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Abstract
Nowadays, digital images are used as critical evidence for

judgment, but they can be forged using image processing tools
with invisible traces and little effort. Hence, it is very important to
determine the authenticity of these digital images. In this paper,
we propose a novel approach that uses dictionary learning and
sparse coding to detect digital image forgery. We experimented
with two popular data sets to determine how effectively and ef-
ficiently our approach detects digital image forgery compared to
previous approaches. The results show that our approach not only
outperforms these approaches in terms of Precision, Recall, and
F1 score, but it is also more robust against compression and ro-
tation attacks. Also, our approach detects forgery significantly
faster than previous approaches since it uses a sparse represen-
tation that dramatically reduces the feature dimensionality by a
factor of more than 20.

Introduction
In the past, we had confidence in the integrity of digital im-

ages. However, today we are living in an age in which everyone
is exposed to abundant imagery. From fashion blogs to scientific
journals, image processing tools like Adobe Photoshop and Mi-
crosoft Paint are used to facilitate the purpose of being attractive
or expressive. Most of the powerful editing tools are user-friendly,
but it also causes an increase in digital crimes. As a result, digital
imaging tools have put that confidence at risk.

This issue leads to an increasing concern about the origi-
nality of digital images contents and the need to develop effective
techniques to evaluate the originality, integrity, and authenticity of
of these digital images. Over the past decade, several approaches
have been proposed to authenticate digital images. These ap-
proaches are mainly classified into active and passive detection
approaches. In the active approaches, a digital watermark or sig-
nature is embedded into digital images in advance. The down-
sides of these approaches are that embedding decreases the image
quality, and its usage is very limited since the digital watermark
must be inserted at the time of taking an image. In the passive
approaches [1], image statistics are analyzed to validate an image
instead of inserting a pre-embedded signature[2].

Passive approaches have been proposed to detect two types
of forgery, which are splicing and copy-move forgeries. Image
splicing is a process of combining regions from two or more im-
ages to form a forged image [3, 4]. The most common forgery is
image copy-move forgery (CMF),i.e., a part of the image is copied
and pasted in another part of the same image to add or hide ob-

Figure 1: Two examples of image copy-move forgery. Two horses
are cloned on the left image and one car is cloned on the right
image. Cloned sections are squared in different colors.

jects [5]. The CMF is diffused since a forger uses only one image
to make a forgery. Two examples of image copy move forgery are
illustrated in Fig.1 where the solid square shows the forgery parts
of these images.

Current existing forensic approaches for image copy-move
forgery can be divided into two classes: block-based and
keypoint-based approaches [6]. First, block-based approaches di-
vide an image into patches, and then detect forgery by looking
for the similar patches. The representative approaches are DCT
[7], PCA [8], DWT with KPCA [9], and Zernike moment [10].
Second, keypoint-based approaches begin with extracting interest
points (keypoints), such as edges and corners from an image and
then finding similarities between these points [11]. The represen-
tative approaches are SIFT [12, 13] and SURF [14].

Other works combine block-based with keypoint-based ap-
proaches to enhance detection results [15, 16, 17]. In [15], Jian Li
et al. introduced expectation- maximization (EM) stage after seg-
menting an image into patches to reduce transform estimation er-
ror between copy and original areas. Although this stage improves
detection results, it imposes a large computational cost because
of the iterative procedure in the EM algorithm. In [17], combin-
ing different detector approaches was proposed, along with ex-
tensions for behavior knowledge space representation fusion, in
order to enhance detection accuracy. However, this approach is
computationally expensive since it combines number of detection
approaches.

In this paper, problem of detecting image Copy-Move
Forgery (CMF) is investigated along with the computational cost,
and we propose an approach that is based on a sparse representa-
tion of keypoint descriptors to reduce the dimensionality of these
descriptors and to remove noisy features from them. We utilize
sparse coding,i.e., an unsupervised algorithm aim to learn set of
overcomplete basis vectors (atoms) to represent data efficiently.
We use sparse coding instead of traditional dimension reduction
techniques such as PCA for two main reasons. First, sparse cod-
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Figure 2: Flowchart of the proposed approach.

ing is able to learn overcomplete atoms and doesn’t require these
atoms to be orthogonal. Second, sparse coding has been widely
used in image classification and pattern recognition and it has
achieved promising performance. Thus, it is suitable for image
forgery problem since it is binary classification, i.e., tampered vs.
authentic image.

The contributions of our approach can be summarized as fol-
lows:

• We have proposed a novel matching criteria based on dic-
tionary atoms that results in a more effective and efficient
forgery detection approach when compared to the original
SIFT matching model [12].

• Our approach is robust against compressions and rotations
attacks since it uses sparse representations that better fit fea-
tures descriptors of an image.

• Our approach is scalable since its computational complex-
ity is significantly reduced by using low-dimensional feature
vectors of an image.

The rest of the paper is organized as follows: Section 2
presents our sparse representation approach. Section 3 presents
our experimental results, followed by conclusion in section 4.

Proposed approach
We briefly describe our approach in the following steps,

as illustrated in Fig 2. First, we extract Scale Invariant Fea-
ture Transform (SIFT) [18] from an image. Second, K means-
Singular Value Decomposition algorithm (K- SVD) [19] is uti-
lized to obtain a sparse representation of SIFT descriptors. Third,
the matching process is performed by finding similarities between
these sparse features. Next, agglomerative hierarchical cluster-
ing [20] is applied on spatial locations of the matched points to
identify possible cloned areas. Finally, geometric transformation
estimation is obtained between these cloned areas by using RAN-
dom SAmple Consensus algorithm (RANSAC) [21]. An image
is forged if a uniform transformation matrix can be obtained be-
tween any two matched areas.

Features Extraction
A scale invariant feature transform algorithm (SIFT) [18] is

used for keypoint detection and description since SIFT is more
robust against scaling, rotating, and illumination. The SIFT al-
gorithm starts with generating 4 octaves (i.e., images with the
same size) each of which has 5 images with 5 different blur lev-
els(scales). In each octave, any two consecutive images are sub-
tracted to obtain Difference of Gaussian (DoG) images. Then,
maxima and minima (i.e., keypoints) in DoG images are detected
by comparing neighboring pixels in the same scale and neighbor-
ing scales. If any keypoint has an intensity below a predefined

threshold or lies along an edge, it is rejected. Subsequently, a
16× 16 window is taken around the keypoint and broken into a
4× 4 window. Then, gradient magnitudes and orientations are
calculated to generate an 8-bin histogram, which is used to form
128(4×4×8) elements as a feature vector,i.e., descriptor.

Sparse Coding
Sparse representation is a method of representing data via

a linear combination of dictionary atoms (columns). Given Y ∈
R128×N as SIFT descriptors of an image,the goal is to find a
dictionary with K atoms D ∈ R128×K and a representation X ∈
RK×N such that Y ≈DX and X is sparse enough (equation 1). We
use an adaptive dictionary learning method called K-SVD [19]
that has two stages: sparse coding and dictionary update. First,
the K-SVD starts with initializing random dictionary D. Then,
during sparse coding stage, it finds the best sparse representations
X using an orthogonal matching pursuit algorithm [22], given the
current dictionary D. Next, during dictionary update stage, it up-
dates dictionary atoms one at a time by using the current sparse
representations X. Then, it iterates until the algorithm converges
or reaches a predefined number of iterations.

min
D,X
{‖Y −DX‖2

F} s.t. ∀i,‖xi‖0 ≤ S (1)

F denotes the Frobenius norm, and ‖ · ‖0 is the L 0 pseudo-norm
that counts the non-zero entries.

By using the K-SVD algorithm, we approximate SIFT fea-
tures (128 elements) based on just 6 dictionary atoms

Sparse Matching
We have experimentally observed that similar keypoints tend

to use the same dictionary atoms in their sparse representations
but with different sparse coefficients. For this reason, we propose
a novel matching criteria to detect multiple copies of the same
features (keypoints), where a keypoint matches other keypoints if
their sparse representations are obtained by using the same dictio-
nary atoms. In other words, if ai is a vector that locates non zero
entries in xi ∈RK which is a sparse representation of a keypoint
descriptor yi ∈R128 for a keypoint i, then the keypoint i matches
another keypoint j if and only if ai = a j. We obtain the set of
matched keypoints by iterating over sparse representations of the
keypoints descriptors in an image.

Geometric Transformation Estimation
Given the matched keypoints in an image, we employ ag-

glomerative hierarchical clustering [20] on spatial locations of
the keypoints. Hierarchical clustering begins with one keypoint
in each cluster, then it combines the closest pair of clusters into a
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(a) (b) (c) (d)
Figure 3: Detection results on an image from IMD data set. (a) Forged image with three tampered regions. (b) Detection result of
G2NN-SIFT and PCA-SIFT. (c) Detection result of Segmented SIFT. (d) Detection result of the proposed approach.

single cluster, and computes the distances between the new cluster
and all the other clusters. The clustering process is repeated until
a threshold condition is reached to segregate original regions from
copy regions. After clustering is performed, we estimate the affine
transformation matrix H between any pair of matched clusters.
Let xi and x′i be the homogenous coordinates of the matched key-
points in the copy region and original region, respectively. Then
the geometric relationship between them is defined as follows:

x′i = Hxi (2)

Considering the existence of outliers (mismatched keypoints), we
perform matrix estimation using the RANSAC algorithm [21].
The algorithm estimates the matrix H by randomly selecting three
matched pairs, and then it transforms all other points using H.
A pair of matched keypoints is an inlier if the distance between
the keypoint and the corresponding transformed one is less than
a predefined threshold. The process is repeated until a predefined
number of iterations is achieved. Finally, the estimated matrix H,
which results in a large number of inliers, is elected.

Experimental results
We conduct our experiments on two public data sets. The

first data set is the Image Manipulation Data set (IMD) [6], which
consists of 48 original images, 48 plain CMF images, and 1392
images that have a single attack, i.e., rotation or noise addition,
or JPEG compression. The second data set is MICC-F600 [12],
which contains 440 original images and 160 forged images. The
160 forged images consist of 40 images that have one duplicated
region, 40 images that have two or three duplicated regions, 40
images that have one duplicated region with 30◦ rotations, and
40 images that have one duplicated region with 30◦ rotations and
120% scaling. We have chosen these two data sets because they
are used in the validation of a recent work [15] and according to
Amerini et al. [12], the MICC-F600 data set is the most challeng-
ing data set among the other data sets that were constructed by
them.

Evaluation Metric
By defining TP as the correctly detected forged images, FP

as original images that have been incorrectly detected as forged
and FN as falsely missed forged images, we compute Precision,
Recall, and F1 as follows:
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Figure 4: ROC curve: True positive vs. false positive rates for
different sparsity parameter settings using a dictionary with 512
atoms.

Precision =
TP

TP +FP
(3)

Recall =
TP

TP +FN
(4)

F1 = 2× Precision×Recall
Presision+Recall

(5)

Precision shows the probability that a detected forgery is truly
a forgery, Recall indicates the probability that a forged image is
detected, and F1 score combines precision and recall in a single
value.

Comparison of Detection Results
We compare our approach with three different approaches on

the two data sets. One recent work, Segmented SIFT [15], which
was introduced briefly in the first section, in addition to G2NN-
SIFT [12], which handles multiple matches using g2NN, are se-
lected for comparison. We also impliment PCA-SIFT [23] that re-
duces the dimension of the feature vector to 20 elements. We have
chosen these approaches to compare with a recent work, SIFT-
based approach, and dimensionality reduction approach. All these
approaches including the proposed approach are implemented on
a machine with an Intel Core i7 with 8-GB RAM. Readers are re-
ferred to [24] for more details about our implantation and source
code.
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Figure 5: Performance comparison between our approach and the other approaches against three different attacks, which are adding noise,
JPEG compression, and rotations. The three columns are corresponding to Precision, Recall, and F1 results, respectively. The three rows
are corresponding to adding noise, JPEG compression, and rotations, respectively.

Sparsity Settings
We randomly choose 10% of the datasets to tune the spar-

sity parameter of our test to achieve the lowest possible feature
dimension that leads to high performance. We empirically choose
the dictionary with 512 atoms. The receiver operating characteris-
tic curve that is illustrated in Fig.4 suggested that the best tradeoff
between the true positive and false positive rates can be achieved
when feature size (S) equals 6.

Results on IMD Data Set
First, we evaluate the ability of our approach and the other

approaches to detect plain CMF, i.e., a part of the image is copied
and pasted in another part of the same image without any attack.
An example of detection results on an image is shown in Fig.3.
The detection results and average computation times in seconds
are shown in Table 1. We observe that our approach not only
outperforms the other approaches but also results in low compu-
tational time due to its low-dimensional feature vectors, i.e., 6.

Table 1: Results of Plain CMF Detection and Average
Computation Times per Image in Seconds on IMD Data Set

Method Precision (%) Recall (%) F1 Time (s)
G2NN-SIFT [12] 88.4 79.2 83.5 610
PCA-SIFT [23] 81.8 75.0 78.3 214
Segmented SIFT [15] 70.2 83.3 76.2 719
Proposed 93.6 91.7 92.6 146

Next, we evaluate the detection ability of our approach and
the other approaches against three different attacks, including
noise addition, JPEG compression, and rotation. The experimen-
tal results are shown in Fig. 5, which summarizes the detection
results for different attacks. We observe that our approach drops
linearly when large amounts of noise are added. However, our
approach is more robust against JPEG compression and rotation,
and it outperforms the other approaches.

Results on MICC-F600 Data Set
We select this dataset to evaluate the detection ability of

our approach against combined attacks and large rotation angle,
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Table 2: Detection Result on MICC-F600 Data Set
Method Precision (%) Recall (%) F1
G2NN-SIFT [12] 84.6 69.0 76.0
PCA-SIFT [23] 83.2 66.3 73.8
Segmented SIFT [15] 86.4 88.1 87.2
Proposed 94.7 94.4 94.5

i.e., 30◦. The detection results are shown in Table 2 in temrs
of Precision, Recall, and F1 , which suggests that our approach
achieves superior performance compared to the other approaches.
The average computation time is not reported in this table since
the sizes of the images in the two datasets are the same.

Conclusion
In this paper, digital image forgery is investigated, and we

have proposed a novel approach based on sparse representation
of keypoint descriptors to reduce the dimensionality of these de-
scriptors and to remove noisy features from them. Furthermore,
we have proposed a new matching criteria that is performed using
dictionary atoms instead of ratios between SIFT descriptors. By
using this matching criteria, we eliminate efforts of adjusting a
threshold. Results show that our approach not only outperforms
all the other approaches in terms of Precision, Recall, and F1
score but it is also efficient and more robust against compression
and rotation attacks. Our further research will focus on improving
our approach to detect images with larger amounts of noise.
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