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Abstract
We propose an extension to the Syndrome Trellis Code (STC)

algorithm, aiming to reduce distortion by realizing embedding
change probabilities closer to the optimal than the existing frame-
work. A proxy for detectability, the minimization of distortion
plays a critical role in producing good stego objects. STCs have
become the tool of choice for many steganographers, because they
approach the theoretical bound for embedding performance in
quasi-linear time, for arbitrary length covers and payloads. How-
ever, until recently little attention has been paid to how closely
STCs realize optimal change probabilities, particularly near the
start and end of the embedding path. Recent work by Köhler et
al, aimed to modify the parity-check matrix used by STCs to pro-
duce change vectors with change probabilities closer to the opti-
mal probabilities. However, there is a cost of reduced capacity, or
increased distortion. This paper demonstrates a modification to
the block-structured STC parity-check matrix that both achieves
changes closer to the optimal probabilities, and can be used for
arbitrary length covers, and payloads.

Introduction
Adaptive steganography has widely adopted additive distor-

tion minimisation as the state of the art. In order to generate as
secure as possible stego objects, the steganographer has two aims.
The first is to preserve the higher-order statistical properties of the
cover through a distortion function which accurately models the
cover source, the second is to maximise the embedding rate of
the embedding function. By minimising the sum of additive dis-
tortion (as a proxy for detectability), we hope to maximise the
security of our stego objects.

Improving the embedding efficiency using codes predates
the idea of additive distortion functions, one of the earliest exam-
ples was Crandal using matrix embedding to improve the embed-
ding efficiency of F5 [1]. Since then there have been several at-
tempts to further improve the embedding efficiency, such as Golay
Codes [2], and BCH codes [3]. However, the introduction of the
STC algorithm brought a framework allowing steganographers to
use any single letter distortion function, and achieve close to op-
timal embedding efficiency. As such, it is not surprising there
has been a shift towards developing rich distortion functions as
opposed to improving the embedding efficiency further.

We consider that not all changes are equal [4], meaning some
changes may involve a higher “cost”, as it is assumed making
these changes will introduce a greater amount of distortion to
the resulting stego object. We can split the embedding problem
into two parts; finding the probabilities of change for each ele-
ment of our cover and then finding an algorithm which makes
changes with the probabilities previously found. Filler defines
two forms of deriving said probabilities whilst minimising distor-
tion; Payload-limited sender (PLS), and Distortion-limited sender

(DLS) [5]. In this paper, we only consider the PLS case.
PLS embeds a fixed message mmm of length m bits into an ar-

bitrary cover xxx of length n bits, whilst aiming to minimise the
distortion D(xxx,yyy). Essentially, Alice wishes to communicate her
existing message, by embedding it into a cover, with the minimum
distortion:

Minimise
n

∑
i=0

p(xi)ci, m≤∑
i

H2

(
p(xi)

)
, (1)

where ci is the cost of changing the cover value xi. We can
solve (1) by finding suitable values of p(xi), the probability that
the ith coefficient of the input cover is modified, defined as:

p(xi) =
e−λci

1+ e−λci
, (2)

where λ is a non-negative scalar, and H(x) is the binary entropy
function:

H2(x) =−x log2 x− (1− x) log2(1− x). (3)

λ can be found by conducting a binary search. As such, ppp is the
vector of optimal change probabilities for a given embedding. We
can calculate the optimal distortion as:

D′(xxx,yyy) =
n

∑
i=0

pici. (4)

We quantify the gap between achieved distortion and the op-
timal distortion as coding loss [6]. The aim of any steganographic
coding algorithm, therefore, is to minimise the coding loss. Fur-
ther, if an algorithm makes a change with higher probability than
those dictated by the derived optimal change probabilities, it must
make some other changes with a lower probability than the opti-
mum, in order to generate enough entropy to convey the message.
We call these changes with significant divergence from the opti-
mal change probabilities outliers.

In this paper, we investigate modifications to the STC algo-
rithm to reduce the number of outliers and thus achieve a lower
coding loss. We propose a shift from using block sub-matrices
for generating the parity check matrix used during STC encoding,
instead we promote using segment-vectors which are tiled to pro-
duce the parity check matrix. The tiling of these segments affects
the number of outliers and hence the distortion. We show a prac-
tical method to generate these matrices and highlight the optimal
parameters for embedding. We benchmark our method against the
plain STC algorithm, and the Outlier-Corrected STC as proposed
by Köhler et al. [7].
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Notation
We shall denote vectors as lowercase boldface xxx, with the ith

element of xxx denoted xi. Matrices are written in uppercase double
struck: H, indexed as Hi j . We will only consider binary payloads
and codes, and all vector arithmetic will be mod 2.

Prior art
The STC algorithm as proposed by Filler [8, 5] allows the

embedder to minimize an additive distortion heuristic while solv-
ing mmm = Hyyy, where yyy represents the binary or ternary remainder
of the pixels or DCT coefficients in the stego object. Since their
introduction, they have become heavily adopted in the adaptive-
steganography community, because of their minimal coding loss,
linear time complexity, and because their generalised framework
allows any additive distortion function to be used. STCs are ele-
gant in that the embedding performance and time/space complex-
ity of the algorithm is parameterized by the constraint height h
of the matrix Ĥ. Whilst becoming widely popular in the research
community, there has been a smaller focus on the algorithm it-
self, and how it could be improved. Most notably, the impact the
construction of the parity check matrix H has on embedding per-
formance.

Liu [9] highlight that since the original proposal of the STC
algorithm, there has been less work focused on improving the em-
bedding efficiency of the algorithm, and the relationship between
STCs and convolutional codes is a poorly known area. How-
ever, Liu’s work focuses on reducing the space and time com-
plexity of the STC algorithm by using a minimum span generator,
whilst achieving the same embedding efficiency. To achieve this
a minimum trellis is constructed, by converting a regular parity
check matrix to ‘minimal-span’ form using Gaussian elimination.
The resulting minimal span generator matrix (MSGM) has an LR
property, in that no two rows in the matrix can have the same mini-
mum and maximum span. Because of the structure of the MSGM
a fast solution to Hyyy = mmm can be found using a minimal trellis,
reducing the time and space complexity to find optimal solutions.

Köhler [7] investigates how STCs perform with respect to
optimal embedding probabilities. Köhler proposes a variation
of the STC algorithm: outlier corrected Syndrome Trellis Codes
(OC-STC). By cropping the first h−1 rows of H, the matrix H be-
comes symmetrical, as the first and last h−1 rows contain subsets
of the matrix Ĥ. This reduces the payload by h−1, as this is nec-
essary to achieve the cropping. Experimentally, it was found that
OC-STCs mitigated the positive outliers (values changed more
frequently than optimal). Given negative outliers do not pose an
intermediate security risk, the reduced efficiency of values (due to
negative outliers still existing) is a sensible trade-off.

There have been several steganographic implementations
utilising random-linear codes. Fridrich has proposed several
schemes including Simplex Codes [10], and Wet Paper Codes [11,
12]. Both methods have since been rendered obsolete by the more
powerful STC algorithm, yet both are based on random-linear
codes under the premise that random-linear codes can approach
the theoretic bound for embedding efficiency [13, p325, Theorem
12.3.5].

Methods of analysis
In this section, we introduce the reader to several methods of

analysis used to quantify the performance attribution of our work.

Divergence from optimal change probabilities
To analyse the single-cover divergence from optimal change

probabilities as described in (2), we can use the Hellinger dis-
tance. Let ppp, and p̂pp be the vectors of optimal and observed change
probabilities respectively. Then pi, and p̂i are the ith value of the
optimal, and observed change probabilities from some stego ob-
ject yyy of length n. For each value of the stego object, we calculate
the Hellinger distance as

H(pi, p̂i) =

√√
1− pi

√
1− p̂i +

√
pi
√

p̂i, (5)

the per-element Hellinger distance is the divergence from the op-
timal change probability. If an embedding implementation gener-
ates positive outliers (p̂i > pi), then there is both a chance of the
outliers being used to identify stego objects, and the embedding
algorithm cannot be achieving the optimal distortion.

To analyse outliers across the entire cover, we use the
Kullback–Leibler divergence. Since ppp, and p̂pp are Bernoulli distri-
butions, the KL-divergence is:

KL(ppp, p̂pp) =
n

∑
i=0

pi log
(

pi

p̂i

)
+(1− pi) log

(
1− pi

1− p̂i

)
. (6)

Therefore, the embedding algorithm with the lowest KL-
divergence is one which achieves less divergence from the op-
timal change probabilities, and a distortion closer to the optimal
distortion.

Binary entropy of changes
Using (3) we can calculate the binary entropy of the observed

embedding changes as:

Ĥ2(p̂pp) =
n

∑
i=0

H2(p̂i). (7)

Since the maximum payload that any embedding algorithm is the
entropy of the changes, using the entropy as a theoretical bound
allows us to quantify the coding loss of the embedding opera-
tion [4, 14]. Thus, the embedding algorithm which generates
the lowest binary entropy per the same message embedded has
a lower coding loss.

Average distortion, variance, and skew
As defined earlier, single letter distortion has been widely

adopted as the state of the art for adaptive steganography. It is
clearly understood that there are limitations in adaptive steganog-
raphy, mainly that interacting changes cannot be accounted for
with single-letter distortion values [15]. Yet distortion minimisa-
tion is well considered a proxy for detectability [8]. We define the
distortion of a stego object yyy as:

D(xxx,yyy) =
n

∑
i=0

ci [xi 6= yi] | ci ∈ R. (8)

Given its additive nature, we can compare embedding algorithms
by the average distortion for the same set of covers and messages
when using the same distortion value.

For a cover set XXX of size k, XXX = {xxx1,xxx2, . . . ,xxxk}, we encode
the messages {mmm1,mmm2, . . . ,mmml} of length m bits, resulting in the
distortion result set ZZZ of length v = kl:

ZZZ = {D(xxxi,Emb(xxxi,mmm j)) | i = 1 . . .k, j = 1 . . . l} (9)
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Over a large set of embedding, we can consider the variance
of the distortion to give further insight into the distribution of dis-
tortion values per embedding algorithm. For this we use sample
variance:

σ
2 =

v

∑
i=0

1
n−1

(zi− z)2, (10)

where zi is the individual distortion value, and z is the average
distortion across ZZZ for a particular embedding algorithm. We can
then calculate the standard error of the mean, SE, as:

SE =

√
σ2

v
. (11)

Z-test
Since we generate each individual distortion valuer per-

embedding, we can use a Z-test to test the statistical difference
between two embedding algorithms. The Z-test determines if two
distributions are significantly different (the null hypothesis), given
their mean and variance. The Z-test is constructed as follows:

z =
zzza− zzzb√
σ 2

a
v +

σ 2
b

v

, (12)

for two distortion distributions zzza, and zzzb, with the respective
means and variances zzza, zzzb, and σ2

a , σ2
b . With a resulting value

greater than 1.96, or lower than -1.96, the null hypothesis is re-
jected.

Irregular STCs
From Köhler’s work [7], it became clear that the improve-

ment over the regular STC, was due to each row in H containing
exactly the exact same values. To tile the H matrix in such a way,
required h−1 rows to be truncated, reducing the payload by h−1
bits. However, the requirement to truncate h−1 rows only comes
from using a Ĥ matrix to tile the H matrix, as proposed in [8, 5]. If
we look at building H matrices with the sole requirement of con-
taining the same row, or at least the same number of ones, then we
relax the constraints on how we can generate said matrices. This
allows us to generate n×m matrices in a much simpler manner.

In Köhler’s proposed Outlier-Corrected STC, each row con-
tains exactly the same sequence, of length h 1

α
, for a constraint

height h. However, when tiling the matrix using Ĥ matrices, we
have a symmetrical tiling, each sub-matrix is of width 1

α
, which

requires h− 1 rows to be truncated. To generate a n×m matrix
with exactly the same segment (sequence of non-zero values) we
first fix the length of the segment as s = h 1

α
. Since we have m

rows, if we tile each segment with a gap of 1
α

, the length of the
matrix would be α(m− 1)+ s, which is larger than n. However,
as we no longer have a constraint of how we tile the matrix, we
can reduce the gaps between segments in any manner, as long as
the tiling produces a matrix H of dimensions n×m. To describe
this, let ggg = {ggg1,ggg2, . . . ,gggm−1} be the set of gaps between each
row as shown in Fig 1, the gap profile. We now have the simple
constraint of:

n = s+
m−1

∑
i=0

gi, (13)

which allows any n×m sized H matrix to be constructed, with the
same segment, or at least, the same number of ones.

We can modify the STC algorithm to handle the irregular H
matrix in two steps, first, we decompose the matrix H into irregu-
lar blocks at each message bit(s) pruning. Then for each irregular
block in the matrix, we generate the sub-trellis of possible syn-
dromes, note how each block may be of different dimensions as
shown in Fig 2.

There now exists more questions, about how exactly we
should generate these matrices. In this section, we aim to explore
the possible questions around the matrix generation, and how they
impact performance. For all experiments in this paper, we will use
costs generated with the WOW distortion function [16], following
the experimental setup of [7]. Our experiments to find optimal
parameters will use 1,000 covers from the BOSSbase set [17],
cropped at random to 8×8,n = 64 cover crops. Using a message
set of 1,000 messages of length m = 32.

Segment based matrices
With the move to segment-based matrices, our first experi-

ment is to determine the best method to construct the rows of the
matrix. From earlier we discussed how random-linear codes can
approach the theoretic bound for embedding efficiency, however,
finding the lowest distortion syndrome for a randomly generated
matrix would be an NP-hard problem. We can, however, use ran-
domly generated segments to construct the matrix. To test random
segments versus repeated segments, we generated 100 H matrices
for randomly generated segments and repeated segments. All seg-
ments had the constraint of the first and last 1

α
values being set to

one, to ensure a large branching factor during trellis construction.
From Fig 3, we see that repeated segments slightly out-

perform randomly generated segments. To quantify if the differ-
ence is significant, we use the Z-test as in (12):

72,042.95−71,755.34√
1.225×1012

2×108 + 1.197×1012

2×108

≈ 2.614, (14)

since the result of the z-statistic lies outside of the 95% confidence
interval (±1.96), it is clear that repeated segments significantly
outperform random segments.

Tiling the matrix
As each row in the matrix H contains exactly one segment

of length s, there exists a tiling problem of how best to construct
the matrix. Since we have m segments of length s, and we wish to
construct a banded matrix to allow partial syndromes to be found
in linear time, we wish to find some gap profile ggg (the placement
of gaps between segments) to produce a perfect tiling which also
performs best in terms of distortion minimisation.

If we consider the problem as highlighted in 13, we can come
up with four basic cases:

(a) Smaller gaps at the beginning. Create the gap profile ggg,
with smaller values at the beginning, creating a denser ma-
trix at the start of the trellis.

(b) Smaller gaps at the beginning and end. Create the gap
profile ggg, with smaller values at the start and end, creating a
denser matrix at the start and end of the trellis.
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Figure 1: H matrix generated using segments tiled using ggg. Segments are denoted sss, of length s = h 1
α

.

Figure 2: An irregular H matrix can be decomposed into blocks
(highlighted in red). Note how blocks can be different widths and
heights. Empty spaces are filled with zeros.

Method D(xxx,yyy) σ2(D(xxx,yyy)
)

SE
Random segments 72,043 1.225×1012 109.40
Repeated segments 71,755 1.197×1012 109.40

Figure 3: Average distortion, distortion variance, and SE for ran-
dom and repeated segments in H.

(c) Smaller gaps in the middle Create the gap profile ggg, with
smaller values in the middle, creating a denser matrix at the
middle of the trellis.

(d) Smaller gaps at the end. Create the gap profile ggg, with
smaller values at the end, creating a denser matrix at the end
of the trellis.

The four cases can be seen in 4. To test the four cases, we
use the same experimental setup as in the previous experiment,
however, this time we generate five new H matrices for each of
the four tiling options, using repeated segments given the findings
of the last experiment.

From fig 5 we can see that compression at the start and end
of the matrix gives the best performance by quite a margin. The
z-statistic between the two best methods (smaller gaps at the be-
ginning and end, and smaller gaps at the end) is 26.609, indicat-
ing a significant performance gain for the former method. We
attribute this to the increased density at the start and end of the
trellis. With the additional states, the STC algorithm is able to
find more solutions, avoiding positive outlier change probabilities.
Reducing these outliers allows a lower distortion since values are
not changed with higher observed probability.

Figure 4: The effects of smaller gaps at different parts of the H
matrix; (a) at the start, (b) at the start and end, (c) in the middle,
(d) at the end. Dark regions are the non-zero sections of the H
matrix.

Method D(xxx,yyy) σ2(D(xxx,yyy)
)

SE
Smaller gaps at the beginning 74,446 6.932×1010 110.86
. . . at the beginning and end 72,182 6.145×1010 117.74
. . . in the middle 76,661 7.943×1010 116.73
. . . at the end 74,324 6.813×1010 126.04

Figure 5: Average distortion, distortion variance, and SE for
methods of tiling H.

η - density of the segment
The density of ones in the segments sss will greatly affect the

performance. When constructing the trellis, a new state address is
given by the XOR product of the old state label, and the column in
H. If the column in H is entirely zeros or ones, the likelihood that
similar or identical columns exist. In the scenario of two columns
being identical, a cycle between states occurs, which is wasteful.
If xi and x j are two cover values for the ith, and jth (identical)
columns of H respectively, then the assignment xi = 0,x j = 0 and
xi = 1,x j = 1 will create two paths from each state at xi to exactly
one state in x j . As one path will have lower distortion, we have
halved the number of useful paths through the trellis between xi,
and x j.

In order to maximise the number of distinct paths through
the trellis, we want to generate columns in H that are as different
as possible. As mentioned earlier, as the rate of zeros or ones ap-
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Figure 6: Trellis generation for different values of η .

η D(xxx,yyy) σ2(D(xxx,yyy)
)

SE
0.2 93,561 1.150×1011 151.65
0.3 82,484 9.438×1010 137.39
0.4 74,456 6.670×1010 115.47
0.5 73,280 6.189×1010 102.47
0.6 72,476 6.189×1010 111.25
0.7 72,459 6.283×1010 112.09
0.8 73,076 6.394×1010 113.09

Figure 7: Average distortion, and distortion variance for methods
of different values of η .

proaches 1.0, the probability of duplicate columns will increase.
First, let η be the rate of ones in each segment sss. Specifically the
number of ones in each segment sss is bηse.

To test this, we again use the same experimental setup
as before. We generate five H matrices for each density η ∈
{0.2,0.3, . . . ,0.8}.

In Fig. 7 we show the distortion values for the different
values of η . As expected, the extreme values of η , when the
segments approach entirely being constituted of zeros or ones,
perform significantly worse. At first, we may expect the value
η = 0.5 to perform best, given the probability of distinct segments
is the greatest. However, the more zeros in each column reduce
the number of paths through the trellis, and therefore the num-
ber of solutions. We attribute this explanation to why the slightly
higher η = 0.7 value performs best. The z-statistic between eta
values η ∈ {0.6,0.7} is 0.280 indicating there is not a large sig-
nificance between the two values.

γ - the skew of the matrix
Up to now, we have shown that when we move from tiling

Ĥ matrices to generate H we remove certain constraints. and al-
low a more flexible way to generate the matrices. Specifically,
we reduce the tiling constraint to as previously introduced in 13.
In previous sections, we have shown that a gap profile which re-
duces the space at the start and end of the matrix performs best.
We now introduce a method to produce the tiling and parameter-
ize the skew of the matrix. By skew, we refer to how aggressively
the density is increased at the start, and end of the matrix. For
comparison, a regular STC H matrix would have no skew. Us-
ing γ ∈ [0,1] we can generate the tiling of the matrix using the
algorithm 1.

To test values of gamma, we use the same experimental setup
as before, generating four H matrices for the gamma values γ ∈
{0.1,0.3,0.5,0.7}.

Clearly lower values of gamma are better for distortion min-
imisation. We attribute this to the lower effective constraint height
in the middle of the trellis, at higher gamma values the contrast
between the height of the trellis in the middle, versus the start
and ends is greater. The z-statistic between the gamma values
γ ∈ {0.1,0.5} is 22.07, indicating a significant performance gain

Algorithm 1 γ tiling
1: procedure TILING(n,m,γ,r)
2: m′← m
3: n′← n− r
4: while i < m do
5: gggi = round

(
(1− γ)m′−2

m−3
n′

m′−1
)

6: n′ = n′−gggi
7: m′ = m′−1

return ggg

γ D(xxx,yyy) σ2(D(xxx,yyy)
)

SE
0.1 72,139 6.206×1010 111.41
0.3 72,139 6.206×1010 111.41
0.5 73,468 6.484×1010 113.88
0.7 78,454 6.083×1010 123.69

Figure 8: Average distortion, and distortion variance for methods
of different values of η .

for lower values of gamma.
Because of the rounding of the gaps during the tiling, it is

possible for two gamma values to produce the same tiling. This
is evident as the values γ ∈ {0.1,0.3} produced the same tiling in
our experiment.

Performance
To compare our method against the state of the art, we mea-

sured achieved distortion, and mitigation of outliers. We com-
pared our proposed method to the STC and Outlier-Corrected
STC algorithms using the best parameters found in previous sec-
tions. Using the 8× 8,n = 64 cover crops from previous experi-
ments, we first benchmarked our method minimisation against the
others. Tabular results in show that our method does indeed have
a lower distortion.

To better simulate practical applications we increased the
cover sizes. We took a cover set of 1,000 BOSSBase images,
cropped at random to 64× 64, n = 4096 and embedded 1,000
randomly generated messages with m = 2048,α ∈ { 1

2 ,
1
4 ,

1
8 ,

1
16}.

For comparison, we used a STC, and OC-STC with constraint
heights h ∈ {7,8,9}, which for α = 1

2 gives segments of length
s ∈ {14,16,18}, and for other α gives longer segments. We see
that our method does reduce distortion, which we attribute to the
mitigation of positive outliers, which in turn, achievers change
probabilities closer to the optimal change probabilities. In Fig. 10,
we show how our method achieves a slightly lower distortion
when compared to the other methods. Our method achieves a
slightly lower distortion. Of course, the distortion cannot be re-
duced below the optimal distortion given by (4), so a metric for
comparison is the coding loss, which we define as the ratio of the
average optimal distortion divided by the average achieved distor-
tion. The IR-STC method reduces coding loss by a tiny amount
in the case of α = 1

2 , but as much as 1.35% in the case of smaller
payloads (h = 7,α = 1

8 ). Our method also has a lower distortion
variance (itself an indicator that outliers have been reduced).

To better quantify outlier mitigation, we took a randomly
chosen cover from the BOSSbase, and cropped it to 64×64, n =
4096, using all three methods, we encoded 10,000 randomly
generated messages. We then plot observed change probabili-
ties against optimal change probabilities, for constraint heights
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Method D(xxx,yyy) σ2(D(xxx,yyy)
)

SE
IR-STC 67,187 4.791×109 69.21
OC-STC 69,756 5.123×109 71.58
STC 70,253 5.315×109 72.90

Figure 9: Average distortion, distortion variance, and SE for IR-
STC, OC-STC, and STCs, with 8×8,n = 64 cover crops.

h ∈ {7,9}, in Fig. 11. We also display the average KL divergence
between observed and optimal probabilities, the achieved distor-
tion, and the achieved change entropy. Note that IR-STC reduces
the average KL divergence by around 10%, showing that outliers
have been mitigated.

On the other hand, we have an increased number of states
at the start and the end of our trellis, which is determines the al-
gorithm’s time complexity. This is caused by the smaller gaps
between segments, effectively making the trellis denser at those
points. Critically, this increases the constraint height, however,
this is only for a very small section at the start and end of embed-
ding, because we decomposed the matrix H into variable-sized
blocks. In fact, over the entire cover, we see a very small increase
in the number of states. The encoding process is still (pseudo-
)linear time. The small increase in the number of states is seen in
Fig. 10.

Conclusion
STCs have become incredibly popular over the last few

years. We have explored a new way of constructing the matrix H
in order to achieve closer-to-optimal change probabilities, whilst
achieving a lower distortion, without changing the Viterbi algo-
rithm that underlies STCs. The change is to allow the trellis to
have variable height, with more height at the start and end. We
also stress the value of constructing H from row segments, rather
than blocks. There has been little research into what makes a good
good parity matrix for STC performance. Whilst our improve-
ment is small, the relative cost in terms of complexity is minimal.

We were only able to benchmark images up to size 64×64.
Bear in mind the requirement to embed thousands of messages
per cover, and thousands of covers. In future work, we hope to
perform similar tests on full-size images. Similarly, we have not
measured the detectability of our method. We have focussed only
on distortion, since the aim of STCs is to minimize distortion, but
the ultimate test of an embedding method is its ability to evade
detection.

Other ways in which H is constructed may also influence the
performance of STCs. Note that convolutional codes, when used
in error correction, are highly sensitive to the parity-check matrix
(and good matrices are often found by exhaustion). Perhaps a
steganographic analogy exists.
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Payload Constraint height Method D(xxx,yyy) SE Coding loss γ1(D(xxx,yyy)) States reached

α = 1
2

h = 7
IR-STC 3,006,231 2,859.02 0.1252 8.174×1012 532,476
OC-STC 3,008,140 2,851.32 0.1259 8.183×1012 522,362
STC 3,008,176 2,860.42 0.1259 8.182×1012 521,846

h = 8
IR-STC 2,954,325 2,812.47 0.1057 7.910×1012 1,064,694
OC-STC 2,956,160 2,813.89 0.1064 7.918×1012 1,043,962
STC 2,956,375 2,814.25 0.1065 7.920×1012 1,042,678

h = 9
IR-STC 2,904,853 2,767.49 0.0872 7.659×1012 2,189,664
OC-STC 2,906,689 2,768.75 0.0879 7.666×1012 2,093,566
STC 2,906,893 2,769.12 0.0880 7.668×1012 2,089,980

α = 1
4

h = 7
IR-STC 1,084,931 1,101.82 0.1696 1.214×1012 545,268
OC-STC 1,085,784 1,102.72 0.1706 1.216×1012 519,794
STC 1,086,099 1,102.72 0.1709 1.216×1012 520,726

h = 8
IR-STC 1,063,323 1,081.20 0.1463 1.169×1012 1,114,100
OC-STC 1,064,463 1,082.13 0.1476 1.171×1012 1,037,810
STC 1,064,639 1,082.13 0.1478 1.171×1012 1,040,518

h = 9
IR-STC 1,044,247 1,061.04 0.1258 1.129×1012 2,287,604
OC-STC 1,045,362 1,063.48 0.1270 1.131×1012 2,072,050
STC 1,045,816 1,063.95 0.1275 1.132×1012 2,078,086

α = 1
8

h = 7
IR-STC 423,303 453.54 0.1893 2.057×1011 570,815
OC-STC 428,071 456.40 0.2027 2.083×1011 519,794
STC 428,121 456.29 0.2028 2.082×1011 519,152

h = 8
IR-STC 417,767 445.98 0.1737 1.989×1011 1,137,636
OC-STC 418,618 446.77 0.1761 1.996×1011 1,025,506
STC 418,950 446.99 0.1770 1.998×1011 1,032,846

h = 9
IR-STC 410,051 437.95 0.1520 1.918×1011 2,353,124
OC-STC 410,943 437.84 0.1545 1.917×1011 2,043,362
STC 411,229 438.75 0.1553 1.925×1011 2,063,534

α = 1
16

h = 7
IR-STC 176,477 186.71 0.1853 3.486×1010 585,668
OC-STC 176,584 187.67 0.1858 3.522×1010 504,386
STC 176,603 188.02 0.1859 3.535×1010 512,542

h = 8
IR-STC 171,817 191.00 0.1632 3.648×1010 1,217,476
OC-STC 172,342 191.47 0.1658 3.666×1010 1,000,898
STC 172,497 191.55 0.1665 3.669×1010 1,020,894

h = 9
IR-STC 168,047 196.21 0.1444 3.850×1010 2,542,532
OC-STC 168,931 196.01 0.1489 3.842×1010 1,985,986
STC 169,098 196.19 0.1498 3.849×1010 2,033,886

Figure 10: Average distortion, coding loss, variance, and number of trellis states reached for IR-STC, OC-STC, and STC, with 64×64,n=
4096 cover crops.
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(d)

(e) (f)
Figure 11: Optimal change probability versus observed change probability comparison between our proposed method, STC, and OC-STC.
Blue markers the signify values with the largest Hellinger distance from optimal change probabilities.
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