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Abstract

We present a modified M-estimation based method for fast
global 3D point cloud registration which rapidly converges to an
optimal solution while matching or exceeding the accuracy of ex-
isting global registration methods.The key idea of our work is to
introduce weighted median based M-estimation for re-weighted
least squares adeployed in a graduated fashion which takes into
account the error distribution of the residuals to achieve rapid
convergence to an optimal solution. The experimental results on
synthetic and real data sets show the significantly improved con-
vergence of our method with a comparable accuracy with respect
to the state-of-the-art global registration methods.

Introduction

Three-dimensional (3D) point cloud registration is the prob-
lem of consistently and accurately aligning two or more point
clouds, i.e., points representing the X, Y, and Z geometric co-
ordinates of an underlying sampled surface. 3D registration is of
growing importance in the field of computer vision and robotics.
The registration can be used to align 3D model data in the form
of CAD models or full 3D scans with partial scan data, depict-
ing the current scene, to perform tasks such as 3D object re-
trieval. It can also be applied to perform 3D object interaction
tasks such as robotic bin picking, 2D and 3D inspection and au-
thentication. Furthermore, multiple partial scans can be aligned
for scene/object reconstruction to generate unified/full 3D point
clouds. These are very challenging problems because the 3D data
captured from the scanning devices, e.g., structured light scan-
ners, time-of-flight sensors, binocular stereo etc., tends to be noisy
and contains only partial data.

The standard 3D registration approach is to first find an ini-
tial or coarse alignment and then use the Iterative Closest Point
(ICP) [2] algorithm to refine and obtain a final alignment between
a model and scene. The model is often a computer aided design
(CAD) or a full 3D scan and the scene is a single scan or multi-
view scan of the object, alternatively the model and scene may be
simply two overlapping views of the same object or scene. The
initial alignment employs 3D feature descriptors in a Random
Sample and Consensus (RANSAC) [7] model fitting scheme to
find a small number of correct point correspondences between the
model and the scene and from there obtain an initial rigid transfor-
mation which aligns the scene to the model. The sampling based
initial alignment and iterative final alignment are computationally
expensive because they require many alignments to be tested in
order to robustly determine the optimal transformation. Each ini-
tial local estimate requires at least three nearest neighbour point
to point correspondences to be tested at random. The majority of
the computational burden is in testing candidate alignments which
are later discarded as they prove to be sub-optimal.
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In order to address these issues, a fast global registration
(FGR) method is proposed in [19] that does not involve itera-
tive sampling, model fitting, or local refinement. It does not re-
quire initialization and can align noisy partially overlapping point
clouds. It optimizes a modified German-McClure (GMC) objec-
tive function over a fixed set of point correspondences to directly
produce a precise alignment similar to a well-initialized initial re-
finement algorithm. Therefore, it is an order of a magnitude faster
than existing global registration methods. The FGR method uses
a fixed regime of reducing the control parameter of the GMC ob-
jective function to increase the weight for point correspondences
with smaller residuals. Due to this fixed regime, termed as grad-
uated non convexity, which is based on the the dimensions of the
point cloud the FGR method tends to converge rather slowly.

In this paper, we present a modified M-estimation based
fast global registration (MFR) method which rapidly (i.e., signif-
icantly faster than FGR) converges to an optimal solution while
matching or exceeding the accuracy of the FGR and other existing
global registration methods. The contributions of our work are as
follows. (1) weighted median based M-estimation for re-weighted
least squares, and (2) graduated M-estimation which takes into ac-
count the error distribution of the residuals for rapid convergence
to an optimal solution.

Related Work

The geometric registration of 3D point clouds or surfaces
has been extensively researched [4, 19, 18, 6, 10, 16, 15, 17, 12,
11]. It generally consists of two stages: global alignment, which
computes an initial estimate of the rigid motion between two point
cloud, which is followed by local refinement, which refines this
initial estimate to obtain a final registration .

Most global methods use hand crafted 3D feature detec-
tors/descriptors to extract meaningful information from the 3D
point clouds. Such descriptors are recovered from the dense point
cloud to derive per point rotation invariant feature descriptors
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which are used to search for best candidate correspondences on
a nearest neighbour basis. Some of the most popular 3D feature
descriptors include point feature histogram (PFH) [16], fast point
feature histogram (FPFH) [15], signature of histogram of orien-
tations (SHOT) [17], etc. RANSAC is used to repeatedly esti-
mate an alignment for a randomly chosen subset of correspon-
dences which is validated on the entire point cloud. Noisy data
and partially overlapping point clouds create a significant prob-
lem to these methods because they require many repetitions to
find a good correspondence set which also results in a transfor-
mation that is sufficiently close to the required optimal solution.

The local refinement methods such as ICP [10] require an
initial alignment to produce a final registration. ICP starts with an
initial alignment and iterates a search for point correspondences
via nearest Euclidian distance matches (point to point or point to
plane) and then recomputes the alignment based on the new set of
correspondences. ICP only obtains a good registration when its
starting alignment is close to the optimal solution.The work pre-
sented in [8] is a non-linear least squares optimization with ICP
employing robust estimation technique. More recent and related
examples of ICP explicitly deploying variants of M-estimation are
due to Ding et. al [5] and Bergstrom and Edlund [1]. However, all
these methods require a good initial solution to be able to obtain
a satisfactory final solution.

As discussed in the introduction, our work is motivated from
the FGR [19] method in which a fixed subset of corresponding
points, some correct and some not, are considered on mass. The
aim of the optimisation in [19] is to iterate towards a solution
that selects the correct matches while discarding the noise using a
GMC objective function within a graduated non-convexity frame-
work.

Our Contribution

The primary contribution of our MFR method is to employ
a form of M-estimation so that the error statistics can directly de-
termine the rate of convergence, resulting in much reduced com-
putational requirements. Furthermore, we introduce two small
modifications to the M-estimation approach to help preserve the
graduated non-convexity and improve its effectiveness, namely
using a weighted median to determine the error measure used in
the M-estimation and reducing the control parameter of the ro-
bust bi-square weighting function through the iterative process
to achieve better selection of the correctly corresponding points.
These changes allow us to match or exceed the performance of
the FGR method in terms of transformation accuracy and associ-
ated robust rejection of outlier correspondences, in a scheme that
converges much more quickly to the optimal solution.

Mathematical Foundation
LetP = [py,p,,..,Pn] and Q = [qy,q>, -..,q,,] be two sets of
n corresponding 3D points. We wish to find a rigid transformation
T= |[R t] thatoptimally and robustly aligns the two sets of
3D points in the least squares sense, i.e., we seek a rotation R
3 x 3 matrix and a translation 3 x 1 vector t such that

argmin

n
Rt r will(Rp;+1) —ql? M

i=1

(th) =
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where weights w; > 0 provides a robust selection for the ' point
correspondence.

FGR Method

The FGR method uses the linearized form of T, i.e., to ap-
proximate the global transformation through a process of succes-
sive composition in which each sub-transform is represented as a
6D vector containing three rotational ( ® ©, O, ) and three
translational components ( #, f, f; ), to minimize Equation
1. The authors implementation available on the GitHub confirms
that the FGR method uses Equation 1 and applies weights com-
puted based on the modified GMC objective function,

2
n
wi=[—"——-—+ 2)
’ (u+||Tpi—qi||2>

where weight is a function of the residual error r; = || Tp; — q;||>
measured at the previous iteration.

The FGR method uses Gauss Newton optimization to first
solve a linear system JTJ& = —JTr which approximates Equation
1. J is the Jacobian of the residual error r based on the first order
linear approximation

1 -0, ©
® 1 -0, t

T — Z X y
L -0, 6, 1t

Subsequently, at each iteration the 6D vector is mapped to
a full transformation matrix TF = TAT* 'where T, is an or-
thonormal transformation matrix based on the solution to the lin-
ear system Ty and superscript k denotes the transformation for k'
iteration (see [19] for detail). More importantly the FGR method
employs a fixed regime of reducing the control parameter y ev-
ery four iterations by a fixed factor until a fixed threshold (0.025
units of the diameter of the surface) is reached. However, note
that in practice as per the publicly available GitHub implementa-
tion the FGR method continues to iterate for a fixed 64 iterations.
This reduction of control parameter u is termed as graduated non-
convexity [3] and begins with a very broad weighting function
with p set to the square of the diameter of the surface (represen-
tative examples of the modified GMC for a unit diameter surface
are shown in Figure 1b). The drawback of this approach is that
the weighting will only very slowly differentiate in favour of point
correspondences with smaller residual error. Hence, the result is
a slow convergence to the optimal solution.

Proposed MFR Method

We propose a modifed M-estimation based fast global reg-
istration (MFR) method which addresses the above-mentioned
drawbacks of the FGR method. Our MFR method rapidly con-
verges to an optimal solution while matching or exceeding the ac-
curacy of the FGR and other existing global registration methods.
The key idea of our work is to introduce weighted median based
M-estimation for re-weighted least squares and deploy a gradu-
ated M-estimation which takes into account the error distribution
of the residuals to achieve a rapid convergence to the optimal so-
lution.
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Figure 2: Comparison of convergence plots for our MFR versus the FGR method. Mean RMS error with respect to iteration number for
each of the three Gaussian noise levels, (a) n =0, (b) n = 0.25% and (c) N = 0.5%.
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Figure 3: a-Recall is the fraction of test for which a method achieves RMS error less than a threshold set using @ value (on the x-axis).
RMS is defined in unit of diameter of surface. (a) n =0, (b) n =0.25% and (¢) N = 0.5%.

Tukey bisquare objective with weighted median:
The mathematical details of our MFR method are as fol-

lows. First, we estimate the residual error r; = ||Tp; —q,~||2 for i
the n point correspondences. Next, we use a well known Tukey m=1r if kzlz,' <05 5)
bisquare objective function to compute a weighting function of and kii 122 < 0.5
the form
()2 2 ) The weighted median is both robust against noise and outliers, and
- 1 (k) if|ri| <k 3 . . . .
Wi= . (€) allows for non-uniform statistical weights related to the residual
0 if |ril >k

errors as opposed to the median which assigns uniform weights.
Representative examples of the weighting function for a unit di-
ameter surface are shown in Figure la for various measures of
the weighted mean m for a fixed value of the control parameter
¥ =4.8651.

where k = Wo is a scalar derived from the current set of
residual errors r;. The parameter ¢ is a measure of the deviation
of the residual errors at the previous iteration and ¥ is a control
parameter which is traditionally set to ¥ = 4.8651. We compute

a suitable ¢ for penalizing outliers using
Graduated non-convexity M-estimation:

5 In contrast to the two step linear optimization of the

o = 14826 (] + m) n @ FGR method, we solve for a full transformation matrix

T= [R t] in a single step using the traditional singu-

For n point correspondences [py,ps, ..., Pn] ordered accord- lar value decomposition (SVD) [9] method to determine the

ing to their residual errors [ry, 77, .. .,r,] with normalised positive re-weighted least squares solution for Equation 1. The SVD

weights [wy,ws,...,w,| such that Y w; = 1, the weighted median based procedure is as follows. Given two 3D point sets P =

m of the residuals is defined as the residual r; of the element p; [P1,P2;--»Pn) and Q = [qy,4qy, --.,q,], first compute the weighted
which satisfies centroids using
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Algorithm 1 Our modified fast global registration (MFR) method
Input:
Two sets of n corresponding 3D points, i.e., P = [p,py, ..., Pu]

and Q = [ql ,q2, 7qn]
Qutput: Transformation matrix T)z.s; which aligns P to Q.

Set ¥ = 4.6851, ¥y =3, step = (Bi—¥)/16 (subscript s and f is
for starting and final value), weights wq _, = 1 initialized to one,
and Transformation matrix Ty set to identity.

MFR estimation:

FOR Iteration < MaxlItr

1. Compute arigid transformation using SVD on the two sets P

to Q using Equation 6 - 10 to get full transformation matrix
T= [R ¢ .

2. Estimate the residual error r; = | Tp; —q;||* fori=1,...,n
point correspondences.

3. Apply the Tukey bisquare objective function using Equation
3 - 5 to get corresponding updated weights W; = wl-z.

4. Graduated reduction of the control parameter such that
¥, = max (¥ — step, '¥r).

END

5. Final transformation matrix Ty, =T.

n n
[:lzwipi q= ,-ZIZWi(Ii 6)

p=
iLZi 7 i;llZi

then compute a set A and B containing centered vectors such as

A:[plfl_)v"'vpnfp]v B:[qlf(]v'"vqn*(_ﬂ N

Next, compute the 3 x 3 covariance matrix C using

C = AWB’ (®)

where A and B are 3 X n matrices which have centered vec-
tors as their columns, W = diag (wq,wy, ...,w;) and superscript T
is the transpose.

Finally, we apply SVD to the covariance matrix C to obtain
Usv’ = C, where U and V are orthogonal matrices, and S is a
diagonal matrix of non-negative singular values[9]. The optimal
rotation matrix R is given by

R=vU’ 9)

and the translation vector t by

t=q—Rp (10)

We apply our weighted median based M-estimator in a gradu-
ated non-convexity scheme by reducing the control parameter ¥
which controls the shape of the Tukey bisquare objective func-
tion. Our weighted median based graduated M-estimation obtains
rapid convergence and high accuracy of registration (see Experi-
ments Section).

0084

Implementation details:

We are motivated from the work of Rusu et. al [15, 10] on
3D descriptor and Qian et. al [19] on generating fixed initial sets
of corresponding 3D points. For each point p, all of its neigh-
bours enclosed in the sphere with a given radius (10 units/mm)
are selected. Next, for every pair of points in the given radius
of p and their estimated normals, a Darboux frame [15] is de-
fined to compute 33 dimensional FPFH descriptor for the point p.
Subsequently, we use the FPFH descriptor to find nearest neigh-
bour correspondences similar to the FGR [19] method. First, a
set of correspondences is built which contains for each point p
nearest neighbour in set Q and for each point q nearest neigh-
bour P. Next, reciprocity is used to select correspondence pair
(p,q) if and only if p has the nearest neighbor in set Q and q
has the nearest neighbor in P. Finally, tuple test is used to se-
lect correspondence pair which meet the inlier ratio test. In tu-
ple test, three correspondence pairs are randomly picked to test
0.9 < llpi—p;ll/|lai—q;] < 1.11. Our modified fast global registra-
tion method which used the initial correspondence sets from the
above-described process is detailed in the Algorithm 1.

Experiments

We have conducted a series of experiments to compare the
performance of our MFR method against seven state-of-the-art
global registration methods on two data sets, i.e., a synthetic range
dataset [19] and the UWA benchmark dataset [13]. We are pri-
marily motivated by the FGR [19] method and are grateful for
its publically available evaluation functions. The synthetic range
and UWA dataset are used to compare our MFR method with the
FGR and 6 other global registration methods (termed as GoICP,
GolICP-Trim, Super4PCS, OpenCV PCL and CZK). ICP is known
to be susceptible to local minima, GoICP [18] integrates local ICP
into the branch-and-bound [14] scheme to guarantee a globally
optimal solution. GoICP-Trim is its 10% trimming variant with
1000 data points that supports partial overlap. SuperdPCS [12] is
an optimal linear time output-sensitive algorithm which uses an
efficient data structure to obtain a global alignment. OpenCV [6]
is the surface registration algorithm which uses point pair features
with hash table lookup and voting with pose clustering to obtain
a global registration. PCL [10, 15] is the sample consensus initial
alignment algorithm which uses histogram of point pair features,
i.e., FPFH, to obtain a global registration. CZK [4] is a method
which combines geometric registration of scene fragments with
robust global optimization based on line processes for 3D scene
reconstruction. We use the evaluation function of FGR method
and compute root mean square (RMS) point-to-point error for all
the global registration methods.

Synthetic range data

This dataset consists of 5 models (Bimba, Dancing Chil-
dren, Chinese Dragon, Angel and Bunny) with 5 pairs of par-
tially overlapping range data with 3 Gaussian noise levels (n =0,
N =0.25% and n = 0.5%), i.e., a total of 75 pairs for testing reg-
istration (25 pairs of tests for each noise level). The noise levels
are scaled with respect to the normalized diameter (1.0) of the
models. The number of points vary between 8,868 and 19,749
points with overlap ratio between 47% and 90%.

In Figure 2, we show the convergence plots of mean RMS
error with respect to every four iterations with the FGR u and
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Figure 4: Visualization example of two overlapping points clouds after scene to model (Green points) registration is obtained using:

(a)-(e) FGR (Blue points) method and (f)-(j) MFR (Red points) method. Bimba, Dancing Children, Chinese Dragon, Angel and Bunny
model left to right column.

the MFR W control parameter reduced by a fixed factor until the
maximum 64 iterations is reached. In practice p reduces from
unity by a factor of 1.4 every 4 iterations stopping at 0.025 af-
ter 44 iterations, while ¥ reduces linearly from 4.8651 to 3.0
over the first 16 iterations. Figure 2a-2c compares the conver-
gence of the FGR and the MFR method for Gaussian noise levels
N =0.0%, n =0.25% and 1 = 0.5% respectively. It can be seen
from Figure 2 that our MFR method obtains a rapid convergence
and high accuracy of registration. Our MFR method uses only 4
iterations as opposed to approximately 50 iterations required by
the FGR method to reach an optimal solution for 7 = 0.0% and
1N = 0.25% as shown in Figure 2a and 2b. Also, our MFR method
uses only 12 iterations to reach an optimal solution for high noise
level N = 0.5% as shown in Figure 2c. Note that in all variations
of Gaussian noise levels our MFR method achieves a lower mean
RMS error than the FGR method. In particular, the MFR method
outperforms the FGR method in terms of low mean RMS error
for high noise 1 = 0.5%. Hence, the results demonstrate that the
MEFR uses approximately 1/107" the number of iterations of the
FGR method to rapidly converge to an optimal solution which is
better than the state-of-the-art FGR method.

Figure 3 compares the accuracy of our MFR method ver-
sus GoICP, GoICP-Trim, Super4PCS, OpenCV, PCL, CZK and
FGR methods. Figure 3a, 3b and 3c show the a-Recall as a frac-
tion of 25 pair wise registrations with RMS < « with respect to
N =0.0%, N =0.25% and 1 = 0.5% respectively. It can be seen
from Figure 3 that our MFR method matches or surpasses all the
global registration methods. In particular, for n = 0.5% our MFR
method is prominently better than the FGR and Super4PCS meth-
ods, and significantly better than CZK, GoICP-Trim, OpenCYV,
PCL and GoICP methods.

Figure 4 shows visual examples of registration obtained us-
ing the FGR (Blue points) and the MFR (Red points) method on
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the synthetic range data set models (Green points). It shows that
our MFR method with smaller number of iterations matches the
alignment accuracy of the FGR.

The Figure 5 below shows the effectiveness of graduated
non-convexity (GNC) and weighted median (WM) in the context
of M-Estimation. The recall and convergence for our weighted
median graduated non-convexity (WM-GNC) versus graduated
non-convexity (GNC), weighted median (WM) and standard M-
Estimation (M-Est) for high noise 1 = 0.5% is shown in Figure
(a) and (b) respectively. Note that the performance differences
were not significant for the lower noise examples. In conclusion
it can be seen that the modifications provide a small but signifi-
cant improvement in performance that go beyond the state of the
art provided by the FGR.

UWA benchmark dataset

This dataset consists of 4 models (Cheff, Chicken,
Parasaurolophus, T-rex) with 50 scenes of multiple objects, i.e.,
all 4 objects are present in most of the scenes. We exclude the
Rhino model of UWA (as was the case for the FGR paper [19])
because its ground truth is not provided. Also, some scenes do
not contain any 3D data for an object due to occlusion or view-
point of the scanner, hence yielding a total of 188 pairs of model
and scene pairs for testing registration. It is a challenging data set
due to clutter, occlusion and low overlap. In Figure 6a, we plot
mean RMS registration error measured between each model and
the scene in the units in which each are represented (presumably
mm) over the whole set of model and scene pairs against the num-
ber of iterations for each of the FGR and MFR methods. Notice
again that the MFR has much improved convergence. In Figure
6b, we show an example scene point cloud (in Red) and examples
of each model matched against it (in Green) for the MFR method.
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Computational Time

In Figure 7, we present graphs of computational time in
seconds of our MFR method versus the FGR global registration
method. The computational time was measured in C++ ona HP Z
book with an Intel 17 2.6 GHz processor with 16 GB RAM. In Fig-
ure 7a, we show results for each of the 75 point cloud pairs from
the synthetic data set while in Figure 7b we show similar graphs
for the 188 model and scene pairs for the UWA data sets. For
each case we plot the time for all 64 iterations for each method,
and also the time for the reduced number of iterations generally
required by our MFR method to achieve a stable optimal result.
In summary, the average time across the synthetic data set for the
FGR method is 0.199 secs and the MFR method is 0.0089 secs.
Hence, the MFR method is 22 times faster than the FGR method.
In addition, for the UWA dataset the average time for the FGR
method is 0.4351 secs and for the MFR method is 0.0167 secs.
Hence, the MFR method is 26 times faster than the FGR method.

Conclusions

We have presented MFR, a fast global registration method
that uses a form of M-estimation to provide improved rate of con-
vergence when compared to the state of the art methods whilst
maintaining overall performance. The reason behind this is that
the bi-square weighting function used in M-estimation is derived
in part from the measured residuals at the current iteration and
so can adapt to the situation (amount of noise and/or number of
outliers present in the data). In comparison the state of the art
FGR method uses a re-weighting scheme that operates open loop
and is not dependent upon the measured residuals. Instead it uses
the dimension of the measured surface/object to determine a re-
weighting strategy that is fixed for all situations. For the data
at hand, which is the same data that was presented for the FGR
method in [19], we have shown that it was not necessary to use
such a conservative graduated non-convexity (GNC) form of re-
weighting strategy in order to achieve the required performance.
We have no doubt that it would be possible to change the design
of the GNC component of the FGR algorithm to achieve better
convergence speed for the data sets covered in this paper. How-
ever, it seems better to use a standard robust statistical technique,
as provided by the bi-square weighting function, to provide a re-
weighting scheme that is tied closely to the data itself. In practice,
we made some minor modifications to the standard M-estimation
technique to ensure it always outperformed the FGR method.
Most significantly, we introduced a small amount of GNC into the
technique where we iteratively reduced the control parameter of
weighting function to essentially tighten the selection criteria and
more significantly reject outliers. This improvement was derived
directly from the FGR method and provided a small but signif-
icant advantage to the MFR method. The second improvement
was less significant and just involved using a weighted median,
instead of the standard median, in the re-weighting formula. This
adds extra computational cost and provides a small improvement
in performance. Even with this extra cost, we found that the MFR
approach, which is based on the standard SVD method, is com-
putational less expensive per iteration than the linearised Jacobian
method of the FGR. Furthermore as the SVD approach computes
a full transformation matrix (rather than a first order approxima-
tion), and uses a stronger re-weighting if the data permits, each
of these iterations is much more significant and result in consid-
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