniform and is widely
used in the industry. There are various methods in the litera-
ture that provide L∗a∗b∗ measurements of hair, such as in [34]
and [35]. For the calibration process, we estimate the L∗a∗b∗

value r ∈ R3 of each RGB pixel expressed as x ∈ R3, using the
following model:

r̂(x) = Crφφφ(x), (5)

where φφφ(x) ∈ RN is a third degree polynomial (N = 20) of the
RGB pixel values x ∈ R3 and Cr ∈ R3×N are the correspond-
ing coefficients, learned statistically on a set of K training pairs.
Those pairs were obtained by acquiring images of predefined
color patches with measured L∗a∗b∗ values ri (i = 1, . . . ,K). For
each patch xi acquired by the device we take the median RGB
pixels in order to solve the regression problem:

argmin
Cr∈R3×N

K

∑
i=1
‖r̂(xi)− ri‖2, (6)

which is the closed-form equation of Cr and ‖.‖2 denotes the L2

norm. The patches used in our experiments were the 24 patches of
the Macbeth Color Checker and the 110 pacthes of the PANTONE
SkinToneTM Guide. The latter was used due to its similarity with
the scalp and hair colors that are present in our images. The accu-
racy of this transformation was evaluated on a small test set of 20
hair colors where the average error was found to be ∆Eab = 1.31.

Compared Models
In order to evaluate the performance of our CNN, we com-

pared it with the conventional methods described above and with
existing popular deep learning models. We thus considered the
following models:

• RGB : As a baseline, we evaluated a regression on the mean
red, mean green and mean blue values for a given input pic-
ture. We used a Ridge regression on a 3rd-degree polyno-
mial of these mean RGB values. This method mixes scalp
pixels with hair pixels.

• RGB-Seg : Regression of 3rd-degree polynomial based on
mean R, G and B values of the segmented hair pixels, for a
given input picture.

• L∗a∗b∗-Seg: Regression of 3rd-degree polynomial based on
mean L∗, a∗ and b∗ values of the segmented hair pixels, for
a given input picture.

• Deep-HT : Our proposed method that is based on a CNN.
• VGG 16 [20], Inception [22], MobileNets [29] : These base-

line architectures were used for the first part of the network,
the convolutional part, which learns a representation of the
image as feature maps. The final dense block is kept as for
Deep-HT, without the dropout regularization. Regulariza-
tion is indeed present in the convolutional blocks of Incep-
tion and MobileNets, and absent from the original architec-
ture of VGG. The training procedure is kept the same, as
detailed in the description of our model. All CNN mod-
els are trained from scratch, with no pre-training, since the
images acquired by our device are very different with Ima-
geNet pictures that are used for pre-training.

Evaluation Strategy
In order to evaluate and compare our models, we performed

a 5-fold cross-validation [36] on the 11,175 images of our data
set acquired following the protocol in Section Data Acquisition.
To avoid bias of having different pictures of the same volunteer
in both training and testing, images from each of the 407 volun-
teers were used only in the same fold. Moreover, we stratified the
validation, by distributing equally the 10 classes of hair tone into
each fold.
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After the cross-validation, we computed three metrics on
hair tones hi predicted on test folds: maximum error MAX =
maxi |ĥ(Ii)− hi| , mean absolute error MAE = ∑i |ĥ(Ii)− hi| and

root mean square error RMSE =
√

∑i(ĥ(Ii)−hi)2 against the
ground truth. We computed these errors in the 2 different cases:

• /Img : Error comparing each image to its corresponding
ground truth. When considering RMSE, this metric is the
training loss of the deep learning models.

• /Vol : Error comparing the average hair tone over all pic-
tures of the same volunteer to the ground truth. This case is
optimistic in real-world usage since this would require ap-
proximately 50 pictures per subject to achieve similar errors.

Comparative Results
Table 2: Comparisons of the different models for hair tone pre-
diction. In bold are the best results for each metric.

Model RMSE MAE Max
/Img /Vol /Img /Vol /Img /Vol

RGB 1.21 1.09 0.96 0.90 5.31 3.11
RGB-Seg 0.73 0.66 0.58 0.48 4.06 1.88

L*a*b*-Seg 0.74 0.67 0.58 0.48 4.42 1.92
Deep-HT 0.51 0.43 0.39 0.33 3.25 1.63

VGG16 0.55 0.43 0.43 0.33 3.16 1.61
Inception 0.60 0.51 0.45 0.37 4.20 2.50

MobileNets 0.57 0.46 0.44 0.35 2.85 1.77

We see in Table 2 that the highest accuracy is obtained by
our Deep-HT model. This appears to us as the shallowest CNN
model, with fewer operations and parameters used, that is suffi-
cient for our simple patterns in hair/scalp images, and is therefore
easier to optimize. For similar reasons, the second best model
is VGG, despite its lack of regularization. The conventional ap-
proaches provide worse results but of the same order, validating
our simple hair image analysis models that require significantly
fewer parameters. This confirms that mean values of hair pixels
are strongly related to volunteer hair tone and validates the role of
hair segmentation in our problem. However, the regression per-
formed in the CIELAB color space does not increase the accuracy
as it is further argued in the next section.

Specifically, we see that the mean absolute error on one pic-
ture is of 0.39 for Deep-HT; extremely close to the one obtained
by hairdressers under standard light condition and using the hair
color chart. This is very satisfactory as we highly improve on the
accuracy of hairdressers in real-world conditions (Section Data).
Moreover, our approach provides a standardized notation, since it
has been trained on our color experts labels. Besides this accu-
racy comparison, we evaluate the performance in terms of com-
putational speed in the next section.

Computational Costs
In this section, we compare the performance of our models in

three setups, on the training hardware and on the low-end mobile
chip used in the device. We focus on the computational time of
the model itself, and discard all necessary steps such as I/O. More
precisely, we computed the following times:

• Train : the total training time on one fold of the evaluation.
GPU Nvidia Tesla K80 was used for the CNN calculations.

For the colorimetric approach, the hardware used for train-
ing was a 24 CPU cores Intel E5-2690v3.

• Test : The average prediction time per picture computed on
the full data set. The same setup was used as above. This
prediction time is optimistic since it was computed on high-
end hardware as well as on mini-batches of 16 images in-
stead of single ones.

• On-device: The calculation was performed on a mobile SoM
to evaluate the feasibility of performing hair tone predic-
tions on the device at a hair salon. For this, we measured
average time required over 10 successive predictions using
a Qualcomm Snapdragon 410 - a quad-core 1.2 GHz CPU
with 1GB of RAM. Such a chip is already required in the
device for managing the captors, screen, and lights. We
implemented the neural network models using TensorFlow
Mobile [32] for Android.

Table 3: Comparisons of computational costs for each model, on
the hardware used for training and on low-end device chip. Only
the CNN models were implemented on the chip.

Model #Parameters Train Test On-device
RGB 20 34s 3ms -

RGB-Seg 20 36m 239ms -
L*a*b*-Seg 20 42m 277ms -

Deep-HT 2,571,004 15h48m 1.9ms 177ms
VGG16 16,747,073 13h24m 7.1ms 1141ms

Inception 31,271,841 27h06m 10ms 1280ms
MobileNets 7,205,441 7h17m 3.1ms 275ms

The results are displayed in Table 3. The Deep-HT provides
the fastest calculations, even when compared to MobileNets that
includes more layers and parameters. When considering accuracy
and performance, Deep-HT is thus the most suited to our problem.
We note that computation time on device is satisfactory for real-
world usage, since 170ms would be barely noticeable by the user.

Discussion
Figure 10 represents the boxplot of average absolute errors

by volunteer, for all predictions of Deep-HT on the test folds.
We see that for most ranges we achieve approximately 0.25 er-
ror, apart for very high tone values that were less frequent in our
data set (see Figure 6). This meets our industrial requirements as
the hairdressers had a standard deviation of 0.65 in salon condi-
tions. Moreover, our model error is computed against a reliable
ground truth, given by color experts using hair color chart. This
ensures our prediction to be a standard and objective estimation,
with satisfactory accuracy.

To understand better the difference between CNN models
and conventional approaches, we computed the saliency map [37]
of the Deep-HT model on a given picture Ii, as

∂ ĥ
∂ I

(Ii)

which has the same size as Ii. In order to display a 2D heat-map
with one channel, the maximum value over the three input chan-
nels is considered. This derivative is computed with a single back
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Figure 9: Example of hair roots picture acquired by our device on the left, with the corresponding saliency map of the Deep-HT model in
the middle, and the hair pixels segmentation used in our conventional approaches on the right.

Figure 10: Boxplot on all data-set, deep-HT

propagation, and gives higher weights to pixels in Ii that have
higher influence on hair tone prediction ĥ(Ii). This visualization
is to be compared with the segmented hair used in our conven-
tional methods as shown in the right of Figure 9.

One can observe that no scalp pixels are segmented as hair in
our segmentation method since the objective was to focus on the
impact of considering only the hair pixels. In comparison, deep
learning seems to focus on hair pixels as well, but the selection
is more variable, with a few broader areas of interest. To some
extent, this confirms that hair contains the information as we as-
sumed in the conventional approaches. We also see that the con-
volutional model manages to capture subtler details which might
explain the differences in estimation accuracy.

The assumption that segmenting the hair has an important
impact in the precision was validated by the results of our experi-
ments, However, as can be seen in Table 2, the device-independent
CIELAB color space does not perform better than the device-
dependent RGB values. This is related to the findings of Lozano et
al. [35] that despite the strong correlation between the values L∗b∗

and natural hair tone (a∗ plays a significant role only on red hair),
the L∗a∗b∗ clusters between different hair tones are highly over-
lapping. Especially in the range of darker hair colors the distinc-
tion is not accurate by simply using these colorimetric measure-
ments and other attributes need to be taken into account (diameter,
shape and shine). These attributes can be better captured by the
more holistic approach of a CNN. Moreover, it should be noted
that the transformation from RGB to CIELAB space, even though
it was specifically designed for this problem, is always subject
to additional errors. Since CIELAB is a relatively perceptually
uniform color space, differences in dark colors are suppressed.
This might explain the similar performance between the RGB and
L∗a∗b∗ values.

In terms of computational costs, we observe that the segmen-
tation we used was the most expensive part of the conventional
approaches. Despite having the benefit of being unsupervised,
the segmentation step is significantly longer to compute than the

CNN models. For this reason, at test time, the CNN models are
faster. Furthermore, they benefit from the recent development of
deep learning frameworks. We found that Deep-HT is the fastest
model due to its lighter architecture that still captures enough in-
formation of the hair roots images to provide high accuracy.

Conclusion
Despite the complex challenging nature of hair, we propose

an accurate method based on deep learning for automatic hair tone
estimation using hair-scalp images. Moreover, we evaluated our
method in comparison with conventional color image process-
ing methods and other popular deep learning techniques. The
results show that our deep learning model is not only more ro-
bust and precise than our accuracy objective (the subjectiveness of
the average hair dresser) but also outperforms the other tested ap-
proaches. Moreover, the light network architecture of our model
achieves a low calculation time that allows the real time estima-
tion on the acquisition device. The conventional approaches per-
form worse due to their simpler pattern extraction based on un-
supervised hair/scalp segmentation. Indeed, focusing on the color
of hair pixels achieves a decent estimation but fails to take into ac-
count more global effects such as transparency and geometry. The
complex hair-light interaction cannot be adequately described by
a single value in a color space. On the other hand, the deep learn-
ing method takes better advantage of our large annotated database
to capture subtler patterns in hair pictures.

Such an imaging device with embedded computation has an
immense potential in hair salons and breaks new ground in hair
care and hair color personalization. Our future work will be to
extend this deep learning approach on new attributes of the hair
at their roots, including fiber diameter, density and white hair per-
centage.
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Research and Innovation where he focuses on augmented reality, com-
puter vision and graphics for beauty personalization.

Author Biography
Emmanuel Malherbe received his engineering degree from Ecole

Polytechnique (2012), his MSc from Imperial college (2013) and his PhD
in machine learning from Centrale Supelec (2016). Since then he has
worked in the Research and Innovation Division at L’Oréal in Saint-Ouen,
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