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Abstract 
In recent years, smartphones have become the primary device for 
day-to-day photography. Therefore, it is critical for mobile 
imaging to capture sharp images automatically without human 
intervention. In this paper, we formulate autofocus as a decision-
making process, in which the travel distance of a lens is 
determined from the phase data obtained from the phase sensors of 
a smartphone, and the decision-making policy is based on 
reinforcement learning, a popular technique in the field of deep 
learning. We propose to use a noise-tolerant reward function to 
combat the noise of the phase data. In addition, instead of using 
only the current phase data, each lens movement is determined 
using the phase data acquired along the journey of an autofocus 
process. As a result, the proposed machine-learning approach is 
able to expedite the autofocus process as well. Experimental results 
show that the method indeed improves the autofocus speed.  

 

1. Introduction  
Phase detection autofocus (PDAF) involves special sensors 
normally classified as left and right pixels [2], [3]. When these 
pixels are assembled together, all the left pixels form the left image, 
and all the right pixels form the right image. The phase shift 
between the left and right images can be calculated by phase 
correlation [4], [5], as suggested by Chan et al. [6]. The sign of the 
phase shift reflects the position of the object plane with respect to 
the focal plane, and the magnitude of the phase shift reflects the 
distance between the two planes. Ideally, there is a one-to-one 
correspondence between phase shift and the lens travel distance. 
However, due to some practical factors like image noise and 
sparsity of phase sensors, the measured phase shift is usually noisy. 
Fig. 1 shows the distribution of 80 phase shift profiles (each 
expressed as a function of lens position). We can see that the phase 
shift is noisier as the distance of the lens to the in-focus position 
increases and it almost reaches saturation when the distance of the 
lens to the in-focus position is larger than 300. 

Chan et al. [1] proposed a statistical approach to determine 
lens movement from noisy phase shift. They modeled the 
distribution of phase shift given the distance of the lens to the in-
focus position as a Gaussian distribution and employed the Bayes' 
theorem to determine the lens movement. Even though this 
statistical approach improves the reliability of lens movement, it 
uses the same strategy for making the lens movement in each step, 
assuming that autofocus is a stationary process. However, this 
assumption is not always true. In each process, the lens may start 
from any position. However, after a few lens movements, the lens 
gets closer to the in-focus position. Since the distance of the lens to 
the in-focus position changes, different strategies for determining 
the lens movement should be adopted in different steps of the 
autofocus process. This motivates us to explore the use of machine 
learning for autofocus. 

Reinforcement learning (RL) is a general framework for 
learning a decision-making process, so it is possible to model 
autofocus as an RL problem if the determination of lens movement 
is considered a decision-making process of an agent. Specifically, 
the phase shift and the lens travel distance can be modeled as the 
observation and the action, respectively, and the mapping from 
phase shift to travel distance (called the policy) can be learned by 
RL. However, the design of the reward, which serves as a feedback 
signal for the learning algorithm to update the policy during the 
training time, is a challenging task in this approach. Unlike many 
other problems studied in the reinforcement learning field [7], [8], 
[9], no reward function for autofocus has been defined in the 
literature. The reward function has to work for the whole autofocus 
process. However, due to the fact that phase shift is noisy, 
erroneous estimate of lens movement is inevitable. Consider the 
example shown in Fig. 2. The two phase shift profiles have the 

 
Fig. 1. The phase shift profiles corresponding to 80 different 
scenes with various in-focus lens positions. 

 
Fig. 2. Example lens movements for two different scenes. The 
blue and yellow curves represent the phase shift profiles. 
Solid dots indicate the lens positions, indexed by the temporal 
order. 
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same in-focus position but different shapes. Suppose that, for the 
two scenes, we start with two different initial lens positions that 
have the same phase shift. The agent takes the same lens 
movement for both cases because the phase shift is the same, but it 
ends up in two different states after the lens movement. In one case, 
the lens reaches the in-focus position, whereas the lens is still far 
from the in-focus position in the other case. However, the agent is 
not responsible for making a mistake in the latter case because the 
same lens movement does lead to a correct result in the other case. 
Therefore, the reward function needs to tolerate the noise of the 
phase data. 
  In this paper, we use a noise-tolerant reward to combat the 
noise of phase data and use an recurrent neural network (RNN) [20] 
agent to learn the whole autofocus process. Even though deep 
learning has been used to assess the focus quality of microscopic 
images [10], to the best of our knowledge, it has not been used to 
learn a policy for autofocus, especially when the data are noisy. In 
addition, another advantage of the proposed method is that it can 
learn the autofocus process directly from phase data, and thus 
avoids human-designed rules for determining lens movements. 
This paper describes our current efforts toward applying deep 
learning to autofocus. 

2. Reinforcement Learning 
Reinforcement learning, usually modeled as a Markov decision 
process (MDP) [11], involves a series of interactions between an 
environment and an agent. Specifically, the agent first observes an 
initial state 𝑠" and makes an action 𝑎" according to a policy 𝜋. The 
policy can be stochastic or deterministic. In the stochastic case, the 
policy of the agent defines the distribution from which the action is 
drawn given the state. That is, for an arbitrary time step 𝑡 , a 
stochastic policy can be described by: 
 

 𝜋 𝑎& 𝑠& = P[𝐴& = 𝑎&|𝑆& = 𝑠&], (1) 
 
  

where 𝐴& and 𝑆& are random variables representing the action and 
the state, respectively, at time step 𝑡. In the deterministic case, the 
policy defines the mapping from state to action: 
 
                               𝜋: 𝑠& → 𝑎&. 

 
(2) 

 
  

Then the environment gives the agent a reward 𝑟"  representing 
how good the action is. This procedure is repeated until the agent 
reaches the final state 𝑠1  (here we only consider episodic 
environments, in which the final state always exists). The 
interactions between the environment and the agent from the initial 
state to the final state are called an episode.   The goal is to learn a 
policy that maximizes the total reward received in an episode. 

The learning of the policy involves two alternating phases: the 
simulation phase and the update phase. In the simulation phase, the 
agent uses the current policy to interact with an environment for 
several episodes. The agent also records the states it has observed, 
the actions it has taken, and the rewards it has received during the 
simulation process (all the recorded states, actions, and rewards are 
collectively called the experiences). Then in the update phase, the 
policy is updated using the experiences collected in the simulation 
phase using algorithms like policy gradient [12]. Specifically, in 
policy gradient, the policy is approximated by a function 
parameterized by 𝜃, and for an arbitrary time step 𝑡 in an episode, 
𝜃 is updated by:  

 
 ∆𝜃 = 𝛻5 log 𝜋 𝑎& 𝑠& 𝑣&	, (3) 

 
  

where 𝑣& = E[𝑅&>? + 𝛾𝑅&>B + 𝛾B𝑅&>C … |𝑆& = 𝑠&]  is the 
cumulative future reward given the current state, 𝑅&>? is a random 
variable representing the reward at time step 𝑡 + 1, and 𝛾 ∈ [0,1] 
is a discount factor. The cumulative future reward can be estimated 
directly from the experiences as in REINFORCE [13].  

In recent years, with the breakthrough in deep learning, the 
combination of reinforcement learning and deep neural networks 
led to great performance improvements [7], [14, 15]. Lillicrap et al. 
[16] proposed the deep deterministic policy gradient algorithm, 
which is based on the actor-critic algorithm [17]. In this approach, 
the actor is a neural network that takes the state as input and 
outputs the action. That is, the actor represents the policy of the 
agent. The critic is a feed-forward neural network that takes the 
state and an action as inputs and outputs the cumulative future 
reward. That is, the cumulative future reward is not estimated from 
experiences as in REINFORCE [13]; it is estimated by the critic. 
The critic can be used to update the actor so as to maximize the 
cumulative future reward during the training time by: 

	
 

∆𝜃H =
1
𝑁

𝛻J𝑄 𝑠L, 𝑎 𝜃M
N

LO?

∙ 𝛻5Q𝜋 𝑠L 𝜃H

JOH(ST|5Q)

, 
(4) 

 
 
where 𝜋(𝑠L|𝜃H)  represents the actor parameterized by 𝜃H , 
𝑄 𝑠L, 𝑎 𝜃M  represents the critic parameterized by 𝜃M , and 𝑁 
represents the total number of time steps in the experiences.  The 
critic can be trained by minimizing the temporal-difference error 
[18]. 
 All the previously mentioned methods assume that the 
environment state can be directly observed by the agent, but this 
assumption does not hold in many real-world applications due to 
practical factors like sensory noise. In such case, a single 
observation 𝑜&  of the environment cannot fully reflect the 
environment state 𝑠&; more than one observation are needed. Heess 
et al. [19] solved the problem by replacing the feed-forward neural 
networks with RNNs. Since there are memory units in RNNs, 

 
Fig. 3. The proposed reward function. Solid curves represent 
the proposed reward function for different distances to the in-
focus position. The dashed line is the baseline reward function, 
which has no tolerance for prediction error. 
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information from previous observations may be preserved and 
utilized in a future step. Let 𝑇 denote the length of each episode, 
and 𝑁 the number of episodes in the experiences. The parameters 
of the RNN actor can be updated by: 
 

∆𝜃H = 	
1
𝑁𝑇

	 𝛻J𝑄 ℎ&L , 𝑎 𝜃M
1Y?

&O"

𝛻5Q𝜋 ℎ&L 𝜃H

JOH Z[T|5Q

N

LO?

, 

 

 
(5) 

 
where ℎ&L = (𝑜"L , 𝑜?L … , 𝑜&Y?L , 𝑜&L)  represents the series of 
observations up to time step 𝑡 in the 𝑖]^episode. For RNN critic, 
the parameters are learned by minimizing the temporal-difference 
error [18]. Even though this approach achieves better performance 
than previous algorithms, it neglects the conflict between rewards 
when observations are noisy. 

3. Proposed Method 
We formulate autofocus as a decision-making process that involves 
the interactions between an agent and an environment. At time step 
𝑡 , the agent receives an observation 𝑜&  which consists of the 
current phase shift and the travel distance at the last time step. 
Then the agent uses a deterministic policy to make a lens 
movement 𝑎& and then receives a reward 𝑟& from the environment. 
This procedure is repeated until the lens reaches the in-focus 
position or the number of lens movements exceeds a pre-defined 
number 𝑇. In our experiment, we set 𝑇 to 5.  

As mentioned previously, conflict between rewards occurs 
when the phase data is noisy. We resolve the conflict by designing 
a reward function that tolerates prediction errors. That is, the agent 
receives almost the same reward for predictions with errors lower 
than a pre-defined value. Let 𝑔 denote the ground-truth distance of 
the lens to the in-focus position, and 𝑒  the absolute difference 
between the ground truth distance and the predicted distance 
(called the prediction error). The proposed reward function 𝑅(𝑒, 𝑔) 
is expressed by  
 
 

𝑅 𝑒, 𝑔 =
−1
2
ln 1 +

𝑒B

10 ∙ 𝑏(𝑔)B
, 

 
(6) 

 
 
where 𝑏(×) determines the tolerance of the reward function to the 
prediction error: the higher it is, the higher the tolerance. Note that 
𝑏 is a function of the ground truth distance of the lens to the in-
focus position instead of a constant because we need different 
degrees of tolerance for different distances of the lens to the in-
focus position. When the distance is larger, the phase data is 

usually noisier as shown in Fig. 1, so we need more tolerance in 
this case. In contrast, we want less tolerance for prediction error 
when the lens is close to the in-focus position, where the phase 
data are less noisy and a subtle lens movement results in a huge 
change in the image sharpness. To determine 𝑏(𝑔), we note that 
the phase shift almost saturates when the distance of the lens to the 
in-focus position is larger than 300 as shown in Fig. 1. Therefore, 
when the distances of the lens to the in-focus position are 500 and 
400, estimation errors around 200 and 100, respectively, are 
acceptable. In addition, it is common that the phase shift observed 
at the in-focus position is not 0, as shown in Fig. 1, so we need to 
tolerate a small amount of prediction error even if the lens is at the 
in-focus position. Empirically, we set the tolerance of prediction 
error for 𝑔 = 0, 150, 300, 400, 500 to be 40, 55, 70, 150, 250, 
respectively and use these five points to fit a third degree 
polynomial for 𝑏 𝑔 , 
 

𝑏 𝑔 = 3×10Yg 𝑔|C − 8×10Yi 𝑔|B + 0.12|𝑔| + 41. (7) 

 
The reward function used in our experiment is plotted in Fig. 3. 

The autofocus agent consists of two neural networks: the 
actor network and the critic network. The actor network determines 
the lens movement from phase shift, and the critic network 
evaluates the cumulative future reward given the current state. To 
learn the whole autofocus process, we use RNN actor and critic to 
utilize information obtained from previous steps. Specifically, the 
actor is an RNN that takes the history and the current observation 
as input and outputs a lens movement. The critic is an RNN that 
takes the history, the current observation, and an action as inputs 
and outputs the estimated cumulative future reward resulted from 
taking the action under the current state. We train the  agent using 
the recurrent deterministic policy gradient algorithm proposed by 
Heess et al. [19] 

4. Experimental Results 
The experimental setup and the PDAF development platform used 
in our experiments are shown in Fig. 4. We uniformly divided the 
range of lens positions into 600 units. The sensor size of camera is 
3280×2464 pixels, and both the left and right images are of size 
410×154 pixels. A portion of the image sensor and the distribution 
of the left and right pixels are shown in Fig. 5(a). Note that left 
pixels on the odd-numbered columns of the assembled left image 
shown in Fig. 5(b) are not vertically aligned with those on the 
even-numbered columns, the same for the assembled right image. 

       
                      (a)                                           (b) 
 
Fig. 4. (a) The experimental setup. (b) The PDAF development 
platform. The red box indicates the camera module. 

                
                      (a)                                         (b) 
 
Fig. 5. (a) A portion of the image sensor. The blue and the 
yellow boxes represent the locations of the left and right 
pixels, respectively. The red rectangle represents the basic 
pixel pattern that repeats over the sensor. (b) An illustration of 
an assembled left image. 
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Therefore, we further divided the left (right) image into two sub-
images—one consists left (right) pixels on odd-numbered columns 
and the other of left (right) pixels on even-numbered columns—
and calculated the phase shift for both types of sub-images. Then 
we took the average of phase shifts calculated from the sub-images 
as the phase shift between the left and right images. 

We trained the autofocus agent with 70 scenes and tested it on 
50 scenes, all with various in-focus lens positions. We set the 
discount factor 𝛾  to 0.6 since this setting yields the best 
performance according to our experiences. The RNN architectures 
for both the actor and critic are long short-term memory cells [20] 
with two hidden layers: the first layer has size 400 and the second 
has size 300. We used the Adam optimizer with learning rate 10YC 
for the critic and 10Yi  for the actor. We set the batch size to 128 
and trained our model for 15,000 iterations. 

In order to evaluate the performance of the proposed 
autofocus agent in different autofocus scenarios, we divided our 
testing set into two categories (one easy and the other hard) based 
on the height and the fluctuation of the phase shift profile. We 
defined the height of a phase shift profile as the difference between 
the average phase shift of the last five images in the focal stack and 
that of the first five images. To define the fluctuation of a phase 
shift profile, we noted that the whole phase shift profile is not 
linear, but a local window of the profile may be treated as linear. 
Thus, we fit a linear function for each local window of the profile 
and chose the maximum of all the fitting lines' residual as the 
fluctuation of the whole profile. Then we empirically chose 
thresholds for both criteria. In our experiments, a phase shift 
profile was classified as the easy case if the fluctuation is less than 
0.2 and the height is larger than 1.0. Otherwise, it falls into the 
hard case. 

We evaluate the performance of an autofocus algorithm by 
counting the percentage of times the algorithm moves the lens to 
the hillsides of the focus profile as proposed in [1]. (A focus 
profile shows the image contrast of a scene at each lens position 
and usually has a hill-like shape with the peak at the in-focus 

position.) We compare the performance of three methods: 1. the 
proposed RL approach with noise-tolerance reward function, 2. the 
proposed RL approach with baseline reward function, and 3. our 
previous approach based on Bayesian statistics [1]. The 
performance of the three methods in both easy and hard cases are 
compared in Figs. 6 and 7, respectively. 

We can see that, both RL-based methods have better 
performance than the statistical approach in both easy and hard 
cases. Especially when the distance of the lens to the in-focus 
position is very large, 300-400 for example, RL-based approaches 
are much more likely to bring the lens to hillsides of the focus 
profile in the first movement. Thus, RL-based methods are faster 
than the statistical approach. Comparing the performance of the 
agents trained with noise-tolerant reward function and the baseline 
reward function, we can see that the latter is a little faster than the 

 
(a)                                                (b)                                                  (c)                                               (d) 

Fig. 6. Performance of RL with noise-tolerant reward (blue), RL with baseline reward (orange), and [1] (green) in easy cases. (a)–(d) 
Results when the initial distance of the lens to the in-focus position is in the range 100–200, 200–300, 300–400, and 400–500, 
respectively. 
 

 
(a)                                                (b)                                                  (c)                                               (d) 

Fig. 7. Performance of RL with noise-tolerant reward (blue), RL with baseline reward (orange), and [1] (green) in hard cases. (a)–(d) 
Results when the initial distance of the lens to the in-focus position is in the range 100–200, 200–300, 300–400, and 400–500, 
respectively. 
 

 
Fig. 8.  Policies of the proposed method (solid curves) and the 
statistical approach (dashed curve). Since the proposed 
method uses an RNN actor, different lens movements may be 
taken for the same phase shift at different lens movements. 
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former in the first step, but the former has a higher chance to bring 
the lens to the hillsides at the end of the fifth movement. In 
general, noise-tolerant reward function results in a better autofocus 
agent than the baseline reward function since success rate is 
usually more important than speed for autofocus.  

Finally, the policy of the proposed method is visualized by 
calculating the average lens movement the agent makes for 
different phase shifts at different steps of an autofocus process. Fig. 
8 shows the policies of the proposed method and the statistical 
approach [1]. We can see that the proposed method is more 
conservative in the first movement than in the subsequent 
movements. This behavior is reasonable because we only have a 
single observation of phase shift, from which the distance of the 
lens to the in-focus position may not be accurately determined. 
Therefore, the agent takes a conservative step. On the other hand, 
if there is a large phase shift after the first movement, it is very 
likely that the initial distance of the lens to the in-focus position is 
very large, so the agent makes a more aggressive movement.  
Comparing the policy of the proposed method and that of the 
statistical approach, we can see that the proposed method is more 
aggressive than the statistical approach for large phase shifts. This 
is the reason why the proposed method is faster than the statistical 
approach when the distance of the lens to the in-focus position is 
large. 

5. Conclusion 
In this paper, we have described a reinforcement learning approach 
to phase detection autofocus. It combats the noise of phase data by 
building noise tolerance into the reward function.  Experimental 
results show that the agent trained with the noise-tolerant reward 
function has a higher chance to bring the lens to the hillsides of the 
focus profile than the one trained with a regular reward function 
when the phase data is noisy.  Compared with our previous 
statistical approach [1], which only uses the current phase shift to 
determine the lens movement, the proposed method is able to 
exploit the phase data collected from the past. The policy learned 
by our method leads to fast autofocus and also provides some 
insights into autofocus policy design. 
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