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Abstract
The purpose of this study is to prepare a source of re-

alistic looking images in which optimal steganalysis is pos-
sible by enforcing a known statistical model on image pixels
to assess the efficiency of detectors implemented using ma-
chine learning. Our goal is to answer the questions that
researchers keep asking: “Are our empirical detectors close
to what can be possibly detected? How much room is there
for improvement?” or simply “Are we there yet?” Our
goal is achieved by applying denoising to natural images
to remove complex statistical dependencies introduced by
processing and, subsequently, adding noise of simpler and
known statistical properties that allows deriving the like-
lihood ratio test in a closed form. This theoretical upper
bound informs us about the amount of further possible im-
provement. Three content-adaptive stego algorithms in the
spatial domain and non-adaptive LSB matching are used to
contrast the upper bound with the performance of two mod-
ern detection paradigms: a convolutional neural network
and a classifier with the maxSRMd2 rich model. The short
answer to the posed question is “We are much closer now
but there is still non-negligible room for improvement.”

Motivation
Steganography is the art of covert communication in

which messages are hidden in cover objects so that the very
existence of the secrets cannot be established. The objec-
tive of steganalysis is to detect the usage of steganography
and do so as reliably as possible. A popular choice for cover
objects today are digital multi media files, such as digital
images, audio, and video. Such objects are ideal for covert
communication for two reasons. They contain an indeter-
ministic component, the acquisition noise, that helps mask
the presence of steganographic embedding changes. Ad-
ditionally, the inherent complexity of these objects is hard
to capture using tractable and estimable statistical models,
which further complicates detection. Steganographers fine-
tune their embedding algorithms to locally adapt to con-
tent complexity since complicated textures and small-scale
details are extraordinarily difficult to model statistically.
This forced steganalysts to use complex high-dimensional
(rich) media models [17, 27, 9, 18, 21, 13, 36, 35, 11, 12, 1]
coupled with low-complexity classifiers, such as the FLD-
ensemble [28] and the Low-Complexity Linear Classifier
(LCLC) [10], possibly boosted by non-linear preprocess-
ing [6, 7]. Recently, further progress has been achieved
with non-linear differentiable hierarchical models with a
large number of parameters, deep neural networks [32, 33,
41, 40, 42, 43, 46, 5, 39, 45].

It should be stressed that, fundamentally, it is the un-
availability of statistical models for natural images that is
responsible for this seemingly never ending spiral develop-
ment. Steganography in artificial sources (sources with a
known statistical model) can be perfectly secure1 as cov-
ers can be synthesized [2] to communicate at a positive
rate (payload whose size is linear w.r.t. the number of
cover elements) [31, 38]. Likewise, optimal detectors of im-
perfect steganography methods in artificial sources can be
constructed and their performance computed.

The situation is quite different for empirical sources
that lack description using tractable and estimable statisti-
cal models. All steganographic methods inevitably become
imperfect, the size of their secure payload sublinear in the
number of pixels [26, 15, 25, 24], and detectors can be built
that can distinguish between cover and stego objects better
than randomly guessing. Without a cover model, however,
we are unable to assess how good our steganography meth-
ods are and how well our detectors perform.

This paper is an attempt to address this problem by
forming an artificial source of realistically looking images
while forcing a known statistical model on pixels to al-
low derivation of optimal statistical tests for benchmarking
empirical detectors built using machine learning. While it
is entirely possible to synthesize artificial images for this
purpose, the authors believe that it is valuable to keep a
more realistic dataset with images visually similar to pop-
ular sources, such as BOSSbase 1.01 [3], in which content
adaptive schemes execute changes with a similar selection
channel as in the original source. We also need to avoid
sources in which steganography would be too easy or too
hard to detect while making sure that an optimal detector
can still be derived. Since these requirements are in con-
flict, preparing a suitable source of both cover and stego
images is quite challenging.

The idea for the cover source proposed in this paper
was inspired by the experiment reported in Fig. 5 of [34].
The authors selected one BOSSbase image, denoised it, and
then created 10,000 different versions of the same image
by adding to it 10,000 independent realizations of a het-
eroscedastic sensor acquisition noise. Steganalysis in such
a homogeneous cover source with the spatial rich model
(SRM) [17] and MiPOD embedding algorithm [34] was re-
ported to be rather close in terms of the Receiver Oper-
ating Characteristic (ROC) to the optimal statistical test
designed for the noise component. However, for a hetero-
geneous source with images of diverse content, the SRM

1In Cachin’s sense [8].
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detector lagged behind the optimal Likelihood Ratio Test
(LRT) quite a bit most likely due to the inability of the em-
pirical detector to deal with the diversity of natural images
(Fig. 6 in [34]).

The strategy adopted in this paper is to start with an
existing dataset, apply a denoising filter to all images to re-
move complex noise introduced during acquisition and the
subsequent development of the image from the raw sensor
capture to a viewable form. Then, independent realiza-
tions of a Gaussian noise whose variance was estimated
per pixel from the original images is reintroduced to force
a known and tractable noise model in the cover source.
This needs to be executed with care to prevent introduc-
ing dependencies among stego pixels. In particular, the
pixels costs cannot be computed from the cover itself as
the stego pixels would be locally dependent, which would
prevent derivation of a closed-form LRT.

The proposed cover source dataset is described in the
next section. Optimal statistical test and its properties ap-
pear in Section “Optimal test.” In Section “Justification”,
we provide reasoning and experimental evidence for the
choices made for the preparation of the cover and stego
source. The results of our investigation and their inter-
pretation are described in the subsequent Section “Exper-
iments.” The paper is concluded in the last section.

Cover and stego sources
We now describe the process for building the source

of cover and stego images. The specific choices made are
further explained, discussed, and experimentally justified
in Section “Justification.” The formation of the dataset
proceeds in five steps and an additional sixth step for cre-
ating the stego images in a way that allows derivation of a
closed-form optimal statistical test.

A simple way to describe the procedure for building
the proposed dataset of cover images is to say that we start
with an existing dataset that we modify to enforce the sta-
tistical model of pixels used in MiPOD [34]: the individual
pixels in a cover image will be independent realizations of
Gaussian random variables with a known mean and vari-
ance that depends on local content complexity.

The cover source was generated from the union of
BOSSbase 1.01 [3] and BOWS2 [4] grayscale images re-
sized from their original 512× 512 size in Matlab using
’imresize.m’ with default parameters to a total of 20,000
256×256 grayscale images. This dataset will be denoted B.
The smaller image size was selected in anticipation that the
best empirical detectors will be deep convolutional neural
networks (CNNs), which typically require smaller images
for effective training to fit reasonable size mini batches to
the memory of current GPUs. We note that the latest de-
signs for the spatial domain, the YeNet [44], the Yedroujd-
Net [45], and the SRNet [5], were trained and benchmarked
on this same database. We note that the methodology ex-
plained below can be applied to other, bigger datasets that
may be needed for training deeper architectures in the fu-
ture.

Step 1: Estimate pixel variance
We estimate the pixel variance σ2

ij from the original
images in B using MiPOD’s variance estimator as explained
in Section V in [34]. This estimator was purposely designed
to capture both the indeterministic Gaussian acquisition
noise [16, 37, 23, 19] as well as local content complexity.
For a given image and its pixel (i, j), 1 ≤ i, j ≤ 256, we
denote its estimated variance σ2

ij . Note that the output of
MiPOD’s estimator is lower bounded: σij ≥ 0.1 for all i, j.

Step 2: Denoising
All images from B were first denoised to remove com-

plex dependencies among pixels introduced by the RAW
developer and subsequent processing. We used the wavelet
denoising method described in [30] with Daubechies 8-
tap wavelets and standard deviation of the removed i.i.d.
Gaussian noise σden = 10. The pixel values in the de-
noised image were left in their non-rounded form but were
clipped to the interval corresponding to 8-bit grayscale im-
ages [0,255].

Step 3: Narrowing dynamic range
As the third step, the dynamic range of each denoised

and clipped image was narrowed to the range [15,240] by
linearly mapping the interval [0,255] to [15,240] using :

g(x) = 15+ 225
255x. (1)

The scaled values were also rounded to integers, which
we will denote µij ∈ {15, . . . ,240}. The resulting 8-bit
grayscale image with a narrower dynamic range will next
be noisified with the variances estimated in Step 1 and
further adjusted in Step 4.

Step 4: Adjusting the variance
The estimated pixel variances σ2

ij were adjusted so
that the probability of a pixel getting out of the 8-bit dy-
namic range [0,255] after noisification is equal to the prob-
ability of a one-sided 5σ Gaussian outlier (2.87× 10−7).
This was done by making sure that σij is smaller or equal
to one fifth of the distance between the pixel mean µij and
the dynamic range boundary (0 or 255) :

σij = min
{1

5 min{µij ,255−µij},σij
}
. (2)

Step 5: Noisifying
The noisified cover pixel cij is obtained by adding to

µij a sample ξij from N (0,σ2
ij), rounding to an integer

and clipping to [1,254] to make sure the embedding will be
free to modify all pixels by ±1 without getting out of the
dynamic range. As explained above, we impose the cover
image model from MiPOD – pixels are realizations of inde-
pendent Gaussian variables N (µij ,σ2

ij) that are rounded
to integers (rounding denoted with the square bracket [·]),
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and then clipped to a finite dynamic range :

cij = [µij + ξij ] (3)

cij =


cij if 1≤ cij ≤ 254
1 if cij ≤ 0
254 if cij ≥ 255.

(4)

The ij-th cover image pixel thus follows a probability
mass function (p.m.f.) pij on {0, . . . ,255}, cij ∼ pij :

pij(m) =



0 m= 0
Qij
(
m− 1

2
)

m= 254
Qij
(
m− 1

2
)
−Qij

(
m+ 1

2
)

1<m< 254
1−Qij

(
m+ 1

2
)

m= 1
0 m= 255

(5)

with Qij(x) defined as the tail probability of N (µij ,σ2
ij) :

Qij(x), Pr{N (µij ,σ2
ij)> x}. (6)

The values cij form the first data source used in our
experiments, which we denote B(σ). We also report the
results on a less noisy source obtained by multiplying the
standard deviation σij outputted by MiPOD’s estimator in
Step 1 by 1/2 (and then carrying out Steps 2–5 as above).
This source will be denoted B(σ/2).

In Figure 1, we show a few examples of images from
B(σ) for the reader to get a sense of how the images look.
The viewer is encouraged to zoom into the pdf document
to better see the small scale differences.

Stego images
All stego methods used in this study were ternary em-

bedding algorithms that change each pixel i, j by ±1 with
equal probability βij . Since we curbed the cover values in
Step 5 to the interval [1,254], the embedding does not need
to be constrained in any way – all pixels can be changed
by 1 or −1. For content adaptive steganography studied
in this paper, the change rates βij are determined from
pixel costs ρij that in turn depend on a local neighbor-
hood of pixel i, j. This dependence is quite complicated
as the costs are usually computed in a non-linear fash-
ion from outputs of several high-pass filters (e.g., as in
S-UNIWARD [22], HILL [29], and WOW [20]). Conse-
quently, computing βij from the noisified cover cij would
create dependencies among stego pixels that are too com-
plex to derive a closed-form expression for the distribution
of stego pixels and tractable evaluation of the associated
likelihood ratio test.

We resolved this problem by computing the change
rates βij from the corresponding original image from B.
Another possibility is to compute the costs from a differ-
ent independent noisification of the image, c′ij . Since both
versions gave similar results in our experiments, we opted
for the former as a default for the rest of this paper.

Since βij does not depend on the specific noisification
of the image and since the embedding changes are exe-
cuted independently, the stego pixel p.m.f. is factorizable.
In particular, it is a product of the following Gaussian mix-
tures qij over all pixels i, j :

qij(m) =



βijpij(254) m= 255
(1−2βij)pij(m)
+βijpij(m−1)
+βijpij(m+ 1) 1≤m≤ 254
βijpij(1) m= 0.

(7)

For S-UNIWARD, HILL, and WOW, the change rates
were obtained from an embedding simulator (e.g., assum-
ing optimal source coding [14]).

Optimal test
Given an image with pixels sij , the steganalyst is fac-

ing the following statistical hypothesis test for all i, j :

H0 :sij ∼ pij
H1 :sij ∼ qij . (8)

We will assume that the parameters of the added MVG
noise, the mean µij , and the variance σ2

ij , are known. We
also assume that the change rates βij are known. Under
these assumptions, the test is simple, and, by the statis-
tical independence of pixels, the optimal statistic is the
log-likelihood ratio

Λ(s) =
∑
i,j

Λij(sij) =
∑
i,j

log
(
qij(sij)
pij(sij)

)
(9)

where Λij(m) = qij(m)/pij(m), m ∈ {0, . . . ,255}. For con-
venience, we will use the following normalized form of the
log-LRT :

Λ?(s) =

∑
i,j Λij(sij)−EH0 [Λij ]√∑

i,j V arH0 [Λij ]
, (10)

where

EH0 [Λij ] =
∑
m

pij(m)Λij(m) (11)

V arH0 [Λij ] =
∑
m

pij(m)Λ2
ij(m)−

(
EH0 [Λij ]

)2
. (12)

Under the fine quantization limit, 1 ≤ σij for all i, j,
and as the number of pixels approaches infinity, the Lin-
deberg’s version of the Central Limit Theorem implies

Λ?(s) 
{
N (0,1) under H0
N (%,1) under H1

, (13)

where  means convergence in distribution and % =∑
i,j σ

−4
ij β

2
ij > 0 is the deflection coefficient.

We note that technically the fine quantization assump-
tion is not satisfied for all pixels because the standard de-
viation outputted by MiPOD’s variance estimator is only
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Figure 1. Examples of images from B(σ) (right) prepared from original images (left). Top down: BOSSbase images ’280.pgm’, ’2840.pgm’, and ’2814.pgm’.
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Figure 2. Sorted change rates computed for ten images (above) from B(σ) for HILL at 0.4 bpp. Blue: change rates computed from the original images from
B, Red: from noisified covers cij from B(σ).
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guaranteed to be larger than 0.1 for B(σ) and 0.05 for
B(σ/2). This topic is discussed in more detail in the
next section in which we provide justification for the cover
source design choices made above.

Justification
In this section, we provide a justification for the

choices made when creating the dataset in the previous
two sections. First, we discuss the importance of the de-
noising Step 2, the choice of the variance of the added
Gaussian noise in Step 1, and narrowing of the dynamic
range in Step 3. Finally, we study the effect of the failure
to comply with the fine quantization assumption.

The denoising step in the preparation of the cover
source is essential because the means µij are assumed to
be known for the optimal test. By adding the Gaussian
noise to the denoised image, we force the cover complexity
to be primarily in the noise component. This way, both
the optimal test and the network need to deal with con-
tent complexity due to indeterminism, the added noise. Of
course, the network still needs to learn a model for the
(heterogeneous) denoised content.

Because the added noise mimics the content complex-
ity of the original image (a combination of the indetermin-
ism in the original image and texture), when the change
rates βij are computed from the noisified cover cij , the
change rates of the three tested content-adaptive algo-
rithms closely match the change rates computed from the
original image from B (see Figure 2). This justifies our
choice of computing the change rates from the original im-
age.

Note that since pij(0) = pij(255) = 0, the boundary
values do not occur in covers from B(σ) and B(σ/2). Thus,
whenever the embedding produces these “forbidden” val-
ues, the LRT Λij becomes infinity for such pixels, arranging
for a perfect detection in this case. Fortunately, due to our
choice of the standard deviation σij (2), this occurs with
very small probability. For example, for S-UNIWARD at
0.4 bpp across the entire test set B(TST)(σ) we saw only
two such stego images.

The scaling of the dynamic range in Step 3 and ad-
justing the variance of the added Gaussian noise in Step 4
are necessary to avoid covers containing pixels with the
boundary values 0 and 255. If this had not been done,
the embedding would have to be adjusted at the bound-
ary, which would reintroduce a dependence between a spe-
cific noisification cij and the change rates βij and com-
plicate the derivation of a closed-form expression for the
LRT. The specific choice of the narrower dynamic range
[15,240] was dictated by our desire to avoid lowering the
estimated variance in Eq. (2) too much as this would un-
dermine the fine quantization assumption needed for the
asymptotic result (13).

The presence of a large number of pixels with a small
σij (e.g., σij < 0.5) may introduce large deviations from
the asymptotic distribution of the log-LRT (13), especially
for the alternative (stego) hypothesis. To demonstrate this,
we selected BOSSbase image ’280.pgm’ shown in Figure 1
top, which contains many pixels with a small noise variance

σ2
ij (31% of pixels have σij < 1 and 21% σij < 1/2), and ex-

ecuted the following experiment. The image was indepen-
dently processed 10,000 times and embedded as described
in Section “Cover and stego sources” for B(σ/2). Figure 3
top shows the distribution of the normalized log-LRT Λ?
for the 10,000 noisifications for both the cover (left) and
stego (right) versions of this image with S-UNIWARD at
0.4 bpp. The bottom figures show the same distributions
when additionally flooring the estimated variance returned
by MiPOD by 1: σ2

ij →max{1,σ2
ij}. Note that when not

enforcing the fine quantization limit, the distribution of Λ?
under H1 fails to follow (13) – the distribution is asymmet-
rical with a positive skewness and a thick right tail. The
distribution under H0 is also positively skewed and slightly
leptokurtic but overall affected to a much smaller degree.
When flooring the variance to enforce fine quantization,
both distributions become compatible with the expected
asymptotic limits (13).

To study the impact of the slightly thicker tail of the
test statistic Λ? under H0, in Figure 4 we plot the distribu-
tion of Λ? under H0 across the entire test set B(TST)(σ/2)
(see the next section for details), whose first four moments
are compatible with N (0,1). This indicates that the im-
pact of the slightly thicker right tail across the entire test
dataset is small. Technically, however, the distribution of
Λ? under H0 and the increased thickness of the right tail
depends on the image and thus the decision threshold needs
to be adjusted for each image separately.

To investigate this further, we redrew the ROC for S-
UNIWARD at 0.4 bpp without assuming the asymptotic
result Λ? ∼N (0,1) under H0 for all images from the test
set B(TST)(σ/2). As this experiment is extremely com-
putationally demanding, we only investigated one stego
algorithm and one payload. Referring the reader to Ap-
pendix A for details, we generated 10,000 noisifications of
each image from the test set (and their stego versions),
computed Λ? for each noisification, fit a scaled χ2 distri-
bution to the samples using the method of moments, and
calculated the decision threshold for a range of false alarm
rates to draw the ROC without the asymptotic approxi-
mation of the LRT. The maximal difference in probabil-
ity of missed detection across all false alarms between this
ROC and the ROC drawn based on the asymptotic distri-
bution (13) was smaller than 0.26%. This provides addi-
tional evidence and justification for drawing the ROC for
the LRT from the asymptotic approximation.

Experiments
The source of 20,000 cover images B(σ) (and B(σ/2))

created in Section “Cover and stego sources” was randomly
split into three disjoint parts, B(TRN)(σ), B(VAL)(σ), and
B(TST)(σ), each with 14,000, 1,000, and 5,000 images, for
training, validation, and testing, respectively. The follow-
ing three detectors were included in our study: the opti-
mal LRT (10), the convolutional neural network SRNet [5]
as an example of a leading deep learning architecture for
the spatial domain, and the maxSRMd2 [13] feature trans-
formed using random conditioning (RC) [6] with the low-
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(0.0207,1.0134,0.2719,3.2730) (4.0743,5.1162,0.8301,4.1728)

(0.0005,1.0287,0.0322,2.9654) (1.1425,1.0551,0.0242,2.9568)
Figure 3. Distribution of Λ? and its mean, variance, skewness, and kurtosis computed from 10,000 different noisifications of BOSSbase image ’280.pgm’
from dataset B(σ/2). Left: covers, Right: stego images for S-UNIWARD 0.4 bpp. Top: cover and stego images as described in Section “Cover and stego
sources,” Bottom: when flooring the estimated variance σij with 1.

complexity linear classifier [10] representing the detection
paradigm based on rich media models.

The more powerful version of the SRNet aware of the
selection channel, the change rates βij , has not been used
in our experiments because there is no “correct” way of
incorporating the selection channel within our setup. If
the network is given change rates always computed from
the analyzed image, it is essentially misled because it is
not given the correct change rates even for covers as βij
are (and need to be as explained above) computed from
the original images from B. This was experimentally con-
firmed through an experiment with S-UNIWARD at 0.6
bpp – the performance of the SCA-SRNet on B(σ/2) was
worse by almost 1% compared to the regular SRNet. On
the other hand, giving the true change rates used for em-
bedding (computed from images in B) for both cover and
stego images would correspond to an unrealistic situation
as the steganalyst will never have access to them. Finally,
giving the true change rates for covers and the change rates
computed from the analyzed image for stego images is not
an option either because in this case the network detects
the inconsistency in the supplied selection channel and the
image instead of detecting steganographic changes.

The SRNet was trained on B(TRN)(σ) with B(VAL)(σ)
used for validation while the maxSRMd2 was trained on
the union B(TRN)(σ)∪B(VAL)(σ). Because of problems
with convergence of the stochastic gradient descend on
B(TRN)(σ), the SRNet was first trained on the less noisy
dataset B(σ/2) from a random initialization. Then, the
trained SRNet was used as a seed for training on B(σ).
The LRT’s performance was computed on B(TST)(σ).

(0.0054,1.0228,0.0415,3.0069)
Figure 4. Normalized log-LRT Λ? and its four moments across the test
set B(TST)(σ/2) for S-UNIWARD at 0.4 bpp.

Figure 5 and Table 1 show the comparison in terms of
the ROCs and three scalar performance descriptors – the
minimum total classification error under equal class priors
PE = 1

2 (PFA +PMD), the false-alarm rate at 50% detection,
PFA(0.5), and the missed-detection rate for 5% false alarm,
PMD(0.05), all on the test set.

The SRNet is better than the detector with maxS-
RMd2 but the amount of improvement depends on the em-
bedding algorithm. For LSBM, the performance of the em-
pirical detectors appears closer to the optimal LRT than for
adaptive algorithms. For HILL and S-UNIWARD, the gap
between the bound and the ROC of the empirical detector
was “cut roughly by half” in terms of PE. Both empirical
detectors seem to struggle to detect WOW, which is, curi-
ously, the least detectable algorithm in both our datasets
by all three detectors.
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The less noisy source B(σ/2) seems a better choice
for a benchmark dataset because of the potential problems
with convergence of detectors built as CNNs in the noisier
B(σ). Using an even smaller variance for noisification, how-
ever, would further violate the fine quantization assump-
tion and our ability to leverage the asymptotic distribution
of the test statistic (13). This is not an insurmountable
problem, though, as the ROC of the optimal detector can
still be built from parametric models of the distribution
of Λ? for each image as explained in Appendix A. This is,
however, a computationally very demanding procedure.

In Figure 6, we show additional comparisons between
the LRT and SRNet for S-UNIWARD for three different
payloads. The SRNet for payloads 0.2 and 0.6 bpp was
trained by seeding with the detector built for 0.4 bpp.

In summary, our analysis shows that, while the SRNet
is most of the time markedly better than maxSRMd2, a
large space for improvement still exists especially for low
false alarms.

Conclusions
With the recent progress in steganalysis due to deep

learning, researchers started asking the obvious question
– are such advanced detectors, which can be easily scaled
up, as good detectors as they can be? If not, how much is
there in terms of further possible improvement? Answering
this question is, however, very difficult because the noise
component of natural images is too complex to capture
using tractable and estimable statistical models.

In this paper, we describe a methodology for creat-
ing a dataset of natural-looking cover and stego images
with a known statistical model that allows derivation of a
closed form of an optimal statistical test to establish the-
oretical bounds on detection performance and thus find
answers to the questions posed above. We start with an
existing dataset, denoise the images, and reintroduce Gaus-
sian noise whose variance depends on the noise component
of the original image as well as its local content complex-
ity. With three content adaptive embedding schemes and
LSBM, we contrast the performance of the optimal test, a
deep neural network called the SRNet, and a detector built
with the maxSRMd2 rich model.

The model parameters, the values of the denoised pix-
els and the variance of the added Gaussian noise, as well
as the knowledge of the embedding change rates is given to
the optimal detector, which is a likelihood ratio test with
known asymptotic distribution (in large data sample and
fine quantization limits). The empirical detectors thus face
a rather challenging task as they need to learn the model
parameters from examples.

SRNet generally offers much better detection than the
detector with maxSRMd2. The amount of improvement
depends on the embedding algorithms and is larger for the
non-adaptive LSBM. For S-UNIWARD, the gap between
the bound and the empirical detector got cut roughly by
one half in terms of the minimal total detection error PE.

The results reported in this paper should not be over-
interpreted as it is certainly possible to prepare the dataset
in other ways that may lead to different conclusions. While

there still appears a rather large space for improvement, the
current rapid improvement of detectors will likely further
close this gap due to scaling up current architectures and
increasing the size of the training sets as well as due to
novel architectures and further advancements in machine
learning. We finally note that while our study is limited to
the spatial domain, in principle a similar approach could
be taken for the JPEG domain as well.

All code used to produce the results in this paper,
including the network configuration files are available from
http://dde.binghamton.edu/download/.
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Appendix A: Drawing ROC without asymptotic
approximation

We now explain how to draw the ROC of the optimal
test without using the asymptotic distribution (13). This
is needed when the fine quantization assumption fails to
hold, i. e., when the variance of the added noise in Step 5
in Section “Cover and stego sources” is small.

Since the distribution of the normalized LRT Λ? is
generally different for each image, we fit a parametric
model to the distribution of Λ? for each image individu-
ally and then compute the decision threshold for a given
false alarm rate from the model. This requires that for each
image in the test set, we noisify it n times and compute n
normalized LRT values Λ? for the parametric fit. The thick
right tail and thin left tail indicate that a good model may
be the scaled chi-square density. Formally, Yk,s,t = sXk+ t

follows the scaled chi-square distribution when Xk ∼ χ2
k,

the chi-square distribution with k degrees of freedom,

fk(x) =

{
xk/2−1e−x/2

2k/2Γ(k/2) x > 0
0 x≤ 0.

(14)

and s and t are real parameters. The p.d.f. of Yk,s,t is

Yk,s,t ∼
1
s
fk

(
x− t
s

)
. (15)

Since

E[Xk] = k (16)
V ar[Xk] = 2k (17)

γ1 ,
E[(Xk−E[Xk])3]

(V ar[Xk])3/2 =
√

8
k

(18)
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Figure 5. ROCs for (top down) S-UNIWARD, HILL, WOW at 0.4 bpp, and LSBM for total change rate β = 0.03 for the optimal test (LRT), SRNet, and
maxSRMd2 with the low-complexity linear classifier with the left and right part columns corresponding to datasets B(σ) and B(σ/2), respectively.
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PE PFA(0.5) PMD(0.05)
HILL SUNI WOW LSBM HILL SUNI WOW LSBM HILL SUNI WOW LSBM

LRT .2186 .1920 .2638 .0378 .0148 .0006 .0594 7.75×10−14 .4102 .3358 .5142 .0522
SRNet .3763 .3181 .4368 .1072 .2680 .1452 .3748 .0000 .7699 .6227 .8450 .1714

maxSRM+RC .4572 .4005 .4596 .1692 .4194 .3092 .4204 .0182 .9140 .8120 .9076 .3620

Table 1. Performance of three empirical detectors in terms of PE, PFA(0.5), and PMD(0.05).

Figure 6. Contrasting the performance of the LRT (dashed line) and SRNet (solid line) for payloads 0.2−0.6 bpp for S-UNIWARD on B(σ) and B(σ/2).

we have

E[Yk,s,t] = sk+ t (19)

V ar[Yk,s,t] = 2ks2 (20)

E[(Yk,s,t−E[Yk,s,t])3] = (V ar[Yk,s,t])3/2
√

8
k

(21)

= 2
√

2k
√
ks3
√

8√
k

= 8ks3. (22)

A particularly simple method for estimating the pa-
rameters s,k, t from n independent realizations y1, . . . ,yn of
Yk,s,t (n independent noisifications of the image and eval-
uations of Λ?) is the method of moments. First, compute
the three sample statistics – the sample mean ĉ1, sample
variance ĉ2, and sample centralized but non-centered third
moment ĉ3, which are the sample quantities of the expec-
tations on the left hand side of (19)–(21):

ĉ1 = 1
n

n∑
i=1

yi (23)

ĉ2 = 1
n

n∑
i=1

(yi− ĉ1)2 (24)

ĉ3 = 1
n

n∑
i=1

(yi− ĉ1)3. (25)

From (19)–(21), the parameters can be progressively
calculated :

ŝ= ĉ3
4ĉ2

(26)

k̂ = ĉ2
2ŝ2

(27)

t̂= ĉ1− ŝk̂. (28)
To determine the decision threshold τ for a given false

alarm α, realize that

α= Pr{Y
k̂,ŝ,t̂

> τ}= 1−F
k̂

(
τ − t̂
ŝ

)
(29)

where Fk is the c.d.f. of χ2
k, and thus

τ = t̂+ ŝF−1
k̂

(1−α). (30)

Having estimated the parameters t̂j , ŝj , and k̂j , j =
1, . . . ,N , for all N images in the test set, the ROC is drawn
in the following manner. Let us denote the log-LRT (10)
for jth stego image as Λ?(s(j)). To get a point on the ROC
for false alarm α, we first compute the decision thresholds
for all N images

τj(α) = µ̂j + ŝjF
−1
k̂j

(1−α), ∀j. (31)

The point on the ROC curve (α,PD(α)) is for

PD(α) = 1
N

N∑
j=1

[Λ?(s(j))> τj(α)]I , (32)

where [.]I is the Iverson bracket.
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