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Abstract
Counterfeiting of currency globally remains a significant

problem to this day. According to the authorities, a large portion
of this fake currency is produced by Small Office or Home Office
inkjet printers. In this paper, we explain why a previously devel-
oped machine learning based Printer Identification System works
with high accuracy and we investigate to improve the stability and
generalization of the classifier.

We study the print patterns of 8 inkjet printers from different
manufacturers. We look at the features of the data by reducing its
dimensions using Principle Component Analysis. This shows sig-
nificant separation between printers which implies that the Deep
Neural Network was able to pick up on key differences. The results
are also comparable with that of reducing dimensions with Lin-
ear Discriminant Analysis. The model however does have some
limitations regarding ink density and print media. It always clas-
sifies an image amongst the trained printers and does not show
anomalies. For this, we consider the Gaussian distribution of
target printers to see how the probabilities fared when trained
and fitted separately for each printer, thus having a set of images
that do not fit in with any of the printers for which the classi-
fier was trained. The results acquired from these methods have
contributed to making a more real-world implementation of our
classifier, named LAPIS (machine-Learning Applied Printer Iden-
tification System), for printer forensics.

Introduction and Related Works
In a 2006 report, the U.S. Secret Service estimated that 1 in

10,000 currency notes in circulation is a counterfeit. In Europe,
as of a report published in 2015, there are about 800,000 coun-
terfeit Euro notes pulled from circulation each year. Small Office
Home Office (SOHO) inkjet printers account for over 50% of the
production of counterfeit currency notes in Europe [1]. The ”feel,
look, tilt” methods proposed by the European Central Bank, while
effective, can’t distinguish between well-made counterfeit notes
and authentic notes. The cheap Small Office Home Office printer
market has greatly broadened the opportunities for abuse of trust
through the generation of fallacious documents [2]. The process
of printer forensics can aid this front by giving details about the
printer that was used to print a particular currency note. Even
knowing that a certain group of printers were not used in printing
a counterfeit note can be valuable information to the authorities
[3].

Tackling this issue of forgery has been attempted in numer-
ous ways such as image texture analysis [4] and gray level co-
occurance through watermarking [5]. However, the deep learning
pipeline proposed in [1] provides an efficient and generalized ap-
proach. Numerous studies like [6] have provided general insight

onto neural networks and their applications, but none exist partic-
ular to this application.

Previously, we designed 4 different printer intrinsic features
to characterize the dot patterns at a microscopic level based on the
analysis of the printer dot structure in highlight regions. We con-
sidered the spatial arrangement and size of individual ink drops
in dispersed-dot, aperiodic (stochastic) halftone patterns [1]. We
also proposed a machine learning based Printer Identification Sys-
tem that uses the Residual Neural Network and the Support Vector
Machine classifier. Our evaluation showed that the proposed sys-
tem produces robust and reliable results. However, further steps
need to be taken to verify this. Deep Neural Networks achieve
high classification accuracy by adjusting the features according to
the pre-defined statistical loss. Therefore, there is no guarantee
that this approach reflects the true nature of the problem. This is
why we need to concretely identify what the Deep Neural Net-
work picks up on. Attempts have been made in the past with
textual documents as in [7] and [8]. However, this study proposes
to broaden the scope of that. As a continued study, we focus on
two problems:

• First, for the previously developed Printer Identification
System, due to the nature of neural networks, it is chal-
lenging to incorporate the features produced by a pre-trained
neural network. It is also challenging to understand how we
can optimize a given model because because the neural net-
work is usually treated as a ”black box”. Therefore, we aim
to find the reason for the high accuracy of classification to
help us understand the model better.

• Secondly, we aim to further improve the classification
model, to improve the stability and generalization of the
model.

Experiment Setup
Data Acquisition

To collect data for this experiment, we use 8 different print-
ers from 3 different manufacturers, namely HP, Canon and Epson.
As a means of identification each of the printers are assigned al-
phabets ranging from A to H. We primarily use 6 of these for
training and use the other 2 to test as anomalies ”outside” the
training set.

Since there may be microscopic variations in how a printer
prints in different regions of the page, we designed a testing page,
as shown in Figure 1a, containing multiple groups of patches all
across the page. Each group has 6 patches, corresponding to vary-
ing percentages of CMYK colorants as follows:

• 5% Cyan
• 5% Magenta
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(a) Phase 1 (b) Phase 2
Figure 1: Testing Phases

(a) Canon MG 2522 (b) Canon MX 922 (c) Epson XP 340
Figure 2: Sample Prints

• 5% Yellow
• 5% Black
• 5% Cyan, 5% Magenta, 5% Yellow
• 5% Cyan, 5% Magenta, 5% Yellow, 5% Black

For simplicity of reference, the last two items in the above
list will be referred to as 555 patches and 5555 patches respec-
tively. We chose 5% because the dots are dense enough to show
characteristic spatial relationship while having reasonably low dot
coalescence [1]. Each patch was designed to be 3mm× 2mm so
that it can be captured by the high resolution QEA PIAS-II cam-
era with a resolution of 7663.4 dpi and a 3.2mm×2.4mm field of
view. Each patch also has a black bar on top of it to help with
alignment. Some images captured by this camera are shown in
Figure 2.

From the printer side, all standard settings are used except
for print quality which is set to ”best” where possible with a reso-
lution of 600 dpi.

5555 patches and 555 patches have their own differences in
terms of dot density as seen in Figure 3. SOHO inkjet printers try
to ”simulate” low percentages of black dots by increasing the per-
centages of the other colorants. This set of images with increased
density also serves to expand our dataset.

Furthermore, to expand on the ability of the printer identi-
fication system, three different types of paper are used, namely
linen, cotton and plain paper whose examples are shown in Fig-
ure 4.

In phase 2 of data collection, we collect samples of different
colors separately as shown in the second version of the testing
page in Figure 1b. We capture information about the different
colored dots separately.

Data Preparation
In the previous study, the scanned images were cropped into

segments of 224× 224 images to be fed into the residual neural

(a) 555 Scan on Printer C (b) 5555 Scan on Printer C

(c) 555 Black (d) 5555 Black
Figure 3: (a) and (b) show captured images of prints. (c) and (d)
show colorant dots after media pixels are set to black (”Media

Neutral”).

(a) Plain Paper (b) Cotton Paper (c) Linen Paper
Figure 4: Different Types of Paper

network (ResNet50). However, this greatly reduces the amount
of data we can capture in each segments. Thus, we increase the
area of each segment to 448×448 and then resize it to 224×224
to use with ResNet50. We then generate 2048 features through
ResNet50 using these segments, and analyze the features through
the methods described below.

To include media-neutral images in addition to the different
types of paper, we create another data set with the media pixels
removed. By viewing the image in CIELab color space, we elim-
inate the media pixels which are represented as white pixels by
filtering out pixels with high L∗ components, i.e. high lightness
components. This is computed by examining a measure of color
saturation S in CIELab color space [1].

S =
a∗2 +b∗2

L∗
(1)

Since we have dispersed dots without much overlap as seen
in Figure 3, we can eliminate media pixels by thresholding S.

Feature Analysis
We use the set of 2048 features generated by ResNet50

and analyze its separation using Principal Component Analysis
(PCA). We also reduce the number of features from 2048 to 3
using PCA. This is to improve computation efficiency and to use
only the most important features with maximum variance. PCA
represents the pattern of similarity of the observations and the
variables by displaying them as points in maps [9]. The pos-
sibility of overfitting the model is also reduced by reducing the
amount of features [10]. To explain the performance of the pre-
vious Printer Identification System, we plot all the data points by
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the first two or three PCA-reduced features generated from the
plain paper patches. Our visualization in Figure 5a shows that by
using PCA-reduced neural network features, the data points from
different printers can be well separated by the model using the
first two or three components.

To further cement the separation between printers, we apply
Linear Discriminant Analysis (LDA) on our features. LDA is su-
pervised and attempts to find a feature subspace that maximizes
class separability [11]. If each of the printers P has a mean µi and
the same covariance Σ, then the scatter between printer variability
may be defined by the sample covariance of all the means.

Σb =
1
P

P

∑
i=1

(µi−µ)(µi−µ)T (2)

where µ is the mean of the means. Thus, the separation in a given
direction ~ω is given by

S =
~ωT Σb~ω

~ωT Σ~ω
(3)

~ω is used to reduce the features from 2048 to 3 [12]. We analyze a
visualization of the top 3 LDA-reduced features in Figure 5b. The
clear distinction between printer clouds confirms the separation
between printers.

We visualize the above two methods using the media neutral
images as well. Figure 6a shows different sections of separation.
There are two different sets of clouds, one containing the plain
paper features and the other containing media neutral features. We
hypothesize that this separation is a matter of scale and as such,
we calculate the L2 norm of both datasets, say P, and normalize
them separately as follows

P =
P√

∑
2048
k=1 |Pk|2

(4)

This puts all the clouds on the unit sphere, as shown in Fig-
ure 6b. The two sections of printer clouds only differ by one di-
mension. This difference is attributed to the fact that PCA has
the feature with maximum variance in the first dimension. When
comparing media-neutral and plain paper images, the feature with
the highest variance is the one detecting media. Since that feature
is binary (white background or black background), it visualizes
the sections on opposite parts of the sphere.

However, even when using media neutral images alongside
plain paper images, the separation between individual printers is
visible.

The PCA-reduced and LDA-reduced plots for phase 2 of data
collection is shown in Figure 5e. Printers retain their identity
even when using colors separately which provides a much broader
model. In Figure 7, which is the PCA cloud of only printer H,
the points form a manifold. The surface generated by the points
is visualized on top of the image. This unique surface provides
more information than just a collection of points which can also
attribute to the success of the model.

Classification
The previous study went into depth about using Support Vec-

tor Machine (SVM) to classify between printers using the PCA-
reduced features. We get almost perfect results when testing that
model with only plain paper. The following are the different at-
tempted methods, each with their own successes and limitations.

(a) 2D PCA Separation (b) 2D LDA Separation

(c) 3D PCA Separation (d) 3D LDA Separation

(e) Phase 2 PCA Separation (f) Phase 2 LDA Separation
Figure 5: Printer Separation

(a) Non-Normalized (b) Normalized
Figure 6: PCA on a combined set of Media Neutral and Plain

Images

Support Vector Machine
As mentioned above, the previously developed Printer Iden-

tification System uses a Support Vector Machine (SVM) for clas-
sification because of several arguments that support high accuracy
for it [13]. SVM works well when trained and tested with 555
patches or trained and tested with 5555 patches as shown in Fig-
ure 8a. It also works well when trained with 5555 patches on plain
paper and tested with 5555 patches on cotton paper.

However, it fails when tested with media-neutral images
and/or images with different dot densities. As mentioned above,
5555 patches have a more dense arrangement of dots as compared
to 555 patches. Training on one and testing on the other results
in very inaccurate classifications as seen in Figure 8c. We infer
that the previous model is resistant to slight changes in media, but
cannot tolerate significant changes like complete media removal.

We then build another classifier by expanding its training set.
We train it with all the data, including different paper types, media
neutral images and different dot densities. The result of testing on
this is shown in Figure 9.
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Figure 7: PCA point cloud of Printer H with manifold

(a) Train: 555 on Plain
Test: 555 on Plain

(b) Train: 5555 on Plain
Test: 5555 on Cotton

(c) Train: 555 on Plain
Test: 5555 on Plain

(d) Train: 555 on Plain
Test: 555 Media Neutral

Figure 8: Support Vector Machine Results

Figure 9: Trained with all data

Figure 10: Gaussian Distribution of Printer A

Gaussian Anomaly Detection
Another problem in the previous classifier is that it is de-

signed to pick one label from the six trained labels for an input
image. This does not allow the classifier to detect anomalies,
hence reducing the ability of generalization. Thus, we design
a new non-discriminative classification framework that can de-
tect an anomaly by analyzing the distributions of the data points.
Based on the PCA analysis in Figure 5a, it can be observed that
data points from the same printer tend to form their own cluster,
which can be modeled with a Gaussian distribution [14]. There-
fore, Gaussian distributions of target printers are also studied to
see how the probabilities fared when trained and fitted separately
for each printer.

For each printer X, we use the data points to fit a unique
Gaussian probability density function NX(µ,Σ) along with the
mean µ and covariance matrix Σ. This Gaussian distribution NX
produces the probability (PX) of a given datapoint belonging to X,
which serves as a one-vs-all classifier. The point distributions are
shown in Figure 10. Therefore, we can build a classifier by com-
bining all the Gaussian distributions: a datapoint can be classified
as from a given printer X only when PX� Pi, i 6= X and PX > 0.5.
In any other cases, this datapoint will be labeled as ”unknown” or
”anomaly” for further examination.

Single Class SVM
Since SVM generally had more stable results, we apply the

same principles of Gaussian anomaly detection to use a single
class SVM classifier instead. In this, 6 independent SVM classi-
fiers are trained for each of the printers with the training set being
split into two sections - one with the correct printer being labelled
as 1 and the all the other data for all the other printers being la-
belled as 0.

Once trained, we use the image data from 2 previously un-
used printers (namely the HP DJ1112 and the EPSON WF2790)
as a testing set and classify through each of the 6 SVM classifiers.
If all 6 classifiers are unable to recognize the image, it is labeled as
an anomaly. This implies that the image was not printed from any
of the printers of the 6 classifiers. Every image that we tested out-
side of the 6 original printers was labelled correctly as an anomaly
as shown in Figure 11.

Conclusion
We have analyzed and improved the previously developed

Printer Identification System by visualizing the features from the
ResNet neural network. We have trained the pre-existing model
with different samples of images by varying dot density and paper
types. We have also constrained our testing to the CMY space
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Figure 11: One Class SVM with Anomaly Column

instead of the CMYK space because many commercial SOHO
printers try to be efficient with placement of black dots by printing
a dense patch of colors instead. As mentioned above, the printers
simply increase the density of other colorants to give the perceived
effect of black. In addition, we have added an anomaly class to
the classifier to ensure that other printers that are not included in
this study are not incorrectly classified.
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