
Nondestructive ciphertext injection in document files

Scott Craver and Enshirah Altarawneh; Binghamton University, United States
Jugal Shah; Nirma University, Gujarat, India

Abstract

We describe how container files in Portable Docu-
ment Format (PDF) can be modified to inject mod-
ifiable pads for use in a steganographic file system.
This produces a footprint that is less conspicuous
than a randomized disk volume or disk image file.
The PDF standard can be exploited to inject a mod-
ifiable segment into a file, without affecting the file’s
interpretation or validity; these can be disguised as
high-entropy segments that commonly occur in PDF
files. We show two methods of achieving this embed-
ding.

1 Introduction

The steganographic filesystem problem is that of con-
cealing an entire filesystem on a computer, allowing
the reading and writing of files to a hidden store
whose existence can not be proven. The problem,
and a proposed solution, was first articulated by An-
derson, Needham and Shamir in [1]. This problem is
substantially different from the conventional stegano-
graphic problem of embedding a fixed payload in a
cover object. There are several elements of this prob-
lem that make it unique:

• A steganographic filesystem requires a very large
overall payload size, which can challenge capac-
ity limits in conventional steganographic embed-
ding. It also entails a payload that is constantly
modified, rather than a fixed message.

• A steganographic filesystem requires an embed-
ding method that meets the performance re-
quirements necessary for file system operation.

• The “cover object” in the steganographic filesys-
tem problem is a computer’s disk volume. This
is a highly complex object that can not be re-
garded as a signal, or processed or analyzed us-
ing a signal-processing framework as we can with
image steganography.

• Conventional steganography aims to achieve sta-
tistical undetectability, whereas the stegano-
graphic filesystem problem, as originally posed,
aims for a weaker goal of plausible deniability.

Plausible deniability refers to the security prop-
erty that a user can reasonably deny a message, in
this case denying that files are present in a system,
for example that the steganographic filesystem was
installed but never used. Practically, this means that
the presence of steganography may be established but
no determination can be made of the payload size.

The solution in [1] was to randomize the unused
blocks in a disk volume, filling a disk with i.i.d.
uniform random bits. Data is then hidden on the
disk first by encrypting it, and then overwriting disk
blocks with the encrypted data. This exploits the fact
that strong ciphertext should be computationally in-
distinguishable from random bits. This method was
later implemented in [2]. A software product called
TrueCrypt could perform a similar concealment of
ciphertext within a file of random bits. [4] In so do-
ing, it would be computationally impossible to de-
termine how much data, or if any data, is immersed
among the random background. A file system is then
achieved using this medium as a logical device.

This method has several advantages. One is that
embedding is simple and fast, as it simply consists
of writing an encrypted payload on to a disk block
or file. Another is that the embedding is theoreti-

IS&T International Symposium on Electronic Imaging 2019
Media Watermarking, Security, and Forensics 2019 541-1

https://doi.org/10.2352/ISSN.2470-1173.2019.5.MWSF-541
© 2019, Society for Imaging Science and Technology

cally undetectable, because it uses an artificial cover
designed to have identical statistics to the embedded
data.

1.1 Towards innocuous embedding

The primary problem with the method of embedding
described in [1] is that it does possess a clearly con-
spicuous footprint in the form of a randomized vol-
ume. Essentially it uses an artificial cover consisting
of i.i.d. random bits, which does not qualify as an
innocuous cover object in the prisoners’ problem. If
Alice and Bob were allowed to send each other files of
random bits, they would be able to send each other
ciphertext without using steganography at all.

In practice, this means that a steganographic
filesystem of this type will betray its existence,
enough that a user may then become a target of more
focused surveillance. If the motivation of the stegano-
graphic file system is to avoid the conspicuous nature
of clearly visible encrypted files, then such a system
should not have a footprint consisting of clearly visi-
ble volumes of random data.

In this paper, we describe how the random seg-
ments used in this approach can instead be injected,
plausibly, into files commonly found on a computer.
This can then produce a disk volume with no suspi-
cious files or randomized blocks, and bring us closer
to the goal of an innocuous-looking disk volume.

This alternative type of concealment is part of a
larger system called AINT, a steganographic oper-
ating environment that combines a file system with
a virtual operating system with applications and a
desktop user interface. [3]. The paper outlining the
AINT system proposed concealment of data in files,
but did not detail how this could be convincingly
achieved. We outline several effective strategies for
concealment in Portable Document Format (PDF)
files.

2 Nonintrusive embedding in
container file formats

Our goal is manipulating a file in a common format
to include a modifiable pad : a region of bytes that can

be altered to a store a message, without corrupting
the file or affecting the operation, display or interpre-
tation of the file. If such a pad is placed in a known
location and length, one can embed data in the file
and extract data from the file simply by seeking to
that location and writing or reading bytes, respec-
tively. A stegnographic file system could then consist
of a database that keeps track of modifiable pads in
files, distributing data among them.

Instead of modifying a file to contain a specific
message payload, we instead consider the problem of
modifying a file to contain a random string of bytes,
where by random we mean independent and identi-
cally distributed (i.i.d.) bytes with a uniform distri-
bution. Embedding will consist of overwriting some
or all of those bytes with ciphertext, under the as-
sumption that the ciphertext is computationally in-
distinguishable from i.i.d. uniform bytes. Hence the
detectablility problem is not distinguishing cover ob-
jects from stego objects, but distinguishing cover ob-
jects to those objects prepared to accommodate fu-
ture stego data.

To achieve this reliably, we need to meet the fol-
lowing specific constraints:

1. A modified file must remain valid according to
its file format, and not cause unwanted behavior
in computer programs using those files.

2. The embedded pad should have no effect on the
file’s behavior, regardless of its byte values.

3. The embedded pad should not be inconspicuous
for the file or its format.

We will relax these contraints probabilistically,
requiring that they be met with high prob-
ability for random choices of the pad string
value. Thus there may be conspicuous pad strings
("STEGO FOUND HERE") that are unlikely to occur at
random, assuming that embedded data is encrypted
before immersion.

2.1 Embedding and extraction from a
modifiable pad

We do not want to employ an embedding algorithm
that processes or modifies file data with any sophisti-

541-2
IS&T International Symposium on Electronic Imaging 2019

Media Watermarking, Security, and Forensics 2019

cation, parsing or understanding of its contents. In-
stead, we wish to create a region of a file where a
segment of random data is plausible and inconspicu-
ous, so that random data can be written directly in
to that spot.

If this is achieved, barely any software is needed
for embedding and detection. Both are, at a rudi-
mentary level, acheivable using standard Unix com-
mands. The following dd command will write N bytes
from the result of a program into a file at position P :

./program | dd of=file bs=1 seek=P

count=N conv=notrunc

To extract the same bytes from a file and pass them
to standard output, we write:

dd if=file bs=1 skip=P count=N

If a computer has an openssl command, a
command-line chain can encrypt and decrypt data
that is embedded or extracted from a file. The AINT
system described in [3] exploits this capability by
concealing steganographic filesystem software in the
filesystem itself; a terminal command chain can be
used to extract and execute a “bootstrap” script that
launches the remaining software from its hidden lo-
cation.

This design, however, fixes the architecture of the
system so that the data in a modifiable pad must be
ciphertext, not modified to resemble the statistics of
a file. This is why our embedded pad is assumed to
be i.i.d. uniform random bytes, and thus our third
constraint requires that a hunk of i.i.d. uniform bytes
be inconspicuous when laid in a file.

2.2 Suitable file formats for pad injec-
tion

Candidate files for injection of a modifiable pad
should have the following properties:

• Such files should be commonplace on personal
computers.

• Files should be large enough that the additional
space of an injected pad is not conspicuous.

• Files should commonly hold parcels of high-
entropy data, so that such a parcel of i.i.d. bytes
laid within the file is not conspicuous.

• A file should be easily modifiable to include a
parcel that does not impact the behavior or func-
tion of a file.

• An ideal file for embedding would be a file that
is not likely to be edited or modified, so that an
injected pad is not corrupted or moved.

A fruitful approach for embedding is to consider
container files, for example Portable Document For-
mat (PDF) files, which hold numerous resources such
as text, figures, or images. By their nature they
should allow the inclusion of additional data parcels,
some of which can be of high entropy. In addition,
PDF is commonly used as a terminal format for doc-
uments, so that they can lie unmodified on a disk.
We have focused our embedding efforts on PDF files.

3 Structure of Portable Docu-
ment Format (PDF) Files

Figure 1 shows the overall structure of PDF files.
The file begins with a header section with informa-
tion such as the version of the pdf file. Thereafter we
have a body that contains various objects that en-
capsulate data for displaying the document. Objects
are declared using a text format, although the object
data can contain a stream of binary data. Each ob-
ject has an index number, and can be referenced by
other objects, using its index number.

An object can simply be a string or simple parcel
of data, with the following format:

<Object Number> 0 obj

<data>

endobj

A stream object begins with a dictionary of
name-value pairs, and the keywords stream and
endstream, between which we may have arbitrary
data:

IS&T International Symposium on Electronic Imaging 2019
Media Watermarking, Security, and Forensics 2019 541-3

<Object Number> 0 obj

<<DICTIONARY>>

stream

<stream>

endstream

endobj

This type of object is used to store compressed
data or image data in a binary stream. The dictio-
nary explains how the stream is supposed to be in-
terpreted; in PDF terminology, the dictionary names
filters that are supposed to be used when processing
the data. For example, the /FlateDecode filter is
used to decompress a binary stream according to the
Flate compression standard.

After the objects the PDF file has a cross-reference
table, with a logical byte offset for each object in the
file, for rapid access. This table also denotes whether
an object is in use by the document, or unchained

HEADER

ORIGINAL BODY

ORIGINAL CROSS-REFERENCE
TABLE

ORIGINAL TRAILER

ADDITIONAL TRAILER

ADDITIONAL BODY

ADDITIONAL CROSS-REFERENCE
TABLE

OBJECTS

ROOT OBJECT

INFORMATION
OBJECT

INJECTED OBJECT

Figure 1: Structure of PDF file
Showing where Object Injected

and free to delete. A final section of the file provides
a logical file location of the XREF table, so that a
PDF reader can find it by working backwards from
the end of the file. This section dictionary contains
reference to root object, count of objects, ID of the
pdf file, object number of the object containing the
information of the creator as well as creation date.

It is possible to appends subsequent objects to a
PDF file, followed by a new cross-reference table and
trailer. This allows updates without changing the
byte offsets of previous objects.

3.1 Embedding strings in PDF files

The above file format suggests a clear strategy for
injecting a string into a PDF file without affecting
the file’s rendering: one could add an extra object
to a PDF file, filled with a stream of arbitrary data.
Because the object is not used in rendering, it will
not affect the file’s interpretation or the document’s
appearance.

Injecting such an object presents several problems,
however. If the injection displaces any existing ob-
ject, the cross-reference table must be modified. Be-
cause objects are indexed and then referenced by
their index values, a new object in the middle of the
object list will either be conspicuously out of order, or
require the reindexing of other objects. These prob-
lems can be avoided by placing the new object at the
end of the object list, but this fixes a location where
the embedded object may be easily spotted. Addi-
tionally, an additional unused object may be spotted
as unreferenced when a file is rendered.

A second approach is the modification of an exist-
ing object to include an injected pad, which we will
describe subsequently. Before doing so, we discuss
what objects are commonly found in PDF files, that
can be used as decoys for an embedded payload.

4 Analysis of PDF file streams

PDF file streams are a strong candidate for embed-
ding binary data, so we assembled a corpus of 2170
PDF files from computers in our laboratory. From
these files we extracted all stream objects. Most of

541-4
IS&T International Symposium on Electronic Imaging 2019

Media Watermarking, Security, and Forensics 2019

these streams were encoded for three compression fil-
ters: FlateDecode, DCTDecode, and CCITTFax. It
is thus reasonable to create an object disguised as one
of these streams.

Figures 2 through 6 show scatter plots of stream
sizes, relative to the file sizes. These show that Flat-
eDecode streams are by far the most common, and
that their streams are commonly within one to two
orders of magnitude of the file size. Because these
streams are common and because they are commonly
large, they are a suitable cover for placing a large pad
in a file.

Figure 2: File Size vs Stream Length of Each File

Figure 3: File Size vs Stream Length of Files with
FLATDECODE Filter

We also estimated the byte entropy of streams with
different filters, as shown in figures 7 through 10.
Compressed streams are expected to have high en-
tropy, and a high-entropy segment such as a random
string or section of ciphertext can therefore plausibly

masquerade as a FlateDecode stream.

Based on these results, we decided that we would
embed modifiable pads into a PDF file as a FlateDe-

Figure 4: File Size vs Stream Length of Files with
DCTDECODE Filter

Figure 5: File Size vs Stream Length of Files with
CCITTFAXDECODE Filter

Figure 6: File Size vs Stream Length of Files with
NO Filter

IS&T International Symposium on Electronic Imaging 2019
Media Watermarking, Security, and Forensics 2019 541-5

code stream object.

Figure 7: Stream Length vs Entropy of Streams with
FlateDecode Filter

Figure 8: Stream Length vs Entropy of Streams with
DctDecode Filter

Figure 9: Stream Length vs Entropy of Streams with
CCITTFaxDecode Filter

5 Embedding methods

We employed two approaches to embedding. The
first method was to augment a PDF file with a
new FlateDecode stream object, whose data is ran-
dom noise rather than a properly compressed Flate
stream. This would cause an error upon decompres-
sion, but the object should not be invoked when the
object is rendered.

Our second method was to identify a FlateDecode
stream object, and then add a length of random data
after its stream but before the endobj tag, updat-
ing the stream length in the object’s dictionary. This
was based on a careful analysis of the Flate com-
pression format. A proper Flate stream consists of a
brief header, a parcel of compressed data in blocks,
and a 32-bit checksum of the decompressed data. [5]
Each block specifies the type of compression used, the
block length, and a flag denoting a terminal block.
Any bytes after the terminal block and checksum are
not processed by the decompressor, and an arbitrary
string can lie beyond them. This does not produce
a corrupt file, because the extra bytes are accounted
for in the length field of the object dictionary.

5.1 Results

We implemented both methods, testing them on our
corpus of PDF files and ensuring that all would dis-
play properly on the MacOS Preview application
(Preview version 8.1 on MacOS 10.11.6). Thereafter,

Figure 10: Stream Length vs Entropy of Streams
with No Filter

541-6
IS&T International Symposium on Electronic Imaging 2019

Media Watermarking, Security, and Forensics 2019

files were tested against several PDF validation util-
ities. This was not meant to demonstrate the effec-
tiveness of the embedding methods, but rather to
ensure that our embedding software had no errors;
either method should produce a file that passes vali-
dation, if implemented properly.

Our first embedding method was implemented in
C, without the use of existing PDF processing li-
braries or utilities. The end result was not satis-
factory, owing to the complexity of adding an extra
object to a PDF: we could only place the injected
object at the end, rather than arbitrarily within the
document, and on several files the resulting file did
not pass validation. This we attribute to an error in
our code that we could not fix by the time of this
publication; we found that we could post-process the
afflicted PDF files with the pdfrw library, and the
modified files passed validation while still containing
the embedded pads. [7].

Our second embedding method was implemented
in Tcl, using the qpdf PDF processing utility. [6] The
qpdf utility can translate a PDF file into a temporary
“QDF” format whose objects can be easily changed
in size, which is then re-indexed when converted back
to the PDF format. Our program scans a QDF file for
a FlateDecode object, appends a pad of a requested
length, and then updates the stream length field for
that object. Upon conversion, the document displays
correctly and passes validation. This was easier and
more reliable than the introduction of a new stream
object.

Comparing the two methods, we determined that
the second method was more reliable, and allows us
to embed a modifiable pad wherever FlateDecode ob-
jects are found within a document.

5.2 Attacks

However innocuous these injected objects might
seem, both of the above methods can be identified
by a program designed to search for these modifica-
tions. Objects of the first embedding method are eas-
ily identified by attempting to decompress all Flat-
eDecode streams in a file. This can be achieved with-
out attempting to render the document: we wrote a
Python program that removes all Flate streams, feed-

ing each to the zlib.decompress() function of the
Python zlib package. The embedded pad is not a
valid FlateDecode stream, so this call throws an ex-
ception.

The second method produces a valid FlateDecode
stream which passes this test, but it has a separate
problem: because the modified stream has a suffix of
spurious bytes, a byte can be removed from the end
and it will still decompress without error. A proper
FlateDecode stream should fail to decompress if the
last byte is missing, because that would be part of
the checksum used by the stream.

It is therefore possible for someone to scan for
strings embedded using both of these methods, if ei-
ther one is known or suspected to be in use.

6 Discussion and conclusion

We outline two methods to inject random strings non-
destructively into a PDF document, so that the in-
jected strings can be used as a volume for a stegano-
graphic file system. The purpose of this injection is
to avoid the conspicuous nature of random volumes
or randomized blocks normally associated with these
systems, by placing random bytes within files where
high-entropy data is plausible.

As described in [3], there are other advantages to
concealing a random volume within files. The files
are more easily transferred from one computer to
another, unlike unused disk blocks, and embedding
can be accomplished without requiring administrator
privileges on a computer–one only needs permission
to modify one’s own files.

However, the injection as we performed it can be
identified by anomalies in the objects that contain
them. It is an open question whether a file format al-
lows the nondestructive inclusion of a random string
that can not be spotted by a straightforward forensic
test. Nevertheless, this injection is preferable to the
approach of earlier steganographic filesystems, which
placed such randomized pads conspicuously on a disk.

IS&T International Symposium on Electronic Imaging 2019
Media Watermarking, Security, and Forensics 2019 541-7

References

[1] Anderson, R., Needham, R., and Shamir, A., “The
steganographic file system,” Lecture Notes in Com-
puter Science 1525, 7382 (1998).

[2] McDonald, A. and Kuhn, M., “A steganographic file
system for linux,” Lecture Notes in Computer Sci-
ence 1768, 463477 (2000).

[3] Ashendorf, E. and Craver, S., “Design of a stegano-
graphic virtual operating system,” in Proceedings of
SPIE, vol 9409 (2015).

[4] Czeskis, A., Hilaire, D. J. S., Koscher, K., Gribble,
S. D., Kohno, T., and Schneier, B., “Defeating en-
crypted and deniable file systems: Truecrypt v5.1a
and the case of the tattling os and applications,” in
[Proceedings of the 3rd Conference on Hot Topics in
Security], 7:1–7:7 (2008).

[5] Deutsch, P., “ZLIB Compressed Data For-
mat Specification version 3.3.” Internet Re-
quest for Comments, RFC 1950, May 1996.
https://www.ietf.org/rfc/rfc1950.txt [Online;
accessed 28-January-2019].

[6] “QPDF: A Content-Preserving PDF Transformation
System.” http://qpdf.sourceforge.net/ (2019). [On-
line; accessed 28-January-2019].

[7] Driscoll, M. “Creating and Ma-
nipulating PDFs with pdfrw.”
https://www.blog.pythonlibrary.org/2018/06/06/creating-
and-manipulating-pdfs-with-pdfrw/ [Online; accessed
28-January-2019].

541-8
IS&T International Symposium on Electronic Imaging 2019

Media Watermarking, Security, and Forensics 2019

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

