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Abstract

To improve the driving safety triggered by driver’s behav-
ior recognition in an in-car environment, we propose to use depth
cameras mounted in a car to generate behavior models generated
by a deep learning algorithm for a driver’s behavior classifica-
tion. The contribution of this paper is trifold: 1) The proposed
multi-view driver behavior recognition system can handle the oc-
clusion problem happened in one of the cameras; 2) Using the
recurrent neural network can effectively recognize the continuous
time behavior; 3) the average recognition accuracy of proposed
systems can achieve 83% and 88%, respectively.

Introduction

A driver’s behavior plays an important role to affect the traf-
fic safety. For example, answering a phone, watching a video, or
chatting with the people with a head turning behavior often lead
the following car accidents. To increase a driving safety, a driver’s
behavior is analyzed, understood, and recognized [1, 2] to assist
a driver to behave in a proper manner in a car. For example, Jain
et al. [2] proposed to utilize cameras to understand a driver’s be-
havior in an in-vehicle environment. However, it is challenging
to use an in-car camera for behavior recognition due to the light
changing, occlusion, and the clutter issues. Furthermore, in a lim-
ited in-car space, as shown in Fig. 1 (a), mounting positions of a
camera to capture a driver’s behavior is also very limited. Based
on a limited mounting position, the captured content of a frame
leads severe self-occlusion issue, as shown in Fig. 1 (b).

Figure 1.  In-vehicle environment: (a) In-vehicle environment is a narrow
space, (b) Driver in a sitting position and whole body was occluded by other
part.

To recognize a driver’s behaviors, a Kinect depth camera
mounted is in a car, with skeletons and the 3D point cloud re-
vealed from an official SDK [3]. We propose two approaches for
driver behavior recognition based on a deep learning algorithm.
The rest of this paper is organized as follows. The related works
and the framework of the proposed driver behavior recognition
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using recurrent neural network system are presented. The exper-
imental results are also reported. Finally, the conclusions and fu-
ture work are given.

Related Work

To recognize human behavior using a Kinect depth camera,
Hussein et al. [4] proposed a 3D joint covariance descriptor which
employs the angular relationships among joint vectors with the
linear support vector machine (SVM) classifier for recognizing
actions. By adopting MoCap and a Kinect depth camera, Wang
et al. [5] extracted 3D joint features and used local occupancy
patterns to generate spatial histograms for behavior recognition,
using SVMs to train the classifiers. Yang and Tian [6] proposed
the EigenJoints method based on a principal component analysis
for behavior recognition. In addition to using a depth camera,
human action recognition approaches [7, 8] adopt deep learning
algorithms with a color camera.

On the other hand, to achieve behavior recognition, re-
searchers paid attention to utilize multiple cameras to compen-
sate the the occluded areas and out of observation rage issues in a
single camera environment. Azis et al. [9] proposed a weighted
averaging fusion algorithm for generating a multiview skeleton
with extracted 3D joint features to train the behavior classifiers.
Kuo et al. [11] proposed a time-variant skeleton vector projection
scheme using multiple infrared-based depth cameras. The pro-
posed occlusion-based weighting element generation can be em-
ployed to train SVM classifiers to recognize behaviors in a multi-
ple view environment.

In the in-vehicle environment, to recognize a driver’s behav-
ior becomes a challenging research issue in human action recogni-
tion due to the limited viewing angle and the clutter environment
in a car. To name a few, Xing et al. [12] used a Kinect camera
to match the FENN network to identify driving and non-driving
actions. On the other hand, Chuang et al. [13] used the relative
position in the space of the skeleton to recognize the driving be-
havior.

Therefore, in this paper, we will focus on the driver behavior
recognition in a single depth camera and a multiple depth cam-
eras environments. In addition, deep learning algorithms will be
adopted for training a proper model for classification. Further-
more, the computational complexity for adopting different archi-
tectures of deep learning algorithms will be compared and dis-
cussed.
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Proposed Driver Behavior Recognition Sys-
tem

In this paper, a driver behavior recognition system is pro-
posed, as shown in Fig. 2. Basically, the proposed system is sep-
arated as a training stage and a testing stage. In the training stage,
the training data needed to be pre-processed and used for training
the recurrent neural network (RNN) model. In the testing stage,
when the testing data is pre-processed, the RNN model generated
in the training stage is used for classification, which is applied for
driver behavior recognition in the proposed system. The details
will be described in the following subsections.
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Figure 2.  The flowchart of the proposed multiple views driver behavior

recognition system.

Recurrent Neural Network

To generate a model for behavior recognition, a conventional
recurrent neural network (RNN) is adopted in this paper. As
shown by the left part of Fig. 3, an RNN uses a sequential data
(the green circle) with a memory state (the orange circle) and the
generated hidden layers (blue circles) to decide the output (yellow
circle). By extending from the conceptual architecture in the left
part of Fig. 3, the sequential step-by-step flow chart is shown in
the right part of Fig. 3. For example, at time instance f;, the input
vector is x; (the green circle in the bottom-middle part), the hid-
den layer s; (the central blue circle) is influenced by the memory
state value c; (the orange circle, a copy from s;) in the previous
time instance at #; . Meanwhile, the current hidden layer s; is
made a copy to ¢, to be the input of s3 in the next time instance
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Figure 3. Recurrent Neural Network

Directly applying an RNN model can bring the advantages
of an artificial neural network, but the vanishing gradient prob-
lem for training a deep neural network is also brought. To allevi-
ate the vanishing gradient problem, Hochreiter and Schmidhuber
proposed the long short-term memory (LSTM) [14] approach. To
improve a simple chain structure of the hidden layer with a tanh
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activation function in an conventional RNN, LSTM uses multiple
sigmoid activation functions with an adaptive memory manner. In
this paper, we adopt LSTM to generate the RNN model for behav-
ior recognition.

Skeleton Based Driver Behavior Recognition Sys-
tem

In the proposed driver behavior recognition system, as shown
by the scenario in Fig. 1, Kinect cameras is mounted at the left
and right of a driver to capture the skeleton data, according to
the official Microsoft Kinect SDK 2.0 [3] with 25 skeletal joints,
as shown in Fig. 4. As shown in Fig. 1 (b), because the lower
body of the driver is occluded by an instrument panel, only the
skeletal joints of the upper body of the driver is used as the in-
put for generating the RNN model for behavior recognition. The
pre-processing step in the proposed skeleton-based approach is to
remove the skeletal joints not belonging to the upper body to be
the input X of an RNN.
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Figure 4. The skeleton joints of the Kinect [15].

As shown in Fig. 5, a single layer LSTM neural network (the
blue rectangles in the middle) is adopted for generating the RNN
model for driver behavior recognition. After the pre-processing
step to remove the skeletal joints belonging to the lower body of
a driver, 19 joints are reserved for one frame. The 3D position
values in x, y, and z axis are obtained for each joint, according
to the Kinect SDK. Therefore, 19 x 3 = 57 values are utilized as
the input nodes of the LSTM neural network for a time instance.
For example, to time instance ¢1, 57 nodes are collected at frame
t; of a Kinect camera, as by the left part shown in Fig. 5. In
addition, for recognizing a driver’s behavior, total 60 frames are
used for behavior observation. Furthermore, in the single layer
LSTM neural network for generating an RNN model, the number
of the nodes for a hidden layer is set as 10.

Multiple Views Point Cloud Based Driver Behavior
Recognition System

In the proposed driver behavior recognition, in stead of using
a single camera, it is possible to mount a second Kinect camera
in a car to compensate the occlusion issues and the out of the ob-
servation range issues (in a field of view). As shown in Fig. 6
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Figure 5.  Recurrent Neural Network for Skeleton Based Driver Behavior
Classification

(a), the 3D point cloud can be captured from two Kinect cameras.
According to an operation by a homography matrix [16, 17], as
shown in Fig. 6 (b), the point clouds from multiple views can
be fused as a more complete 3D point cloud. Next, as shown in
Fig. 6 (c), the background point cloud of a driver can be removed
by setting a 3D region-of-interest. Finally, to achieve a reason-
able RNN model generation target, the 3D points are uniformly
downsampled to 10,000 points, as shown in Fig. 6 (d).

@

Figure 6.
Kinect cameras, (b) calibration of point cloud from two views and merging
point cloud, (c) removing background and extracting point cloud of body part,
(d) downsampling the driver body point cloud.

Preprocessing stage: (a)point cloud collected from different

After the pre-processing step, 10,000 points of the point
cloud are reserved for one frame. The 3D position values in x,
v, and z axis are obtained for each point, according to the Kinect
SDK. Therefore, 10,000 x 3 = 30,000 values are utilized as the
input nodes of the LSTM neural network for a time instance. For
example, to time instance ¢1, 30,000 nodes are collected at frame
t; of a Kinect camera, as by the left part shown in Fig. 7. In
addition, for recognizing a driver’s behavior, total 30 frames are
used for behavior observation. Furthermore, in the three layers
LSTM neural network for generating an RNN model, the number
of the nodes for hidden layers are set as 2048, 512, and 128 nodes,
respectively.

Eventually, either the proposed skeleton-based approach or
the multiple views point cloud based approach, the generated
RNN models are utilized for driver’s behavior recognition, using
the conventional LSTM [14] classification.
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Figure 7. Recurrent Neural Network for Multiple Views Point Cloud Driver
Behavior Classification

Experimental Results

In the experimental results, two Kinect v2 depth cameras
with the resolution 512 x 424 to obtain the 3D point cloud to cap-
ture a driver’s behavior with the official Kinect SDK [3], and the
depth data is served as the raw data. To simulate the in-car envi-
ronment, as shown by the right Kinect camera in Fig. 8, it was po-
sitioned 1.1m away from the driver to capture the right view. On
the other hand, the other Kinect camera was mounted 0.8m away
to capture the left view. The preprocessing tasks include: skele-
ton obtaining, multi-camera point cloud calibration, background
removal, and downsampling. In addition, Tensorflow 1.8.0 [18] is
used to build the RNN model.

Figure 8. Testing environment of the experimental results

VAP Multiple Views Driver Behavior Dataset

In order to evaluate the proposed method, we generate a
“VAP Multiple Views Driver Behavior Dataset” for evaluation.
As shown in Fig. 9, ten volunteer users were invited to per-
form ten different behaviors for three times. As a result, 10 x
10 x 3 = 300 video clips were generated, with a manually time-
synchronization process. For example, Fig. 10 shows the consec-
utive skeleton and point cloud of a waving behavior after perform-
ing the preprocessing steps. In the evaluation, a leave-one-out
cross-validation (LOOCYV) is adopted. In our test, the data from
the nine of the ten drivers are used for model training/validation,
and the remained one driver data is used for testing the classifica-
tion performance, with average classification accuracy displayed
as follows.
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Single View Skeleton Based Driver Behavior
Recognition

At first, the joints of the skeleton data captured from a single
Kinect camera is use for evaluation. As shown left bottom green
circle in Fig. 3, the RNN input X is set as 57 nodes, and the
X1,X2,x3 - - - is observed until xg( to represent that a user’s behavior
is observed during 60 frames. The learning rate and drop out is
set to 0.0001 and 0.5 respectively.

By 10,000 times iterations for obtaining the RNN model, the
average accuracy rate can achieve 0.83, ranging from 0.67 to 0.90,
which is shown in Table 1. It is obvious that the “right side” be-
havior recognition result has higher accuracy than “left side” in
Table 1, due to the left-driving setting has fewer self-occlusion is-
sues with proper Kinect camera observation distance, about 1.0m
falls into the rage of valid depth observation 0.5m — 3.5m from
the infra-red based depth sensor. In other words, the skeletons
observed from the “left side” camera is relatively noisy due to the
too short distance, smaller than 0.5m with almost out of the valid
observation range from the depth sensor.

Furthermore, as shown by the confusion matrix for different
behaviors in Fig. 11, the behaviors “Turning right” and “Adjust-
ing mirror ” can be successfully classified with the accuracy as
0.97, but the behavior “Watching video” can be classified with a
relatively lower accuracy as 0.70. The false classification result in
“Watching video” is caused by the similar geometric skeleton dis-
tribution in “Look up” and “Waving left” from a single camera,
due to certain self-occlusion issues and out of observation rage
issue from a single camera environment.

Multiple Views Point Cloud Based Driver Behavior
Recognition

To compensate the limitation from a single view camera en-
vironment, according our proposed method, 3D point cloud cap-
tured from multiple views with Kinect cameras is used for perfor-
mance evaluation. After the preprocessing stage, the RNN input X
is set as 30,000 nodes, and the xj,x5,x3 - - - is observed until x3( to
represent that a user’s behavior is observed during 30 frames. The

Figure 9. VAP multiple view driver behavior dataset contain 10 persons and
10 behaviors: turning right, turning, left, looking up, horn, texting, watching
video, phone, waving right, waving left, and adjusting mirror.

Figure 10. Consecutive skeleton and point cloud of a waving behavior after
preprocessing stage.
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Table 1: Skeleton Based Recognition Results Using RNN

Driver Camera position
right side left side

Person 1 0.90 0.67
Person 2 0.90 0.43
Person 3 0.73 0.27
Person 4 0.76 0.60
Person 5 0.87 0.50
Person 6 0.67 0.20
Person 7 0.90 0.17
Person 8 0.90 0.50
Person 9 0.83 0.43
Person 10 0.83 0.23
Average 0.83 0.40

Turning right ‘ 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

Turning left  -oXe] 0.00 0.07 000 0.00 003 000 0.7 0.00

Look up X 0.07 000 000 000 000 000 0.00

Horn . . 0.00 0.03 0.00 007 007 0.07 0.00

ﬁ Texting X .00 0.00 0.00 0.00 0.07 000 003 0.0
% Watching video X 00 0.17 0.03 000 §ONGN 000 000 0.10 0.00
§ Phone X .00 0.00 0.00 0.10 0.00 m 0.00 0.00 0.00
Waving right X .00 0.00 0.13 000 0.3 0.00 0.10 0.00
Waving left . 07 0.00 007 000 000 003 000 0.00

0.00 0.00 0.00 0.00

3 0 s 7 s s o

Adjusting mirror . 0

Turning right -
Turning left
Look up
Horn
Texting
Watching video
Phone
Waving right
Waving left
Adjusting mirror

Predicted class

Figure 11. Confusion matrix of skeleton based driver behavior recognition.

learning rate and drop out is set to 0.00001 and 0.5 respectively.
As shown in Table 2, the average behavior recognition accuracy
is proportional to the number of epochs. For example, when the
epochs is set to 2,000, the average accuracy is 0.88.

Moreover, the confusion matrix of point cloud based multi-
ple views setting is shown in Fig. 12. By comparing with the sin-
gle view skeleton-based approach in Fig. 11, the accuracy in most
of the behaviors are achieved near 1.00, but the “Horn” behavior
was incorrectly classified as “Look up” behavior, because of the
hand motion of honking horn is occluded by the steering wheel.
In addition, the accuracy of “Turning right” is reduced to from
0.97 to 0.83, because of the too short distance (less than 0.5m)
from the Kinect camera to the driver. As a result, by combin-
ing the depth information from the two views of Kinect cameras,
some of the missing parts or occluded parts in one view can be
compensated from the other view, and the behavior recognition
accuracy can be improved.
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Table 2: Recognition Results Using RNN

Driver epochs

500 1000 1500 2000
Person 1 0.80 0.63 0.77 0.83
Person 2 0.67 0.90 0.90 0.80
Person 3 0.90 0.90 0.09 0.97
Person 4 0.97 0.83 0.90 0.90
Person 5 0.93 0.90 0.87 0.90
Person 6 0.90 0.90 0.90 0.90
Person 7 0.87 0.90 0.87 0.80
Person 8 0.83 0.90 0.80 0.90
Person 9 0.87 0.90 0.87 0.90
Person 10 0.80 0.90 0.90 0.90
Average 0.85 0.86 0.87 0.88

Turning right ‘ 0.13 0.00 003 0.00 0.00 0.00 0.00

Turning left 0_000,00 0.00 0.00 0.00 0.00 0.00

Look up § 0.00 0.03 gXergy 000 0.00 0.00 0.00 0.00
Horn B 0.00 0.13 gk 0.07 0.00 0.00 0.00 0.00
Texting g 003 000 0.00 0.00 0.00 0.00 0.00

Watching video f 0.00 0.00 0.00 0.00 0.000.00 0.00

Phone fl 000 000 0.00 000 000 o.ooo,oo

Waving right § 000 000 0.00 000 0.00 0.00 0.00

Actual class

Waving left g 0. 0.00 0.00 0.00 0.00 0.03 0.00

o
o
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Figure 12. Confusion matrix of multiple point cloud based driver behavior
recognition.

Complexity Comparison

The proposed methods were executed on a computer, with an
Intel 3.20-GHz CPU (Core i7), GTX 1080 Ti GPU, and 64Gb of
RAM. The total computational time for the skeleton-based and the
point-cloud-based approaches are shown in Table 3. By compar-
ing the results in the first row and the second row, it is apparent
that the skeleton-based approach spent much less time than the
point-cloud-based approach. The main reason is that RNN input
X of the point-cloud-based approach needs 30,000 nodes, but the
the skeleton-based approach only needs 57 nodes. In addition,
the computational cost for the total training time and the training
time per 100 epochs from the point-cloud-based approach to the
skeleton-based approach is about 100 times. However, the test-
ing time is about 3 times, and the GPU memory usage is about
35 times, from the point-cloud-based approach to the skeleton-
based approach. Therefore, in order to obtain the higher accuracy
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with the point cloud compensating property, the computational
cost and the memory usage increasing is needed.

Table 3: Time complexity

Total ~ raining , GPU
F Trainin Time per Testing memor
eature lining 100 time y
time usage
epochs
Skeleton 111.55s 1.12s 0.02s 247MiB
Point cloud | 2392.59s 119.63s 0.06s 8401MiB

Conclusion

In conclusion, we proposed two approaches for a driver be-
havior recognition: a skeleton-based approach and a multiple
views point cloud based approach, based on Kinect depth cam-
eras. The recurrent neural network models based on LSTM al-
gorithm is adopted for training the behavior models in the pro-
posed approaches. In the experimental results, the driver behavior
recognition accuracy can achieve 83% and 88%, respectively. In
the future, the proposed driver behavior recognition scheme can
be applied in an in-vehicle environment. Furthermore, wearable
sensors on a driver and the sensors mounted on cars can be also
utilized for driver behavior recognition. In the future, the pro-
posed driver behavior recognition is possible to be adopted in the
development of advanced driver assistance systems (ADAS).
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