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Abstract
The number and availability of stegonographic embedding

algorithms continues to grow. Many traditional blind steganaly-
sis frameworks require training examples from every embedding
algorithm, but collecting, storing and processing representative
examples of each algorithm can quickly become untenable. Our
motivation for this paper is to create a straight-forward, non-
data-intensive framework for blind steganalysis that only requires
examples of cover images and a single embedding algorithm for
training. Our blind steganalysis framework addresses the case
of algorithm mismatch, where a classifier is trained on one algo-
rithm and tested on another, with four spatial embedding algo-
rithms: LSB matching, MiPOD, S-UNIWARD and WOW.

We use RAW image data from the BOSSbase database and
and data collected from six iPhone devices. Ensemble Classifiers
with Spatial Rich Model features are trained on a single embed-
ding algorithm and tested on each of the four algorithms. Clas-
sifiers trained on MiPOD, S-UNIWARD and WOW data achieve
decent error rates when testing on all four algorithms. Most no-
tably, an Ensemble Classifier with an adjusted decision threshold
trained on LSB matching data achieves decent detection results
on MiPOD, S-UNIWARD and WOW data.

Introduction
Steganography is the practice of hiding a message, called a

payload, in an innocent looking object, called a cover. The goal
of steganography is to hide the payload in such a way that a casual
observer will be unaware a secret message is being sent. Digital
image stegaphography hides payloads of text, images, or other
data in digitial images. Image steganalysis is the analysis of an
image for steganography content, and is typically accomplished
with machine learning or signature-based detection.

In targeted steganalysis the steganalyst assumes knowledge
of the particular embedding algorithm used. In contrast, blind
steganalysis or blind detection assumes no, or little, knowledge
of the embedding algorithm. “The goal of blind steganalysis is to
detect any steganographic method irrespective of its embedding
mechanism.” [1] The case of algorithm mismatch, where a classi-
fier is used to detect embedding algorithms not used in training, is
crucial to performing blind detection in the real world because a
steganalyst is unlikely to know which embedding algorithm was
used. The blind detection framework that we present in this paper
focuses on algorithm mismatch.

Kong, Feng, Li and Guo address the algorithm mismatch
problem on JPEG image data through domain adaptation tech-
niques [2]. They show that using their iterative, non-linear feature
transformation a classifier trained on covers and a single embed-
ding algorithm achieves decent detection rates on unseen embed-
ding algorithms.

Pevný and Fridrich construct several classifiers capable of
blind detection by showing the classifiers examples of as many al-
gorithms as possible [3, 4, 5, 6]. However, as the number of stego
algorithms increases, the steganalyst will find it increasingly chal-
lenging to collect, store, and process examples of every possible
algorithm.

We address the algorithm mismatch problem in the spatial
domain with four embedding algorithms: LSB matching, MiPOD
[7], S-UNIWARD [8] and WOW [9]. We devise a blind classi-
fication framework, consisting of a single binary classifier, that
does not require feature transformation and only requires train-
ing examples from covers and a single embedding algorithm.
We perform algorithm mismatch experiments where we train an
Ensemble Classifier [10] with Spatial Rich Model [11] features
on one of the four embedding algorithms and test on all four
algorithms. Our results show that MiPOD, S-UNIWARD, and
WOW trained classifiers achieve decent detection rates when test-
ing all four embedding algorithms. Furthermore, an LSB match-
ing trained Ensemble Classifier with an adjusted decision thresh-
old is able to achieve decent detection rates when testing MiPOD,
S-UNIWARD and WOW image data.

The Prior Art section contains a more in-depth summary of
previous work in the area of blind detection. We describe the
datasets used and the structure of our algorithm mismatch exper-
iments in the Methods section. The Results section details the
results of our experiments. We summarize our findings and ex-
plain potential avenues for future research in the Conclusions and
Future Work section.

Prior Art
In this section we summarize the multi-classifier, one-class

classifier, one-against-all classifier, and domain adaptation ap-
proaches to blind detection and explain how our approach differs
from them.

The term blind steganalysis or blind detection is used in two
related but different ways in the literature. In some cases, the
term is used to refer to steganalysis frameworks that aren’t con-
structed for a specific embedding algorithm. As an example, the
quantitative steganalyzer introduced by Pevný, Fridrich and Ker
[12] is a blind framework in the sense that it isn’t built for any
specific algorithm. Many feature sets are not specialized to a spe-
cific embedding algorithm, but are suitable for many algorithms.
Steganalysis frameworks that use such feature sets are occasion-
ally referred to as blind steganalysis frameworks in the literature
[13, 14]. The term blind steganalysis is also used to refer to the
act of detecting stego images when the embedding algorithm is
unknown. We use this meaning of the term in this paper.

The blind steganalysis framework we present in this paper
addresses a specific blind steganalysis problem, the algorithm
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mismatch problem, where classification is done on unseen em-
bedding algorithms. For the remainder of this section, we focus
on prior art that addresses the algorithm mismatch problem.

One approach to blind detection trains a group of binary
classifiers, called a multi-classifier, on a wide variety of embed-
ding algorithms [3, 4, 5, 6]. More specificially, a binary classi-
fier is trained for each possible pair of n classes, and the multi-
classifier is the collection of these

(n
2
)

binary classifiers. The
multi-classifier assigns a test image to one of n classes by asking
each binary classifier to vote on the class of the test image. The
class with the most votes is chosen as the winner. Cover is one
class and each stego embedding algorithm is its own class. While,
Pevný and Fridrich show that their multi-classifier achieves good
detection results, even on an unseen algorithm, this approach is
data-intensive as it requires training examples of n−1 stego algo-
rithms. Our approach differs in that it only needs training exam-
ples from a single algorithm.

Another approach uses a one-against-all classifier, a single
binary classifier trained on cover images and a wide variety of
stego algorithms [1]. The one-against-all classifier and the multi-
classifier both operate on the theory that if the classifier is shown
a sufficient sample of stego algorithms to effectively represent the
stego space, the classifier will be able to detect unseen stego al-
gorithms. A third approach trains a one-class classifier only on
cover images and uses anomaly detection to identify stego images
[1]. This approach attempts to sufficiently represent the cover
space in such a manner that the classifier can recognize stegos of
any algorithm as not belonging to the cover space. Pevný and
and Fridrich found that the one-against-all classifier could per-
form poorly on unseen algorithms and the one-class classifier had
lower overall accuracy compared with the multi-classifier. Unlike
the one-against-all classifier that is trained on many stego algo-
rithms and the one-class classifier that isn’t trained on any stego
algorithms, our proposed classifier is trained on covers and a sin-
gle stego algorithm.

Unsupervised learning has been used in several works for
blind detection [15, 16] and don’t require training or knowledge
of the embedding algorithm.

Kong, Feng, Li and Guo apply domain adaptation to the al-
gorithm mismatch problem on JPEG image data [2]. Algorithm-
mismatch, cover-source mismatch, or other factors could cause
the training features in the source domain and the test features in
the target domain to have different distributions. If a classifier is
trained on features with one distribution, it might not perform well
on test features of a different distribution. Kong, Feng, Li and Guo
address the sitution where the steganalyst has access to examples
of labeled covers and stegos in the source domain and unlabeled
covers and stegos in the target domain. They apply a feature trans-
formation as a two-step process to make the features of the train-
ing set similar to the features of the test set in the target domain.
First, the features of the source domain are transformed so that the
joint expectations and the standard deviations of the source do-
main and the target domain are the same. Then as a second step,
the source domain features are further transformed to minimize
the maximum mean discrepancy between the marginal and con-
ditional distributions. They show the success of their method by
applying the feature transformation to a test set of covers and ste-
gos from a single embedding algorithm, then training a classifier
on the transformed features, and testing the classifier on covers

and stegos from a different embedding algorithm. They compare
the classification results with a classifier trained on covers and a
single embedding algorithm and tested on covers and that same
embedding algorithm. While Kong, Feng, Li and Guo focus on
the DCT domain, we address the algorithm mismatch problem in
the spatial domain. Our approach does not require feature trans-
formation: We are able to achieve decent detection results without
changing the source domain or target domain distributions.

Methods
In this section we explain the datasets and methodology used

in our experiments.

Image Datasets
We choose to use two datasets: the BOSSbase database [17]

and iPhone image data that was collected as part of a forensic
database project [18]. We choose the former because it is a well-
known and benchmarked dataset of images from digital still cam-
eras. The latter we choose because it consists of images from mo-
bile devices. As increasingly more images “in-the-wild” originate
from cell phone cameras, it is it is important to collect data from
these sources [19, 20, 21, 22, 23]. While the iPhone dataset used
in this work is not in the query part of the StegoAppDB database,
the iphone dataset is available for download after March 1, 2019,
by visiting the StegoAppDB homepage [18] and clicking on the
link for “Algorithm Mismatch Dataset.”

The BOSSbase dataset contains 10,000 RAW images from
seven digital still cameras. We convert the RAW images to TIFF
images in Photoshop. Then we center-crop 512x512 subimages,
convert them to 256-bit grayscale and save them in the PNG
format, all in Matlab. These 512x512 grayscale images serve
as cover images. The BOSSbase images are a mixture of auto-
exposure and manual exposure images.

We use 1,927 TIFF auto-exposure images collected on two
iPhone 6s, two iPhone 6s Plus, and two iPhone 7 devices using
a camera app. We convert each TIFF image to 256-bit grayscale,
crop it into five 512x512 disjoint subimages, and save in the PNG
file format, totaling 9,635 cover images.

We create stego images from both datasets in the same man-
ner. From each cover image we create stego images using four
embedding algorithms, LSB matching, MiPOD, S-UNIWARD
and WOW, and three embedding rates, 10%, 20%, and 40%, for
the BOSSbase dataset. Due to time constraints we use one em-
bedding rate, 10%, for the iPhone dataset.

Methodology of Algorithm Mismatch Experiments
In an algorithm mismatch experiment we train an Ensemble

Classifier [10] with Spatial Rich Model features [11] on covers
and a single embedding algorithm - LSB matching, MiPOD, S-
UNIWARD, or WOW - and embedding rate. We choose this clas-
sifier and feature set because they are both well-known and widely
used in the steganalysis community. We test the trained classifier
on covers and all four embedding algorithms with the same em-
bedding rate. The detection error from the algorithm mismatch
case, where the training and testing algorithms are different, is
compared to the the detection error from the best-case classifier,
where the training and testing algorithms are the same.

We perform algorithm mismatch experiments on the full set
of 10,000 images from all seven BOSSbase devices and the full
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set of 9,635 auto-exposure images from six iPhone devices. We
randomly select a training set of 5,000 cover images and corre-
sponding stego images from a single embedding algorithm and
embedding rate. The test set is comprised of the remaining cover
images and corresponding stegos from the same embedding rate
used in training and all four embedding algorithms. The results
are averaged over five repetitions.

Previous work has shown that detection accuracy can be im-
proved by training and testing on a single device [22], so we also
perform algorithm mismatch experiments on individual devices
to determine if algorithm mismatch experiments see similar im-
provement. Because we have a smaller number of available im-
ages from any single device, for individual device experiments we
perform five repetitions of ten-fold cross-validation on randomly
selected samples of 700 cover images and corresponding stego
images from a single embedding algorithm and embedding rate.
For each fold during the cross-validation process, 70 cover im-
ages and the corresponding stegos from all four algorithms are set
aside for testing. The training set consists of 630 covers and cor-
responding stegos from a single embedding algorithm. The 630
stegos from each of the other three algorithms are neither used for
training nor testing.

We calculate the detection error rate in Equation 1 as the
average of the false alarm rate PFA and the missed detection rate
PMD for a single algorithm. For example, for the classifier trained
on covers and MiPOD, the LSB detection error rate is the average
of the false alarm rate and the rate of LSB stegos classified as
cover.

PE = min
PFA

1
2
(PFA +PMD) (1)

In our initial experiments we trained Ensemble Classifiers on
LSB matching, MiPOD, S-UNIWARD, and WOW image data,
training one classifier for each algorithm. Each trained classi-
fier was used to test each of the four algorithms. The detection
errors of these four classifiers for detecting MiPOD using BOSS-
base 40% embedding rate image data are shown in Figure 1. We
see that the S-UNIWARD and WOW classifiers achieve detec-
tion errors close to the best-case classifier, the MiPOD classifier.
However, the LSB trained classifier results in error rates close
to random guessing when testing MiPOD images. The same ex-
periment on different embedding rates, as well as on the iPhone
dataset produced similar results.

LSB matching is the simplest and least complex of the four
embedding algorithms. This motivates us to try to improve the
LSB trained classifier to achieve better detection error on MiPOD,
S-UNIWARD, and WOW. With such an improvement, a stegana-
lyst could quickly produce and use LSB data for training classi-
fiers, and not need to produce any other stego images for training.
We discovered that adjusting the value of the decision threshold
within the Ensemble Classifier achieves this goal. We call an En-
semble Classifier with an adjusted decision threshold trained on
LSB matching data an LSB Adjusted classifier. Figure 2 shows
that the LSB Adjusted classifier achieves much lower detection
error than the LSB classifier. We discuss the LSB Adjusted clas-
sifier in greater detail in the next subsection.
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Figure 1. Average error rate by classifier on MiPOD test set at 40% em-

bedding on images from all BOSSbase devices (training size=5,000)
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Figure 2. Average error rate by classifier on MiPOD test set at 40% em-

bedding on images from all BOSSbase devices (training size=5,000)
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Adjusting the Decision Threshold to Improve
Classification Results

We found that with slight modifications an Ensemble Clas-
sifier can be trained solely on covers and LSB matching data
and achieve a decent detection error rate when testing MiPOD,
S-UNIWARD, and WOW data.

In order to explain our modifications to the Ensemble Clas-
sifier, we first give a brief overview of the classifier’s pertinent
parts. For a more in depth description see [10]. The standard En-
semble Classifier is implemented as a collection of Fisher Linear
Discriminant (FLD) base learners.

To understand the FLD, suppose we have a training set of
cover-stego pairs and suppose we can accurately classify the train-
ing set using only two features. This setup is highly improbable,
but working in 2-dimensions will allow us to graph our features.
The features (x,y) of each training image are plotted in Figure 3.
The vector w is calculated to point in the direction that maximizes
the between-class variance and minimizes the within-class vari-
ance. The decision hyperplane (dashed line) is orthogonal to w.
The classifier predicts whether a test image x is cover or stego by
projecting its features onto w:

g(x) = wT x. (2)

The projection value g(x) is then compared to the decision thresh-
old b:


g(x)> b, x is cover

g(x)< b, x is stego

g(x) = b, class randomly assigned to x.

(3)

The standard decision threshold is chosen to minimize the detec-
tion error in equation 1 on the training data, but it can be changed.
In fact, we will change the location of the decision threshold to
improve the detection error of LSB trained classifiers on MiPOD,
S-UNIWARD and WOW.

Each FLD base learner in the Ensemble Classifier is con-
structed as described above except on a larger training set and
feature space. Cover-stego pairs are randomly selected, with re-
placement, to be used for training. A subset of features from these
cover-stego pairs is randomly selected, without replacement. A
test image is voted on by each base learner in the classifier and
the class with the majority of votes wins.

In order to improve the detection error of LSB trained clas-
sifiers, we adjust the standard decision threshold b for each indi-
vidual base learner as follows:

bad j = b−λc (4)

where λ is a tuning parameter and c is the standard deviation
of the FLD projections of the training images.

We found the tuning parameter λ = 0.75 to produce decent
classification results for experiments on iPhone data. In future
research we plan to develop a definition of the optimal λ for a
given dataset, as well as a systematic method for determining it.
We believe it is likely that the optimal λ would be dependent on
the dataset.
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Figure 3. Example of the FLD normal vector w and decision hyperplane

(dashed line) on a feature set with 2 dimensions, x and y
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Figure 4 shows the projections of test images when tested by
LSB matching trained Ensemble Classifiers over five repetitions
of ten-fold cross-validation with sample size 700. The figure does
not show outliers, which account for roughly 12% of the projec-
tions for each image type. The median standard decision thresh-
old is a solid red line and the median adjusted decision threshold
is a red dashed line. In general, the projections of the cover im-
ages are the smallest, the projections of the LSB matching images
are the largest and the, projections of MiPOD, S-UNIWARD and
WOW fall in the middle. The median standard threshold success-
fully separates the cover images and LSB matching images, but
mistakenly classifies the MiPOD, S-UNIWARD and WOW im-
ages as cover. However, the median adjusted threshold is able
to recognize many of the MiPOD, S-UNIWARD, and WOW im-
ages as stego. Moreover, the adjusted decision threshold shown
in figure 4 has the same relationship to the projections of all five
image types as the median standard decision threshold of MiPOD
trained classifiers shown in 5. This gives credence to the notion
that an LSB matching trained classifier can achieve detection er-
ror rates when testing on MiPOD comparable to a MiPOD trained
classifier testing on MiPOD.

Results
BOSSbase Dataset

We perform algorithm mismatch experiments on image data
from all seven BOSSbase devices for three embedding rates: 10%,
20% and 40%. The results are shown in Figures 6-8. Each fig-
ure shows the detection error rates of five classifiers. The name
of the classifier refers to the embedding algorithm upon which it
was trained. The LSB Adjusted classifier is trained on cover and
LSB matching data and the decision threshold is adjusted within
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Figure 6. Average error rate by classifier and test algorithm at 40% embed-

ding on images from all BOSSbase devices (training size=5,000)

the Ensemble Classifier during training as described in subsection
Adjusting the Decision Threshold to Improve Classification Re-
sults of the Methods section. The other four classifiers, LSB, Mi-
POD, S-UNIWARD, and WOW, use the standard decision thresh-
old. The grey titles denote the embedding algorithm being tested.
The error is the detection error as calculated in equation 1 when
testing covers and a single embedding algorithm.

Figures 6-8 show that adjusting the decision threshold when
training on LSB matching data drastically improves the detection
error when testing MiPOD, S-UNIWARD, and WOW, and pro-
duces error rates comparable to the best-case classifiers, typically
within 3% or 4%. The MiPOD, S-UNIWARD and WOW classi-
fiers achieve decent detection error rates on all four algorithms.
Not unexpectedly, the overall error rates increase as the embed-
ding rate decreases, but for each embedding rate the LSB Ad-
justed classifiers are fairly close to the best-case classifiers.

Pentex K20D Experiments
Previous work has shown that training and testing on a sin-

gle device [22] can reduce detection error. We conduct algorithm
mismatch experiments on a single BOSSbase device, the Pentex
K20D, and show that algorithm mismatch classifiers see improved
results comparable to the improvements for the best-case classi-
fiers.

We use image data from the Pentex K20D digital still cam-
era and run algorithm mismatch experiments using sample sizes
of 700 and 1,300 and embedding rate 10%. The sample size 700
results are shown in Figure 9. The results on the larger sample
size are similar, so we omit them here. As expected, we see that
restricting the dataset to a single device shows slight reduction
in error rates in the best-case classifiers compared to experiments
on the entire dataset displayed in Figure 8. The algorithm mis-
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Figure 7. Average error rate by classifier and test algorithm at 20% embed-

ding on images from all BOSSbase devices (training size=5,000)
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Figure 8. Average error rate by classifier and test algorithm at 10% embed-

ding on images from all BOSSbase devices (training size=5,000)

21.62120.421.4

13.1

37.736.436.337.7

47.3

38.9
36.535.636.7

46.9

35.7
37.938.938.8

48

SUNIWARD Test Set WOW Test Set

LSB Test Set MiPOD Test Set

0

20

40

0

20

40

E
rr

o
r 

(%
)

Classifier LSB LSB Adjusted MiPOD SUNIWARD WOW

Figure 9. Average error rate by classifier and test algorithm at 10% embed-

ding on images from BOSSbase Pentex K20D device (cross-validation with

sample size=700)

match classifiers see similar reductions in error rates on the single
device. The MiPOD and S-UNIWARD trained classifiers have
testing errors within 1% of each other for all four testing algo-
rithms. The LSB Adjusted classifier achieves testing errors within
2% of the MiPOD and S-UNIWARD trained classifiers for all four
testing algorithms. The WOW trained classifier obtained testing
errors within 3% of the MiPOD and S-UNIWARD trained classi-
fiers.

iPhones Dataset
We perform algorithm mismatch experiments on the iPhone

dataset. The results are shown in Figure 10. As we saw with the
BOSSbase dataset, the LSB Adjusted classifier achieves decent
detection error rates on MiPOD, S-UNIWARD and WOW, and
MiPOD and S-UNIWARD do remarkably well at detecting each
other.

Individual Device Experiments
We perform algorithm mismatch experiments on individual

iPhone devices. This reduces the detection error rates of the best-
case classifiers for four of the devices, while two devices see an
increase in error rates. However, on all devices the algorithm mis-
match classifiers achieve decent error rates in comparison to the
best-case classifiers.

Figure 11 shows the detection error rates for the iPhone 6s
(1) device with 10% embedding rate. The results for the iPhone 6s
(2) and iPhone 6s Plus (1) devices are similar, within 1% of those
shown in Figure 11 in most cases, so we omit them here. Figures
12-14 show the detection error rates for the iPhone 6s Plus (2),
iPhone 7 (1) and iPhone 7 (2) devices respectively. Restriction to
a specific device decreases the average testing errors in general for
the iPhone 6s and 6s Plus devices, while the average testing errors
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Figure 10. Average error rate by classifier and test algorithm at 10% embed-

ding on auto-exposure images from six iPhone devices (training size=5,000)

generally increase for the iPhone 7 devices. The LSB Adjusted
classifier obtains average testing errors within 4% of the best-case
classifiers for MiPOD and S-UNIWARD on all six devices. The
LSB Adjusted classifier obtains average testing errors for WOW
within 5% of the best-case classifier on the iPhone 6s and 6s Plus
devices, within 7% for the iPhone 7 (1), but only within 12% for
the iPhone 7 (2).

Cross-Phone Experiments
We consider the scenario where the steganalyst does not have

the same device but has a device of the same model as well as de-
vices from different models of the same make. We explored this
scenario in previous work and showed that in some cases detec-
tion error on cross-device tests can be reduced by fixing the iso
and exposure settings of the training and testing data [22]. Here
we perform algorithm mismatch experiments across devices.

We train on auto-exposure image data from one iPhone de-
vice and test on each of the other iPhone devices. The results
when training on the iPhone 6s (2) are displayed in Figure 15.
We see that irrespective of the testing devices the MiPOD and S-
UNIWARD trained classifiers obtain similar testing errors to each
other on all four embedding algorithms. We also see that gen-
erally the LSB Adjusted classifiers achieve decent detection er-
rors in comparison to the best-case classifiers. The error rates for
training on the iPhone 6s (1) and both iPhone 6s Plus devices and
testing on the other devices are similar to those shown in Figure
15 so we omit them here. The detection error rates when train-
ing on the iPhone 7 devices and testing on the other devices are
almost all above 40%. This means that we can’t necessarily ex-
pect to get adequate results when testing on an unseen device. If
the best-case classifiers perform badly, so do the LSB Adjusted
classifiers. However, if the best-case classifiers do well, the LSB
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Figure 11. Average error rate by classifier and test algorithm at 10% embed-

ding on auto-exposure images from iPhone 6s (1) device (cross-validation

with sample size=700)

6.55.26.35.4
1.4

16.2

9.610.912.1

49.1

18.9

11.110.6
12.9

49.1

10.211.210.9
13.6

49.4

SUNIWARD Test Set WOW Test Set

LSB Test Set MiPOD Test Set

0

20

40

0

20

40

E
rr

o
r 

(%
)

Classifier LSB LSB Adjusted MiPOD SUNIWARD WOW

Figure 12. Average error rate by classifier and test algorithm at 10% em-

bedding on auto-exposure images from iPhone 6s Plus (2) device (cross-

validation with sample size=700)
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Figure 13. Average error rate by classifier and test algorithm at 10% em-

bedding on auto-exposure images from iPhone 7 (1) device (cross-validation

with sample size=700)
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Figure 14. Average error rate by classifier and test algorithm at 10% em-

bedding on auto-exposure images from iPhone 7 (2) device (cross-validation

with sample size=700)

Adjusted classifiers achieve decent results as well.

Conclusions and Future Work
New stego algorithms will undoubtably continue to be cre-

ated, increasing the likelihood that steganalysis classifiers will en-
counter unseen algorithms. We present a straight-forward and
non-data-intensive steganalysis framework to address algorithm
mismatch, the case where a classifier is trained on one algorithm
and tested on another.

We train Ensemble Classifiers with Spatial Rich Model fea-
tures on one of four embedding algorithms - LSB matching, Mi-
POD, S-UNIWARD, or WOW - and test the classifier on all four
algorithms. We adjust the decision threshold of the Ensemble
Classifier when training on LSB matching data and use the stan-
dard decision threshold when training on the other three algo-
rithms. We use two datasets for training and testing: BOSSbase
with 10%, 20% and 40% embedding rates, and iPhone data with
10% embedding rate. The average detection errors for the best-
case classifiers, classifiers trained and tested on the same algo-
rithm, for BOSSbase data were much larger than for the iPhone
data. However, the LSB trained classifier with adjusted threshold,
and the MiPOD and S-UNIWARD trained classifiers, achieved
decent detection errors in comparison to the best-case classifiers
on both datasets.

We plan to conduct algorithm mismatch experiments with
more stego embedding algorithms, including at least one iPhone
stego app. We also plan to further investigate and improve the
selection of the tuning parameter λ used to adjust the decision
threshold when training on LSB matching data.
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[1] T. Pevný and J. Fridrich, “Novelty detection in blind ste-

ganalysis,” in Proceedings of the 10th ACM workshop on
Multimedia and security. ACM, 2008, pp. 167–176.

[2] X. Kong, C. Feng, M. Li, and Y. Guo, “Iterative multi-order
feature alignment for jpeg mismatched steganalysis,” Neu-
rocomputing, vol. 214, pp. 458–470, 2016.
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