
 

Depth-map Estimation Using Combination of Global Deep 

Network and Local Deep Random Forest 

SangJun Kim, Sangwon Kim, Deokwoo Lee and ByoungChul Ko; Dept. of Computer Engineering, Keimyung University, Daegu, S. 

KOREA 

 
Abstract 

This study propose a robust 3D depth-map generation 

algorithm using a single image. Unlike previous related 

works estimating global depth-map using deep neural 

networks, this study uses the global and local feature of 

image together to reflect local changes in the depth map 

instead of using only global feature. A coarse-scale network 

is designed to predict the global-coarse depth map structure 

using a global view of the scene and the finer-scale random 

forest (RF) is to be designed to refine the depth map based 

on combination of original image and coarse depth map. As 

the first step, we use a partial structure of the multi-scale 

deep network (MSDN) to predict the depth of the scene at a 

global level. As the second step, we propose local patch-

based deep RF to estimate the local depth and smoothen 

noise of local depth map by combining MSDN global-coarse 

network. The proposed algorithm was successfully applied 

to various single images and yielded a more accurate depth-

map estimation performance than other existing methods. 

Introduction  
Recently, as diverse applications are requiring 3-dimensional 

(3D) geometry, the importance of accurate depth estimation has 

been also increasing. From a few decades, there have been 

extensive research activities and significant improvement of 

performance in the fields of depth-map estimation. Depth-map 

estimation has been crucial and fundamental problem in the fields 

of computer vision and playing a key role in development of 

intelligence application systems including 3D modeling, computer 

graphics, virtual reality, augmented reality, and human-computer 

interaction.  

To accomplish a highly accurate depth-map of a scene, all of the 

conditions should be sufficiently provided. To alleviate the 

limitations, the active method was introduced. One of the active 

methods, using structured light (SL) patterns, replaces one camera 

with a light source that generates a light pattern [1]. Once camera 

acquires an image of a 3D scene overlaid with the light patterns, 

and geometric relationship between the original and deformed light 

patterns, it provides sufficient information to recover depth of the 

target scene. Structured light patterns are able to provide highly 

accurate feature correspondence compared to the one using passive 

stereo vision method. Another widely employed active method is 

time-of-flight (ToF) that estimates depth of a target scene based on 

the known information of a speed of the light projected onto a 

target scene [2].  

RGB-D camera has brought great attention with appearance of 

Microsoft Kinect leading to capability of low-cost and real-time 

acquisition of depth-map and color information for 3D modeling or 

reconstruction. Major components of RGB-D camera are RGB 

camera, infrared (IR) camera and projector, and calibration of or 

between all of the components is very important. RGB-D camera, 

usually employs a concept of SL or of ToF, and the accuracy of 

depth depends on calibration between RGB camera and depth 

sensor [3]. While passive and active methods have been widely 

applied to the field of computer vision, each of method is inherent 

with following limitations and disadvantages; Passive method 

usually suffers from texture-less region, occlusion or low-light 

condition, and active method suffers from external environment, 

e.g., ambient light, specular component of a target object, etc., and 

issues of low resolution [4]. Active methods with SL or ToF have 

difficulties in extracting depth-map in outdoor environment, and 

sometimes suffer from high power consumption.  

To alleviate the problems and issues arisen in the methods all 

above, from practical perspectives, single image based depth-map 

estimation has been considered one of the most reliable 

alternatives to the conventional methods, e.g., stereo vision, SL, 

ToF, SFM, RGB-D sensors, or fusion (or hybrid). To extract 

depth-map using a single image, several approaches were proposed. 

Among many other methods, popularly employed methods were 

based on the properties of a lens in that quantification of a focus 

and defocus and based on the concept of learning based techniques 

such as neural network, deep learning, etc.   

This paper proposes a new depth-map estimation method based 

on single image with combination of two learning based 

techniques. Contrast to the previous works on deep neural network 

(DNN) based depth-map estimation or other applications, the 

proposed approach combines global depth-map predicted form 

shallow structure of neural network with refined depth-map that is 

estimated from deep random forest (RF) to enhance depth-map 

accuracy. 

Combination of global and local depth 

Unlike related works, this study use the global and local feature 

of image together to reflect local changes in the depth map instead 

of using only global feature. Therefore, this study proposes a 

hybrid depth regression architecture which combines global-coarse 

network and local-patch based random forest (RF). As the first step, 

we use a partial structure of the multi-scale deep network (MSDN) 

[5] to predict the depth of the scene at a global level. Originally, 

MSDN consists of two component stacks such as a coarse-scale 

network and fine-scale network. A coarse-scale network is 

designed to predict the global-coarse depth map structure using a 

global view of the scene and the finer-scale network is to be 

designed to refine the depth map based on combination of original 

image and coarse depth map. However, because the finer-scale 

network is constructed with several convolutional layer using 

global image, this network also has limitations in predicting local 

depth. Therefore, in this paper, we use local patch-based deep RF 
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to estimate the local depth and smoothen noise of local depth map 

by combining MSDN global-coarse network as the second step.  

Global-coarse depth map 
This study use the global and local feature of image together to 

reflect local changes in the depth map instead of using only global 

feature. Therefore, this study proposes a hybrid depth regression 

architecture which combines global-coarse network and local-

patch based RF. As the first step, we use a partial structure of the 

multi-scale deep network (MSDN) [5] to predict the depth of the 

scene at a global level. Originally, MSDN consists of two 

component stacks such as a coarse-scale network and fine-scale 

network. A coarse-scale network is designed to predict the global-

coarse depth map structure using a global view of the scene and the 

finer-scale network is to be designed to refine the depth map based 

on combination of original image and coarse depth map. However, 

because the finer-scale network is constructed with several 

convolutional layer using global image, this network also has 

limitations in predicting local depth. Therefore, in this paper, we 

use local patch-based deep RF to estimate the local depth and 

smoothen noise of local depth map by combining MSDN global-

coarse network as the second step. 

Appearance and spatial location feature 
From the training images, we first extract 32x32 patches 

randomly and group similar patches together using k-mean 

clustering. We measure similarity between patches using two 

features such as appearance and spatial location to ensure the 

accuracy of resulting clusters. As the first appearance feature, 

oriented center symmetric-local binary patterns (OCS-LBP) [6] is 

employed because it is invariant to changes in the image rotation 

and scaling. OCS-LBP is an eight dimensional histogram consisted 

of the magnitude of the closest gradient orientation bin ranging 

from 0° to 360° in 45° for every pixels included in a patch. 

The second spatial location is the centroid of a patch to measure 

the spatial distance between a candidate patch and the centroid of 

comparison target cluster. If the spatial distance between a patch 

and all candidate clusters exceeds certain condition, then a new 

cluster with same appearance but different centroid is generated.   

Local depth map estimation using deep RF 
Although CNN is used to predict the depth map in many 

researches using a global view of the scene, deep convolution 

networks generally do not explicitly consider dependencies 

between local variables. Therefore, the size of the field of view is 

important for CNN's performance [7]. To derive depth considering 

various types of local views, we need to configure multiple CNNs 

optimized for each local view. However, it is inefficient to 

construct multiple deep networks in terms of computational 

resource and time.  

Therefore, in this paper, instead of heavy CNN, a light random 

forest (RF) is connected to several layers to derive the depth of the 

local region. An RF is a decision tree ensemble classifier 

(regressor) and it is known to process very large amounts of data 

with high training speeds compared to conventional classifiers [8]. 

To connect light RF deeply, we propose a new algorithm that can 

extract a local depth map by improving gcForest algorithm [9] 

instead of heavy CNN. 

The gcForest generates deep forest holding three characteristics 

behind the success of deep neural networks, i.e., layer-by-layer 

processing, in-model feature transformation and sufficient model 

complexity. This approach is a decision tree ensemble, with much 

less hyper-parameters than deep neural networks, and its model 

complexity can be automatically determined in a data-dependent 

way. From the experiments on even across different data from 

different domains, gcForest approach was able to get excellent 

performance compared to deep neural networks by using the same 

default setting and showed the possibility of constructing deep 

models without using backpropagation. 

However because original gcForest is still deep and wide for 

fast processing, we modified the structure of original gcForest. The 

proposed deep RF architecture consists of two types of stages such 

as multi-scale RF and cascade RF regressor. The second stage is 

an ensemble of RF regressors, i.e., and ensemble of ensemble. Each 

stage of cascade receives feature information processed by its 

proceeding stage, and outputs its processing result to the next layer. 

The first stage is the multi-scale RF. This stage includes 

different types of RF to encourage the diversity by randomly 

selecting samples for generating diverse decision trees data and 

randomly selecting a feature for split at each node of the tree. In 

this stage, the extracted patches are upsampled to 3 scales and the 

extracted OCS-LBP feature from each patch is used to construct 

the RF for each scale.  

Because deep RF is designed to estimate local depth, we first 

extract patches randomly from training images with their depth 

values collected from depth sensor. After random patches are 

extracted, two features, OCS-LBP and spatial location (patch 

centroid) are also extracted from each patch. In terms of depth 

values, most of methods follow a regression task to estimate depth 

values. However, because it is difficult to regress the depth value 

to be exactly the ground-truth value, we discretize the depth values 

into several discrete bins (256) in log space inspired by [7]. 

After all N patches included in training images have been 

extracted, a vector for patch 𝐩 is constructed: 

 𝐩𝒊 = {(𝐨𝐜𝐬𝐢, 𝐬𝐩𝐢, 𝐝𝐩𝐢)}, 𝑖 = 1,2, … 𝑁  

where 𝐨𝐜𝐬𝐢 = [𝑜𝑐𝑠𝑖1, 𝑜𝑐𝑠𝑖2, … , 𝑜𝑐𝑠𝑖𝑀]  is composed of M 

dimensional CS-LBP feature vector according to the number of 

blocks, 𝐬𝐩𝐢 = [𝑐𝑥𝑖 , 𝑐𝑦𝑖]  is composed of two-dimensional centroid  
vector, and 𝐝𝐩 is the discrete depth level of all pixels in a patch. 

with,  and 𝐝𝐩𝑖 = [𝑑1, … , 𝑑1024] is composed of a scalar depth label 

d (discretised depth level)  for all pixels included in i-th patch 

marked by 3D depth sensor. 

To invariant to image scaling, the scale of a patch gradually 

increases from scale 1 to scale 3. At scale 1, a patch is divided into 

2 × 2 non-overlapping blocks, 3 × 3 non-overlapping blocks at 

scale 2, and 4 × 4 non-overlapping blocks at scale 3. The scale of a 

patch at stage 1 is 32 × 32 pixels, and the scale is increased by 20 × 

20 pixels at successive scales. 

As the first classifier, we train the RF regressor using OCS-LBP, 

which is extracted from a n × n sub-blocks and spatial location of 

a patch. Then, we train the RF using training dataset 𝐴 =
{𝐩𝑖 = (𝐨𝐜𝐬i, 𝐬𝐩i, 𝐝𝐩i)|𝑖 = 1,2, … 𝑁}   consisted of N patches.  

In the training procedure of the RF, the individual decision tree 

first chooses a random subset A′ from the training dataset, A. At 

node O, the sample A𝑂
′  is iteratively split into left and right subsets, 

A𝑙
′  and A𝑟

′ , by using the threshold, t, and split function, 𝑓(𝐩𝑖), for 

the feature vector, p. Then, several candidates are randomly 

created by the split function and threshold at the split node. From 

among these, the candidate that maximizes the information gain 

about the corresponding node is selected. The information gain, 

∆𝐸, is usually calculated by entropy estimation.  

∆𝐸 = 𝐸(A𝑂
′ ) −

|A𝑙
′|

|A𝑂
′ |

𝐸(A𝑙
′ ) −

|A𝑟
′ |

|A𝑂
′ |

𝐸(A𝑟
′ )                (1) 

where 𝐸(∙ ) is the entropy computed for Gaussian kernel of the 
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classes in the set of training samples A′.  

This study use the following Gaussian kernel inspired by [10] as 

the entropy instead of common Shannon entropy function to 

consider patch appearance and spatial location at the same time. 

After training the regression tree, each leaf node predicts and 

stores a 2D depth vector using training samples in the leaf node. 

To predict the depth vector, we use the median of all the training 

samples in the leaf node instead of averaging because median is 

less sensitive to outliers (noises) than averaging. The final depth 

vector is generated by ensemble (arithmetic averaging) of each 

depth of all trees. Since RF regressor consists of three scales, we 

connect the depth vectors (1,024d, 32×32) created for each RF 

regressor into one dimension depth vector and the total 3,072 

dimension depth vector is created per tree.  

The second stage, cascade RF regressor, is to estimate the 

depth of the patch finally by applying the depth feature vector 

output from the first stage to cascade N layer RF sequentially. 

Unlike the study of [9], each RF layer consists of randomly 

generated regression trees instead of heterogeneous RFs to reduce 

the memory and computational time. The number of regression 

trees of each layer is same as 200.  

Note that here we combine global depth map generated from 

global-coarse network with output of each layer to refine the local 

depth map and  smoothen noise of local depth map. By combining 

two complement depth vector, we can expect in-model 

transformation as like a deep network model that is creating new 

features during the learning process. Moreover, it is expectable that 

more profit can be obtained if more augmented features are 

involved [9].  

After the first stage ‘multi-scale RF regressor’, the transformed 

training set B = {𝐩𝐢
′ = (𝐂𝐫𝐝𝐩𝐢, 𝐂𝐭𝐝𝐩i)|𝑖 = 1,2, … 𝑁} is generated. 

This dataset B consists of N patches with 1,024 dimensional 

transformed feature vector. In detail, global depth map predicted 

from global-coarse network of i-th patch region, 𝐂𝐫𝐝𝐩𝐢 =
[𝑐𝑑1, … , 𝑐𝑑1024], and the concatenation of a scalar depth predicted 

from multi-scale RF regressor of i-th patch, 𝐂𝐭𝐝𝐩𝑖 =
[𝑑1, … , 𝑑1024, … , 𝑑2048, … , 𝑑3072] . The transformed feature, which 

is augmented with the coarse depth map predicted by the global-

coarse network, will then is used to train from the first layer to L 

layer of cascade RF regressor, respectively. This procedure will be 

repeated till convergence of validation performance. 

To automatically train the number of RF layers and RF 

parameters by avoiding overfitting, we split the training set B into 

two parts, such as growing set B𝑔 and estimating set B𝑒 as taking 

80% of the training data for growing set and 20% for estimating set. 

To determine the optimal objective function of the regression tree, 

we use the least-squares error function (𝑔) to find the split function 

that minimizes errors [11]: 

𝑔𝑗 = ∑ (D𝑗 −𝑄𝑗
D̅𝑗)2 − ∑ (∑ (D𝑗 − D̅𝑗)

2

𝑄𝑗
𝑖 )𝑖𝜖{𝑙,𝑟}        (2) 

where 𝑄𝑗 indicates the set of training samples arriving at node j. 

Here, l and r are the left and right split nodes, respectively, and D̅𝑗 
indicates the mean depth vector of individual depth D𝑗 for all 

training samples reaching the j-th node. 

After training the regression trees of l-th RF layer, each leaf 

node predicts and stores a depth vector using training samples in 

the leaf node. Then the loss function is estimated to decide whether 

or not the RF is extended to next layer. As the loss function, we 

use mean squared error (MSE) because it is easy to implement and 

generally works well. To calculate MSE of l-th layer, we take the 

difference between predictions (𝐷𝑖
𝑡 ) of T trees included in RF 

regressor and the ground truth depth (�̂�𝑖) of i-th patch and average 

it out across the whole dataset. The general form of the loss 

function.   
Given a test patch, it goes through the multi-scale RF regressor 

procedure to get its corresponding transformed feature 

representation, and then go through the cascade RF regressor till 

the last layer. Then the final predicted depth of each regression tree 

are averaged to produce the final depth map of i-th patch.    

Experimental Results 
This study use the NYU depth v2 dataset [Silberman] consist of 

video sequences from a variety of indoor scenes as recorded by 

both the RGB and Depth cameras from the Microsoft Kinect. It 

contains 464 indoor scenes taken from 3 cities and composed of 

1,449 densely labelled pairs of aligned RGB and depth images and 

407,024 new unlabelled frames. The image size is down-sampled 

by half from 640x480 to 320 x 240 pixels.  

For training coarse CNN network, shuffle into a list of 220K 

after evening the scene distribution (1,200 images per scene) and 

performed the data augmentation with random online 

transformation, such as scaling, rotation, translation, color 

conversion, and flipping as the same method of [5]. Therefore, 

coarse network is trained using 2M samples with SGD and 32 

batch size. Learning rate is 0.001 for layers 1-5 and 0.1 for coarse 

full layers 6 and 7.  

To train the proposed deep RF, we used same augmented 

images from NYU depth v2 dataset. In this study, we set the 

maximum size (number) of trees as of RF as 50 trees, because the 

accuracy no longer improves as the tree number of trees increases 

over 50. After the multi-scale RF regressor was constructed using 

dataset A, dataset B was applied to the cascade RF regressor and 

produced 5 layers deep RF. The number of regression trees of one 

layer is 10 and tree depth is 15. 

Evaluation of proposed approach 

To verify the effectiveness of the proposed depth estimation 

method, we compared the performance of six state-of-the-art 

methods: (1) Liu et al. [12], which uses DNN, (2) Eigen et al. [5], 

which uses a multi-scale deep network, (3) Roy et al. [26], which 

estimates depth using neural regression forest, (4) Eigen and Fergus 

[13], which uses a common multi-scale convolutional architecture, 

(5) Chakrabarti et al. [14], which estimates depth-map by 

harmonizing over-complete local network, (6) Lee et al. [15], which 

is based on Fourier domain analysis, (7) global-coarse network, (8) 

proposed depth-map estimation method consisting of 30 regression 

trees of RF. The eight methods used for performance comparison 

commonly are based on DNN.  

The color version of results are shown in 

http://cvpr.kmu.ac.kr/Depthmap_results. This result shows the 

depth-map estimation results of some examples NYU v2 20061. 

Conclusion and future works 
This study proposed a new depth-map estimation method based on 

a single image with combination of two learning based techniques. 

Contrast to the previous works on deep neural network based 

                                                                 

 

 
1 We referred the results of six methods from the experimental 

evaluations of [15] 
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depth-map estimation or other applications, the proposed approach 

combines global depth-map predicted form shallow structure of 

neural network with refined depth-map that is estimated from deep 

random forest to enhance depth-map accuracy. In particular, the 

second stage, cascade RF regressor, is to estimate the depth of the 

patch finally by applying the depth feature vector output from the 

first stage to cascade N layer RF sequentially. By using deep RF 

for estimating load fine depth, this approach required much less 

hyper-parameters than deep neural networks, and its model 

complexity could be automatically determined in a data-dependent 

way. From the performance evaluation with a few state-of-the-arts 

algorithms, the proposed method showed a higher uniform 

performance in terms of Accuracy and Error. 

For the future work, we concentrating on solving computational 

overload related to global-coarse network and local-patch based 

RF by reducing the layer structure and designing light version of 

FR for implementing in hardware resource. 

 

Acknowledgement 
Following are results of a study on the "Leaders in INdustry-

university Cooperation +" Project, supported by the Ministry of 

Education and National Research Foundation of Korea and was 

partly supported by Institute for Information & communications 

Technology Promotion(IITP) grant funded by the Korea 

government(MSIT) (2016-0-00564, Development of Intelligent 

Interaction Technology Based on Context Awareness and Human 

Intention Understanding. 

References 
[1] A. Dipanda, S. Woo, Towards a real-time 3D shape 

reconstruction using a structured light system, Pattern 

Recognition, Vol. 38, no.10, pp. Oct. 2005. 

[2] Yan Cui,Sebastian Schuon, Derek Chan,Sebastian 

Thrun,Christian Theobalt, 3D shape scanning with a time-of-

flight camera, CVPR, pp. 1173-1180, 2010. 

[3] Peter Henry,Michael Krainin, Evan Herbst,Xiaofeng 

Ren,Dieter Fox , RGB-D Mapping: Using Depth Cameras for 

Dense 3D Modeling of Indoor Environments, Experimental 

Robotics, pp 477-491, 2014 

[4] Q. Yang, K-H. Tan, B. Culbertson and J. Apostolopoulis, 

Fusion of Active and Passive Sensors for Fast 3D Capture, 

Proceedings of 2010 IEEE International Workshop on 

Multimedia Signal Processing, Oct. 2010. 

[5] D. Eigen, C. Puhrsch and R. Fergus, Depth Map Prediction 

from a Single Image using a Multi-Scale Deep Network, 

Proceedings of Advances in Neural Information Processing 

Systems 27, 2014 

[6] M. Jeong, B.C. Ko, J. Y. Nam, “Early detection of sudden 

pedestrian crossing for safe driving during summer nights,” 

IEEE Trans. Cir. Sys.  Vid. Tech., vol. 27, no. 6, pp.1368-1380, 

2017 

[7] Yuanzhouhan Cao, Zifeng Wu, Chunhua Shen, "Estimating 

depth from monocular images as classification using deep fully 

convolutional residual networks," IEEE Transactions on 

Circuits and Systems for Video Technology ( Early 

Access ),DOI:  10.1109/TCSVT.2017.2740321, pp.1-9, 15 

August 2017. 

[8] ByoungChul Ko, JuneHyeok Hong, Jae-Yeal Nam, "Human 

action recognition in still images using action poselets and a 

two-layer classification model",  Journal of Visual Language 

and Computing, Volume 28, Pages 163–175, June 2015. 

[9] Zhi-Hua Zhou, Ji Feng,"Deep forest: towards an alternative to 

deep neural networks," Proceedings of the Twenty-Sixth 

International Joint Conference on Artificial Intelligence, pp. 

3553-3559, 2017 
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