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Abstract 
In face-priority automatic exposure control in digital camera 

systems, exposure adjustment is typically made irrespective of the 

face skin tone, i.e. how dark or bright the face is. As a result, a face 

can become over exposed when it is present against a very dark 

background, or become under exposed when it is present against a 

very bright background, depending on the face skin tone and scene 

content. Adapting the exposure control to the face skin tone will 

result in well-exposed faces in various capture scenarios, and hence 

better image quality.  

This paper presents a novel face skin tone adaptive automatic 

exposure control solution. Using a well-trained neural network 

based face skin tone predictor, the likelihoods of dark and bright 

face skin tones are calculated. An algorithm adjusts the bounds of 

the target brightness of the exposure control based on the face skin 

tone likelihoods and a set of configuration parameters. The face skin 

tone adaptive brightness bounds then guide the frame exposure 

adjustment. Experimental results demonstrate the outperformance 

of the proposed solution over conventional exposure control that 

does not take into account the face skin tone information.    

Introduction 
Digital cameras are widely used and are present in everyday 

products, such as smart phones, tablets, phablets, notebooks, cars 

and wearable computing systems, just to name a few examples. 

Exposure control [1-12] is an essential camera control algorithm 

(CCA) in digital cameras. It plays a crucial role in adjusting the 

brightness of the photographed scene, while preserving its 

information content, within the camera sensor constraints, such as 

the sensor sensitivity, noise characteristics and dynamic range. 

Correct exposure is also crucial for the proper operation of other 

CCAs, such as white balancing and focusing algorithms. Two 

typical examples of information loss due to improper exposure 

control are underexposure, which results in quantization of pixels to 

very small values or zero, and overexposure, which results in 

saturation of pixels. The goal of exposure control is to render well-

exposed scenes with as minimal information loss as possible.  

In many capture scenarios and camera uses cases, there are 

persons in the scene, and their faces are of higher priority than 

everything else being photographed. It is not a surprise, therefore, 

that nowadays there are face-priority features available in many 

digital camera systems. In the context of exposure control, face 

priority guides the scene brightness adjustment such that the face, 

which has the higher priority, is exposed well with minimal 

information loss. Typically, in face-priority exposure control, the 

adjustment of the exposure time and other exposure parameters is 

made irrespective of the face skin tone; i.e. how dark or bright the 

face is. As a result, a face with a dark skin tone can become over 

exposed when it is present against a very dark background, or a face 

with a bright skin tone can become under exposed when it is present 

against a very bright background. Adapting the exposure control to 

the face and its skin tone [13] will result in well-exposed faces in 

various capture scenarios, and hence better image quality and end-

user satisfaction. To the best of our knowledge, there is no published 

work on face skin tone adaptive exposure control. One relevant 

work is in [13], which addresses the concept of using the face skin 

tone information in brightness and color adjustment in a digital 

camera system.   

In this paper, a novel face skin tone adaptive automatic 

exposure control (FaSTA AEC) solution is presented. A neural 

network based face skin tone predictor (FSTP) is designed and 

trained to produce reliable likelihoods for the dark and bright face 

skin tones for the detected face in the input frame. The bounds of 

the target brightness of the exposure control are then adjusted based 

on the face skin tone likelihoods and a set of configuration 

parameters. The face skin tone adaptive brightness bounds then 

guide the frame exposure adjustment, to render well-exposed faces.  

The rest of the paper is organized as follows. First, an overview 

of the proposed solution is given, followed by detailed description 

of the FSTP, and the conventional and FaSTA AEC brightness 

adjustments. Example results are then demonstrated and discussed 

for two challenging capture scenarios. Finally, conclusions and 

future work items are provided.   

Overview of the Proposed Solution 
Figure 1 depicts a schematic diagram of the FaSTA AEC solution. 

Face detection is performed on the luma component (I) of the frame 

output from the camera image processing pipeline, in order to locate 

the face region in the frame. Eye detection is then performed in the 

face region in order to find the positions of both of the left and right 

eyes. Given I and both of the eye positions, the face image is 

aligned, and face skin tone prediction is performed on the aligned 

face, in order to calculate the corresponding face skin tone 

likelihood. An algorithm then calculates the bounds on the exposure 

control target brightness based on the face skin tone likelihoods and 

a set of configuration (tunable) parameters. The calculated face skin 

tone adaptive brightness bounds are then used to guide the 

calculation of the exposure parameters. 

Face Skin Tone Prediction 
The function of the FSTP is to predict the face skin tone, providing 

the face bright and dark skin tone likelihoods. The FSTP algorithm 

pipeline is depicted in Figure 2. Given the positions of the left and 

right eyes, which are used as facial landmarks, the input face image 

 
 

Figure 1 Schematic Diagram of the Face Skin Tone Adaptive Automatic Exposure Control Solution  
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is aligned to a template of pre-defined image size and eye positions. 

A gradient feature vector is calculated from the aligned face image. 

The gradient feature vector is then fed to a pre-trained neural 

network (NN) predictor, whose output is the face dark and bright 

skin tone likelihoods.    

A. Face Alignment  
As noted earlier, let I denote the luma component of the input frame 

to face detection, and in which there is a face present. Let Eleft (x,y) 

and Eright (x,y) denote the locations of the left and right eyes, 

respectively, in the detected face in I. x and y refer to the x-

coordinate and y-coordinate, respectively. Using Eleft and Eright, the 

facial image is aligned to have a pre-defined size of 48×48 and eye 

positions of (12,12) and (35,12) for the left and right eyes, 

respectively, as depicted in Figure 3.  

The alignment is performed via a 2×3 similarity transformation 

[14] calculated based on the eye positions in I and the pre-defined 

eye positions in the aligned image template. 5×5 Gaussian filtering 

(with  = 1) is used for pixel interpolation. The pre-defined size of 

the aligned face image, Ialigned, and the pre-defined values of the eye 

positions in Ialigned are selected based on experimentation. It is worth 

mentioning that the computational cost of face skin tone prediction 

will increase as the size of the aligned face image increases. Face 

alignment helps to obtain a similar face image regardless of the scale 

and face roll angle. One should note, however, that if the face in I 

has large pitch or yaw angle, the alignment may not render the 

desired result. This limitation will be addressed in future work.  

  

 
 

Figure 3   Illustration of Facial Image Alignment 

B. Gradient Feature Extraction  
Given Ialigned, an integral image [15] is calculated, in order to boost 

the speed of the following step of feature extraction [16]. The size 

of the integral image is the same as the size of the aligned face 

image, i.e. also 48×48. Given the integral image, a gradient feature 

vector is computed based on 16-dimensional U-SURF descriptors 

[16]. Figure 4 depicts the aligned image sampling points (i.e. the 

interest points) at which the U-SURF descriptors are calculated. The 

sampling step s and margin m are both set to 6. Padding of the 48×48 

aligned image is performed to create the margin m. At each sampling 

point, a U-SURF descriptor is calculated for a patch (region) of 

10×10 pixels. To calculate the U-SURF descriptor at a given 

sampling point (k,l), where k = [1, 2,...,7] and l = [1, 2,...,7], the 

corresponding 10×10 region is divided into 4 sub-regions, Ri, where 

i = [1, 2, 3, 4], as shown in Figure 4. The sampling point is the top-

left corner pixel in the sub-region R4. For the 7×7 sampling grid, a 

total of 49 U-SURF descriptors are calculated. For sub-region i, the 

4-dimensional U-SURF descriptor vector vk,l,i, is calculated as in 

[16]. The 4-dimensional U-SURF descriptor vector at sampling 

point (k,l) and for sub-region i, vk,l,i, is calculated as in [16]. Let dx 

and dy denote the horizontal and vertical Haar wavelet responses 

calculated for a given sub-region. vk,l,i is defined as [16] 

vk,l,i = (dx, dy, |dx|, |dy|)                                               (1) 

 

The 16-dimensional U-SURF descriptor for each sampling point 

(k,l), Vk,l, is calculated by concatenating the descriptor vectors vk,l,i 

for the corresponding 4 sub-regions, i.e.   

Vk,l = Concatenate (vk,l,1, vk,l,2, vk,l,3, vk,l,4)                                 (2) 

 

For Ialigned, a total of 16-dimensional 49 descriptor vectors are 

calculated for the 49 sampling points. The concatenation of all of 

those 49 vectors forms the 784-dimensional gradient feature vector 

G for the aligned image 

G = Concatenate (Vk,l )  k, l  [1,2,..7]                                 (3) 

 

 
 

Figure 4  Sampling (Interest) Points, Region and Sub-regions 
for the U-SURF Descriptors 

C. Neural Network Face Skin Tone Prediction  
Face skin tone prediction is performed via a small-sized, pre-trained 

neural network. During inference, the input to the NN is the aligned 

facial image 784-dimensional gradient feature vector, G, and the 

output is the 2-dimensional face skin tone likelihood vector L = 

[Ldark, Lbright], where Ldark and Lbright are the dark and bright face skin 

tone likelihoods, respectively, and both Ldark and Lbright  [0.0, 1.0], 

and they sum to unity. The implicit assumption for using the 

gradient feature vector as input to the NN is that the relationship 

between the facial features correlate with the ethnicity, hence the 

skin tone. That assumption governed how the data sets used for 

training, validating and testing the NN were annotated. The gradient 

features are also robust over a relatively wide range of exposure.  

The NN has a feed-forward, fully-connected architecture, with 

two hidden layers and one output layer. Each of the hidden layers 

has 200 neurons. The activation function of the hidden layers is 

chosen to be the leaky rectified linear unit ReLU [17, 18] with alpha 

 
 

Figure 2 Schematic Diagram of the Face Skin Tone Predictor  
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parameter = 0.1. The softmax function is used in the output layer. 

This simple NN architecture is chosen to keep the computational 

cost for the FSTP low. It is worth mentioning that a 784-dimensional 

mean vector is calculated over all the training data gradient feature 

vectors. That mean vector is subtracted from G and the result is 

normalized to a pre-defined range, before inputting it to the NN to 

calculate the face skin tone likelihoods.  

During the network training phase, iterative stochastic gradient 

descent was pursued to find the optimal network weights. The 

network was trained using a subset of the MORPH data set [19, 20], 

which contains thousands of portrait face images for different ethnic 

groups, such as Africans, Europeans, Asians, Hispanics and others. 

The training, testing and validation data sets had equal number of 

dark and bright faces, as depicted in Table 1, in order to guarantee 

consistent skin tone prediction performance for both dark and bright 

faces. The annotation of the face skin tone for the training, testing 

and validation data sets was done both objectively (based on 

ethnicity) as well as subjectively.      

Table 1: Composition of the FSTP Training, Validation and 

Testing Data Sets 

Annotation Training Set  Validation Set Testing Set 

Dark ~ 36K ~ 4K ~ 3.5K 

Bright ~ 36K ~ 4K ~ 3.5K 

Total ~ 72K ~ 8K ~ 7K 
  
 
 

The receiver operating characteristic (ROC) curves for the 

FSTP for both dark and bright face skin tones are depicted in Figure 

5. The curves were generated for ~ 14K test images (the ~ 7K test 

images and their mirrored ones, which are used as a form of data 

augmentation). The points that correspond to a skin tone likelihood 

threshold of 0.75 are shown on the curves as large dots. The FSTP 

trained NN model resulted in consistently high likelihood values for 

both dark and bright faces, as will be demonstrated later in the 

Experimental Results section. 

 
 
Figure 5 The ROC Curves of the Face Skin Tone Predictor    

Conventional Automatic Exposure Control 
As mentioned earlier, exposure control plays a crucial role in 

adjusting the brightness of the photographed scene, while preserving 

its information content. The overall signal level in the captured and 

stored raw image data is determined by a set of controllable 

exposure parameters that are taking effect during the capture. Such 

exposure parameters [1-12] include the exposure time (the 

integration time), analog gain, digital gain, neutral density filter 

reduction factor, and stopped-down aperture reduction factor.  

Let Etotal denote the total effective exposure that results from 

the combination of all of the exposure parameters taking effect 

during the capture. A basic approach to determine the required total 

exposure, Etotal, is to use a fixed target convergence level [1]. Let 

Mcurrent denote the average signal level calculated from the pre-

processed raw camera data; the pre-processing includes at least 

linearization. Also let Etotal,current denote the total exposure that 

corresponds to Mcurrent. The new total exposure Etotal,new is then 

calculated in such a way that the average signal level reaches a 

certain pre-determined target brightness level, Mtarget. Etotal,new is 

calculated as follows  

Etotal,new = Etotal,current × (Mtarget / Mcurrent)                                   (4) 
 

Figure 6 illustrates this basic approach for automatic exposure 

control. The parameters Mcurrent and Mtarget are overlaid on the 

hypothetical histograms of the pre-processed raw camera data. In 

practice, the convergence of the exposure takes place over multiple 

iterations, to account for the different non-linearities, such as pixel 

saturation, quantization to zero, remaining non-linearity in the 

dynamic range of the data, and temporally-varying illumination, 

which could otherwise cause oscillations in the exposure [1]. Many 

AEC algorithms are based on this same approach in one way or 

another [1, 5-8]. In most cases, the main differences include how 

different image areas are weighted in the calculation of the value 

that should converge to a given fixed target level, how exposure 

adjustment starting from an over-exposed condition is addressed, 

and how high-dynamic range scenes are tackled.       
 

 
 

Figure 6 Illustration of the Convergence Target of a 
Conventional AEC Algorithm  

Face Skin Tone Adaptive Brightness Targets 
In the context of face-priority AEC, for proper exposure of faces of 

different skin tones, dark and bright ones, the face target brightness 

is adapted to the face skin tone, in order to avoid the face 

underexposure or overexposure. Figure 7 illustrates the proposed 

adaptation. The illustration is based on the bright face skin tone 

likelihood, Lbright. Since the sum of both of the dark and bright 

likelihoods is unity, one of them could be used in the mapping from 

the face skin tone likelihoods to the target brightness ranges. 

Referring to Figure 7, Bbright,min and Bbright,max denote the lower and 

upper bounds, respectively, on the target brightness for the bright 

face; and Bdark,min and Bdark,max denote the lower and upper bounds, 

respectively, on the target brightness for the dark face.  

Let Bface,min and Bface,max denote the lower and upper bounds, 

respectively, on the target face brightness. The goal of the proposed 

face-priority exposure control is to adjust the target face brightness 

Mtarget such that Mtarget  [Bface,min, Bface,max]. When Lbright is high (i.e. 

high confidence on the bright skin tone), Bface,max = Bbright,max and 

Bface,min = Bbright,min. When Lbright is low (i.e. high confidence on the 

dark skin tone), Bface,max = Bdark,max and Bface,min = Bdark,min. The lower 

and upper target brightness bounds linearly change in the transition 
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regions between the low-confidence regions (where the quality of 

the likelihood values is not high) and the high-confidence ones, as 

depicted in Figure 7, to avoid oscillations in the calculated target 

brightness and target exposure. 
 

 
 

Figure 7 Adjustment of Brightness Targets Based on the Face 
Skin Tone Likelihood  
   

When the quality of the face skin tone likelihoods is not high 

(low-confidence region), FaSTA AEC falls back to a conventional 

face-priority AEC; the lower and upper bounds on the face target 

brightness are set to Bface,min = Bdark,min and Bface,max = Bbright,max, 

respectively. The target brightness bounds are tunable, and are 

selected to meet end-user preferences. The likelihood thresholds 

Tmin, Tlow, Thigh and Tmax, which mark the boundaries of the high-

confidence, low-confidence and transition regions, are selected 

experimentally based on the FSTP performance.  

Experimental Results 
In this section, example results are presented and discussed for two 

typical challenging scenarios. The likelihood thresholds Tmin, Tlow, 

Thigh and Tmax, are set to 0.25, 0.3, 0.7 and 0.75, respectively. The 

target brightness bounds Bbright,min, Bbright,max, Bdark,min and Bdark,max 

are set to 0.2, 0.5, 0.125 and 0.3, respectively.   

A. Bright Face Against a Bright Background  
In this high-contrast scenario, conventional exposure control will 

typically adjust the exposure to too low value, causing the face to be 

under-exposed as depicted in Figure 8(a) for a mannequin with a 

bright face, moving back and forth in front of a window with strong 

backlight behind the window blinds. With FaSTA exposure control, 

the exposure time is adjusted, rendering a well-exposed face as 

shown in Figure 8(b). One should note that how bright or dark the 

face would be is tunable via the bright face target brightness bounds, 

allowing different trade-offs between background and foreground 

exposure.  

With face-priority exposure control that disregards the face 

skin tone, the brightness target would have been adjusted to a value 

in the range of [Bface,min, Bface,max] = [0.125, 0.5] and the face could 

have been under-exposed. With FaSTA exposure control, the target 

brightness lower and upper bounds are calculated based on the 

bright skin tone likelihood to be Bbright,min = 0.2 and Bbright,max = 0.5, 

respectively. And the face average luma value (brightness) is 

bounded by Bbright,min = 0.2 as shown in Figure 8(d), and as a result 

the face is exposed better.  

It is worth noting that the FSTP had a stable, correct operation, 

as shown in Figure 8(c); the bright skin tone likelihoods were 

consistently high. Consequently, the calculated target brightness 

upper and lower bounds were stable, and there were no observed 

fluctuations in the scene brightness. 

Figure 8(e) depicts the exposure time for conventional AEC, 

followed by FaSTA AEC. When face skin tone adaptation is 

enabled, there is a convergence period, where the exposure time 

gradually increases to meet the desired target brightness. That 

convergence period can also be seen in Figure 8(d), where the face 

average luma value increases gradually to meet the calculated target 

face brightness.   

B. Dark Face Against a Dark Background  
In this scenario, conventional exposure control will typically adjust 

the exposure to too high value, causing the face to be over-exposed 

as depicted in Figure 9(a) for a mannequin with a dark face, moving 

back and forth in front of a black background. In this test case, there 

is a side light, to introduce variation in the reflections on the face as 

it moves back and forth. With FaSTA exposure control, the exposure 

time is adjusted, rendering a well-exposed face as shown in Figure 

9(b). How bright or dark the face would be is tunable via the dark 

face target brightness bounds.  

With face-priority exposure control that disregards the face 

skin tone, the brightness target would have been adjusted to a value 

in the range of [Bface,min, Bface,max] = [0.125, 0.5] and the face could 

have been over-exposed. With FaSTA exposure control, the target 

brightness lower and upper bounds are calculated based on the dark 

skin tone likelihood to be Bdark,min = 0.125 and Bdark,max = 0.3, 

respectively. And the face average luma value (brightness) is 

bounded by Bdark,min = 0.125 as shown in Figure 9(d), and as a result 

the face is exposed better.  

Again, it is worth noting that the FSTP had a stable, correct 

operation, as shown in Figure 9(c); the dark skin tone likelihoods 

were consistently high. Consequently, the calculated target 

brightness upper and lower bounds were stable, and there were no 

observed fluctuations in the scene brightness.  

Figure 9(e) depicts the exposure time for conventional AEC, 

followed by FaSTA AEC. When face skin tone adaptation is 

enabled, there is a convergence period, where the exposure time 

gradually decreases to meet the desired target brightness. That 

convergence period can also be seen in Figure 9(d), where the face 

average luma value decreases gradually to meet the calculated target 

face brightness.  

Conclusions  
 In this paper, a novel face skin tone adaptive automatic exposure 

control solution was presented. This face-priority solution results in 

well-exposed faces in challenging capture scenarios. Experimental 

results demonstrated its superior performance over exposure control 

that does not take into account the face skin tone information. The 

solution is also easy to configure, and to tune to meet end-user 

preferences.     

Future work includes extending the solution to tackle the 

following: 1) multiple faces of different sizes and skin tones in the 

scene; 2) non-frontal faces, where both of the eye positions may not 

be visible; 3) faces with occlusions, accessories, facial hair, strong 

facial expressions and various illumination changes, and 4) 

additional features, based on face skin color and intensity.  
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Figure 8 Results of Conventional and FaSTA AEC for a Bright Face Moving Against a Bright Background 
(a) The conventional exposure control result for an example frame, (b) the FaSTA exposure control result for an example frame,  
(c) the bright skin tone likelihoods for 100 frames, (d) the face average, normalized luma value for the same 100 frames when FaSTA 
exposure control is enabled, (e) the target exposure time for conventional exposure control, followed by FaSTA exposure control  
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Figure 9 Results of Conventional and FaSTA AEC for a Dark Face Moving Against a Black Background 
(a) The conventional exposure control result for an example frame, (b) the FaSTA exposure control result for an example frame,  
(c) the dark skin tone likelihoods for 100 frames, (d) the face average, normalized luma value for the same 100 frames when FaSTA 
exposure control is enabled, (e) the target exposure time for conventional exposure control, followed by FaSTA exposure control  
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