

A system for generating complex physically accurate sensor

images for automotive applications

Zhenyi Liu1,2, Minghao Shen2, Jiaqi Zhang3, Shuangting Liu3, Henryk Blasinski1, Trisha Lian1, Brian Wandell1

1. Stanford University, 2. Jilin University, 3. Beihang University

Abstract

We describe an open-source simulator that creates sensor

irradiance and sensor images of typical automotive scenes in urban

settings. The purpose of the system is to support camera design and

testing for automotive applications. The user can specify scene

parameters (e.g., scene type, road type, traffic density, time of day)

to assemble a large number of random scenes from graphics assets

stored in a database. The sensor irradiance is generated using

quantitative computer graphics methods, and the sensor images are

created using image systems sensor simulation. The synthetic

sensor images have pixel level annotations; hence, they can be used

to train and evaluate neural networks for imaging tasks, such as

object detection and classification. The end-to-end simulation

system supports quantitative assessment – from scene to camera to

network accuracy - for automotive applications.

Introduction
The massive growth of the mobile imaging market produced

enormous innovation in camera design. Cameras for consumer

photography are designed around image quality metrics that account

for human observers (Wang et al. 2004). The expected massive

growth in imaging applications for machine-learning (ML)

motivates us to consider the potential for new camera designs.

Camera metrics for ML applications should include metrics that

address the critical requirements of ML: accuracy and

generalization. Specifically, we must understand how well networks

trained using images from one camera perform with inputs from a

different camera.

Classically, domain adaptation methods are used to adjust for

the differences between the available data and the target domain

(Wu and Dietterich 2004; Duan et al. 2009). Two recent techniques

specifically address the limits of generalization between synthetic

and real images. Domain randomization introduces random

variations into the synthetic image with the hope that such

perturbations force the network to focus on critical information

(Tremblay et al. 2018). Domain stylization uses photorealistic

image style transfer algorithms to transform synthetic images so that

an independent network cannot discriminate synthetic and measured

images (Dundar et al. 2018; Li et al. 2018). There is also valuable

ongoing work to improve the realism of synthetic images, which can

be automatically labeled and used for training and ML validation

(Tsirikoglou et al. 2017; Wrenninge and Unger 2018).

A limitation of domain adaptation methods for our purpose is

that they do not explicitly represent camera parameters. Hence, this

limits the ability to explore optics and sensor factors such as the

lenses, color filters, or pixel size. For guiding camera design, it is

essential to incorporate real camera parameters when creating

synthetic images. Because of this requirement, the simulation must

be able to create physically accurate synthetic scene radiance

distributions that enable us to model the impact of wavelength-

dependent components, including the optics and sensors (Blasinski

et al. 2018).

This paper describes an open-source and freely distributed

toolbox to synthesize scene spectral radiances and sensor data for

neural network automotive applications. The software includes

procedural methods to generate a large number and variety of scenes

from graphics assets stored in a database. The software simulates

optics and sensors to support the exploration of novel camera

designs. We are using these synthetic sets with ML systems to

develop metrics that evaluate the performance and generalization of

camera and ML systems.

Methods

Figure 1. ISET3d scripts control and set parameters for multiple software

components. These components randomly sample computer graphics (CG)

assets from the Flywheel database (Scitran), assemble the data into a scene
spectral radiance (SUMO-SUSO) that is rendered into a spectral irradiance at

the sensor surface (PBRT) as well as pixel level metadata (depth, object, and
material labels). The irradiance is transformed into a sensor response based on a

pixel and sensor model (ISETCam). The collection of images is grouped into
data sets that are used to train and evaluate networks (ISETCloud).

The simulation tools combine several components (Figure

1). Users control the overall computation, from scene generation to

sensor simulation, using scripts in the Matlab toolbox ISET3d. The

functions in this toolbox control the critical stages of collecting and

assembling the scene assets, modeling the scene parameters (e.g.,

surface properties, object and camera positions), calculating the

scene radiance, modeling the sensor properties and calculating the

sensor response, and invoking the ML application.

Computer graphics assets are stored in a database that is

accessed using the Matlab SciTran toolbox. This toolbox addresses

the Flywheel.io database to randomly sample and download objects

and sky maps. The density, positions, and velocity of the objects

(cars, pedestrians, cyclists, signs and traffic lights, trees) are defined

by an open source microscopic road traffic simulator (Simulation of

Urban Mobility, SUMO)(Behrisch et al. 2011). We also developed

software (Simulation of Urban Static Objects, SUSO) to calculate

the positions of static objects (buildings). The collection of objects

and their properties is assembled into two files. The recipe file,

stored in JSON (Javascript object notation) format, lists the objects

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 053-1

https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-053
© 2019, Society for Imaging Science and Technology

https://paperpile.com/c/uORQqx/aty0
https://paperpile.com/c/uORQqx/oNl8+5qfy
https://paperpile.com/c/uORQqx/5nRV
https://paperpile.com/c/uORQqx/iH0P+5Muz
https://paperpile.com/c/uORQqx/oasG+xzj6
https://paperpile.com/c/uORQqx/yNRn
https://paperpile.com/c/uORQqx/yNRn
https://paperpile.com/c/uORQqx/S47o

and their parameters. The resources file includes the data necessary

for rendering the objects (e.g., textures in png format and meshes

(points, triangle vertices, faces) in pbrt format).

PBRT, an open-source, physically based ray-tracing software,

is the critical component that implements ray tracing (Pharr, Jakob,

and Humphreys 2016). PBRT uses principles of physics to model

the interaction between light and matter in the 3D world. PBRT

simulates physically accurate spectral radiance, transforming the

radiance into sensor irradiance by implementing a camera lens

model. We added features to PBRT to enable specification of a

multi-element camera lens comprised of spherical, aspherical, or

biconic surfaces with arbitrary wavelength-dependent indices of

refraction and to account for the effects of diffraction (Freniere,

Groot Gregory, and Hassler 1999). Finally, we inserted methods so

that PBRT generates images comprising the metadata used for ML

training (distance maps, object labels, material labels). To simplify

sharing, we placed the modified PBRT into a Docker Container that

includes its dependencies. The container runs on a wide variety of

computational platforms without the need for compilation.

ISETCam converts spectral irradiance data into pixel

responses. This code enables the user to specify a large range of

pixel and sensor properties and it also includes methods for the

image systems pipeline (Farrell, Catrysse, and Wandell 2012;

Farrell and Wandell 2015). Finally, ISETCloud manages the cloud-

scaling of rendering jobs via Kubernetes running on the Google

Cloud Platform (GCP). This software also sends training and

evaluation jobs that run using Tensorflow on the GCP. The

collection of software tools described here significantly extend the

system described in a previous paper (Blasinski et al. 2018).

Results

Accumulation of assets

Figure 2. (A) The mesh defining a car is rendered as a Lambertian surface. (B)

Different materials are assigned to the various car parts. (C) Different material

color and new lighting are assigned. (D) The car is rotated but the camera position
is unchanged.

 Our database currently contains computer graphics assets

representing more than 200 buildings, 100 vehicles, 80 pedestrians,

and other street elements (e.g., trees, signs, traffic lights). Each

asset is stored separately with its own 3d description file

(assetRecipe.json) and resources file (pbrt format) for rendering.

Figure 2 illustrates a typical car asset, rendered with different types

of surface material, color, and lighting.

This growing collection of assets were obtained by converting

open-source assets from various sources (e.g., Blender, Maya,

Adobe, commercial vendors). The parts of these open assets (e.g.,

doors, tires, windshield) were not consistently labeled, and thus we

edited the labels and scaled all the sizes to meters. Most of the assets

were converted to the PBRT asset format using a utility that converts

Cinema4D data into the PBRT format that is part of the PBRT

distribution.

Scene assembly

Figure 3. Scenes generated on the same road and sky map, but randomly

sampling buildings, trees, environmental objects and setting different traffic and
environmental parameters. (A,D) High traffic density. (B,C) Low traffic density.

The camera position is chosen to be consistent with the car that is acquiring the
image (not shown).

 Synthetic scenes for ML applications should be able to vary,

matching the complexity of the real world (Figure 3). To manage a

large number of assets needed to create realistic scenes we find it

useful to store the assets and their metadata (e.g., high level verbal

descriptions) in a searchable database (MongoDB). We use a

database (https://flywheel.io) that runs on the Google Cloud

Platform (GCP) and can be accessed from any computer on the

Internet. The database also has a software development kit that

enables the user to query the database in a number of programming

languages and to download collections of assets.

The software includes functions that place the mobile assets

(cars, people, buses, trucks, bicyclist) into a realistic spatial

organization on the streets using Simulation of Urban MObility

(SUMO) (Behrisch et al. 2011). Users can specify scenes either by

naming specific assets or by setting statistical parameters to control

random selection methods. This procedure creates quite complex

and realistic traffic scenarios, including scenes with pedestrians

crossing roads, vehicles changing lanes, vehicle braking when the

traffic light turns red, etc. To add further variation to each rendered

scene, we developed software to insert static assets, Simulation of

Urban Static Objects (SUSO). This software randomly samples

static assets from the database (buildings, trees, street lights, etc.,)

and places them into the scene.

The collection of assets and asset positions form an important

part of the scene ‘recipe’. This is a JSON file that is built up during

the simulation process. The file includes the information about the

scene metadata. The assets needed for the rendering are collected

up into a zip-file of computer graphics resources (cgresources.zip).

Scene rendering
Once assets are assembled and placed, we use PBRT to

calculate the scene spectral irradiance at the sensor surface. The

calculation follows the conventional ray tracing approach: multiple

rays are sent from each point on the sensor surface through the optics

into the scene.

A B

C D

053-2
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

https://paperpile.com/c/uORQqx/fH8y
https://paperpile.com/c/uORQqx/fH8y
https://paperpile.com/c/uORQqx/uVgt
https://paperpile.com/c/uORQqx/uVgt
https://paperpile.com/c/uORQqx/zubm+kjE8
https://paperpile.com/c/uORQqx/zubm+kjE8
https://paperpile.com/c/uORQqx/yNRn
https://flywheel.io/
https://paperpile.com/c/uORQqx/S47o

We use the extensibility of the PBRT software to add several

computational modules, including extended lens modeling as

described in the Methods section. In addition, we added a module to

randomize the directions of rays passing near an aperture (Freniere,

Groot Gregory, and Hassler 1999). We can use different lens

description files to simulate different lens effect (Figure 4A).

Figure 4. (A) Optics: Chromatic Aberration; (B) Material: Retroreflective; (C)

Non-uniform Motion blur

Also, we added a retroreflective material class to model the

properties of certain street signs (Figure 4B). In this case, rays

incident on the surface are likely to be reflected back in the direction

from which they arrive. PBRT also incorporates rendering methods

that calculate the impact on the irradiance when certain assets have

linear motion (Figure 4C). In PBRT, a transformation matrix is used

to move an object from one point to a different point through

translation, rotation and scale. When rendering motion blur in the

system, we define the camera shutter rate, start and end

transformation matrices for certain objects, and a transformation

time (one second by default). Thus, cars traveling in different

directions at different speeds(meters/second) can be rendered

accurately. In addition, the PBRT realistic camera model can

simulate different types of lenses (Figure 5). A number of different

lens models are included in the software distribution, and more can

be added if the user has lens prescription data are available.

Figure 5. A comparison of cameras with different imaging lenses. (A): wide

angle lens; (B): fisheye lens

 Real-world datasets require labeling, either manually or by AI

algorithms. In either case, quality assurance is necessary to reduce

errors. To obtain depth information, an extra device (lidar) is

usually needed. However, for synthetic PBRT renderings, a ray from

the camera to the scene can return object information, including

shape, surface properties, and position. We implemented

modifications to PBRT to return these labels for depth map, class,

and instance label (Figure 6). Hence, accurate pixel-level labels can

be generated at a relatively low computational cost.

Sensor modeling

The ISETCam (Isetcam n.d.) software converts the spectral

irradiance data into pixel voltages and digital outputs (Farrell,

Catrysse, and Wandell 2012; Farrell and Wandell 2015). Using

ISETCam we can simulate different types of sensors, varying

parameters such as the color filter array and pixel size (Figure 7).

Figure 6. The PBRT simulation produces sensor irradiance images as well as

metadata. (A) The irradiance data can be converted into a camera sensor image;
(B-D) The PBRT simulation also produces pixel-level metadata of depth, object

class, and specific object instance. The metadata are necessary for machine-
learning applications.

We were particularly interested to understand the effects of

pixel size on the ability to identify cars and pedestrians in a typical

driving scene. Thus, we simulated sensors that were matched in all

ways with the exception that Sensor A has a 6-micron pixel and

Sensor B has a 3-micron pixel. Maintaining the field of view means

that Sensor A is 752 x 480, while sensor B is 1504 x 960. All other

parameters (color filters, frame rate, dark noise, read noise, PRNU,

DSNU, and exposure duration) were equated.

Figure 7. The sensor irradiance data can be used to calculate sensor responses

for arbitrary color filter arrays. The four images illustrate sensor responses for

four different types:(A) RGGB (B) RCCC (C) RGBW, and (D) Monochrome.

Evaluating the impact of alternative camera
designs

Changes to most camera parameters involve a trade-off in

functionality. For example, shrinking pixel size increases the

sampling resolution of the image and reduces signal-to-noise at each

pixel. A critical goal of these simulations is to produce enough

synthetic data that we can evaluate these tradeoffs by quantifying

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 053-3

https://paperpile.com/c/uORQqx/uVgt
https://paperpile.com/c/uORQqx/uVgt
https://paperpile.com/c/uORQqx/YXt6
https://paperpile.com/c/uORQqx/zubm+kjE8
https://paperpile.com/c/uORQqx/zubm+kjE8

network performance. This should help us make informed camera

design decisions.

As an illustration, we evaluated the performance of two

identical cameras, differing only in pixel size (3-micron vs. 6-

micron) and thus the number of pixel samples (see Appendix I for

the sensor parameters). We fine-tuned a coco pre-trained

model(Models n.d.): Faster RCNN Resnet101 to identify cars and

pedestrians from a sample of synthetic images estimated from these

two cameras. The network was fine-tuned on 8000 images from

Berkeley Deep Drive Dataset (Yu et al. 2018) and then tested on

1500 held-out synthetic images that we created. The test set includes

the images we generated with random parameters for traffic flow

simulation, we think the large test set of randomly generated traffic

scenes is representative of the real-world driving scenarios. We

measured the average precision for recognizing cars and pedestrians

in the test set as a function of distance, a quantity that depends on

the sensor spatial resolution (Figure 8).

Figure 8. Sensor parameters for the simulation in Tables 1 and 2 (Appendix).

 The curves for both cars and pedestrians follow a similar

pattern: average precision declines over distance. The performance

of the 6-micron camera matches the 3-micron camera until a

distance of about 40 meters, and then it is slightly less accurate from

40-150 meters. Under the simulated day time driving conditions, the

system with the smaller pixel sees about 5 meters further at equal

performance level. It is likely that under low light conditions there

will be benefits from the 6-micron camera, although we have not run

that particular simulation

We use this example to demonstrate the ability to make specific

performance evaluations of a meaningful automotive task. The

evaluation includes factors spanning the scene, the camera, and the

network. Camera design can best be supported by the ability to

evaluate the tradeoffs and help us improve the full imaging system

- from scene to camera to algorithm.

Discussion
A principal goal of this paper is to create a platform that will

enable us to experiment with camera and sensor designs. The key

novelty of this work is the ability to synthesize a large number of

scene spectral radiance data that can be used as inputs to simulated

cameras. A critical advance compared to our previous work is the

insertion of the SUMO-SUSO software; these tools create large

numbers of scenes from the Flywheel database of assets. The ability

to create scenes using an automated procedure enables us to sweep

out a statistical specification of the driving conditions (e.g., traffic

flow density of different assets) and create many possible scenes.

There were additional advances in the PBRT rendering

methods as well, so that the synthetic spectral irradiance data are

increasingly accurate. Spectral irradiance data, rather than synthetic

RGB images, are necessary to calculate the output of experimental

camera designs.

Finally, these tools enable us to create new metrics that

evaluate the tradeoff arising from selecting different camera

parameters. Assessing the tradeoffs in ML performance for object

detection as a function of targets at different distances is one

performance metric, just as changing pixel size is one camera design

example. There is an opportunity to design many metrics that may

be helpful, and we hope to pursue this direction in future work.

Appendix

Parameter Specification A Specification B

Optical Format 1/3 inch 1/3 inch

Active Imager Size 4.51 mm(H) x 2.88 mm(V) 4.51 mm(H) x 2.88 mm(V)

Active Pixels 752H x 480 V 1504H x 960 V

Pixel Size 6 um x 6 um 3 um x 3 um

Color Filter Array RGGB Pattern RGGB Pattern

Full Resolution 752 x 480 1504 x 960

Frame Rate 60fps 60fps

Dark Noise 1.0mV/pixel/second 1.0mV/pixel/second

Read Noise 1.0 mV 1.0 mV

Table 1. Sensor parameters for the evaluation results shown at Figure 8. In both

cases, the optics were a wide angle, 112-degree field of view and a 6 mm focal
length.

Parameter Specification

Feature Extractor faster_rcnn_resnet101

Number of Layers 101

First stage features stride 16

First stage IOU threshold 0.7

First stage max proposals 300

Optimizer momentum optimizer

Regularizer l2_regularizer

Score converter SOFTMAX

Table 2. Network model parameters (“Faster RCNN Resnet 101”). The model

was run on the GCP using TensorFlow.

Acknowledgements
We thank Dr. Joyce Farrell for her contributions to this work.

The project was funded by the Recruitment Program of Foreign

Experts, 1000 Talents Program, Jilin University (ZL, HB, TL, BW)

and summer student funding from the Chinese government (MS, JZ,

SL). We thank Professor Weiwen Deng, Beihang University, for

his advice and support.

References

[1] Behrisch, Michael, Laura Bieker, Jakob Erdmann, and Daniel

Krajzewicz. 2011. “Sumo--Simulation of Urban Mobility.” In The

Third International Conference on Advances in System Simulation

(SIMUL 2011), Barcelona, Spain. Vol. 42.
http://sumo.dlr.de/pdf/simul_2011_3_40_50150.pdf.

053-4
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

https://paperpile.com/c/uORQqx/NqNl
https://paperpile.com/c/uORQqx/dkxM
http://paperpile.com/b/uORQqx/S47o
http://paperpile.com/b/uORQqx/S47o
http://paperpile.com/b/uORQqx/S47o
http://paperpile.com/b/uORQqx/S47o
http://sumo.dlr.de/pdf/simul_2011_3_40_50150.pdf
http://paperpile.com/b/uORQqx/S47o

[2] Blasinski, Henryk, Joyce Farrell, Trisha Lian, Zhenyi Liu, and Brian

Wandell. 2018. “Optimizing Image Acquisition Systems for
Autonomous Driving.” Electronic Imaging 2018 (5): 161–1 – 161–67.

[3] Duan, Lixin, Ivor W. Tsang, Dong Xu, and Tat-Seng Chua. 2009.

“Domain Adaptation from Multiple Sources via Auxiliary

Classifiers.” In Proceedings of the 26th Annual International

Conference on Machine Learning, 289–96. ICML ’09. New York,
NY, USA: ACM.

[4] Dundar, Aysegul, Ming-Yu Liu, Ting-Chun Wang, John Zedlewski,

and Jan Kautz. 2018. “Domain Stylization: A Strong, Simple Baseline

for Synthetic to Real Image Domain Adaptation.” arXiv [cs.CV].

arXiv. http://arxiv.org/abs/1807.09384.
[5] Farrell, Joyce E., Peter B. Catrysse, and Brian A. Wandell. 2012.

“Digital Camera Simulation.” Applied Optics 51 (4): A80–90.

[6] Farrell, Joyce E., and Brian A. Wandell. 2015. “Image Systems

Simulation.” Handbook of Digital Imaging 1: 373–400.

[7] Freniere, Edward R., G. Groot Gregory, and Richard A. Hassler.
1999. “Edge Diffraction in Monte Carlo Ray Tracing.” In Optical

Design and Analysis Software, 3780:151–58. International Society

for Optics and Photonics.

[8] Isetcam. n.d. Github. Accessed January 18, 2019.

https://github.com/ISET/isetcam.
[9] Li, Yijun, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan

Kautz. 2018. “A Closed-Form Solution to Photorealistic Image

Stylization: 15th European Conference, Munich, Germany,

September 8–14, 2018, Proceedings, Part III.” In Computer Vision –

ECCV 2018, edited by Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, 11207:468–83. Lecture Notes in

Computer Science. Cham: Springer International Publishing.

[10] Models. n.d. Github. Accessed January 26, 2019.

https://github.com/tensorflow/models.

[11] Pharr, Matt, Wenzel Jakob, and Greg Humphreys. 2016. Physically
Based Rendering: From Theory to Implementation. Morgan

Kaufmann.

[12] Tremblay, J., A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,

T. To, E. Cameracci, S. Boochoon, and S. Birchfield. 2018. “Training
Deep Networks with Synthetic Data: Bridging the Reality Gap by

Domain Randomization.” In 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW),

1082–10828.

[13] Tsirikoglou, Apostolia, Joel Kronander, Magnus Wrenninge, and
Jonas Unger. 2017. “Procedural Modeling and Physically Based

Rendering for Synthetic Data Generation in Automotive

Applications.” arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1710.06270.

[14] Wang, Zhou, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P.

Simoncelli. 2004. “Image Quality Assessment: From Error Visibility
to Structural Similarity.” IEEE Transactions on Image Processing: A

Publication of the IEEE Signal Processing Society 13 (4): 600–612.

[15] Wrenninge, Magnus, and Jonas Unger. 2018. “Synscapes: A

Photorealistic Synthetic Dataset for Street Scene Parsing.” arXiv

[cs.CV]. arXiv. http://arxiv.org/abs/1810.08705.
[16] Wu, Pengcheng, and Thomas G. Dietterich. 2004. “Improving SVM

Accuracy by Training on Auxiliary Data Sources.” In Proceedings of

the Twenty-First International Conference on Machine Learning, 110

– . ICML ’04. New York, NY, USA: ACM.

[17] Yu, Fisher, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. 2018. “BDD100K: A

Diverse Driving Video Database with Scalable Annotation Tooling.”

arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1805.04687.

Author Biography

Zhenyi Liu received his MS in Electrical Engineering at Ulsan

National Institute of Science and Technology, UNIST (2015) in Korea and is

currently a PhD candidate in Automotive Engineering at Jilin
University(2016-present), China and a Visiting Student Researcher at

Stanford University(2017-present). His research interests focus on machine

perception systems for autonomous vehicles such as cameras and lidar.

Minghao Shen is currently pursuing Bachelor degree in vehicle

engineering with Jilin University, China(2015-now). He was research intern

in Brian Wandell's lab at Stanford University(July 2018- September 2018).

His research interests include applying machine learning methods to
perception and motion planning for autonomous driving.

Shuangting Liu is a senior student in Automation Science and

Electrical Engineering Department at Beihang University and will receive

her B.S. degree in June, 2019. She was once a research intern at Vision

Imaging Science and Technology Lab at Stanford University in 2018,
supervised by Prof. Brian Wandell. Now she works as an intern at Microsoft

Research Asia. Her research interest lies in computer vision, machine

learning and computer graphics.

Jiaqi Zhang is an undergraduate student major in Pattern Recognition

and Intelligent System in Automation Science and Electrical Engineering
department at Beihang University (2015-now) and will receive his B.S.

degree in June, 2019. He once was a research intern at Vision Imaging

Science and Technology Lab at Stanford University, 2018, supervised by

Prof. Brian Wandell. His research interests lies at computer vision and

computer graphics, especially for applications in autonomous driving.
Henryk Blasinski received a MS degree in Telecommunications and

Computer Science from the Lodz University of Technology, Lodz, Poland

(2008), and the Diplome d’Ingeneiur degree from the Institute Superieur

d’Electronique de Paris, France (2009). He graduated with a PhD in

Electrical Engineering from Stanford University (2018). Henryk’s research
interests lie at the intersection of imaging, computer vision and machine

learning.

Trisha Lian received her BS in Biomedical Engineering from Duke

University (2014) and is currently a PhD student in Electrical Engineering

at Stanford University. Her work has focused on the development of
simulation tools for novel camera systems, as well as simulation of the

human visual system

Brian A. Wandell is the first Isaac and Madeline Stein Family

Professor. He joined the Stanford Psychology faculty in 1979 and is a

member, by courtesy, of Electrical Engineering, Ophthalmology, and the
Graduate School of Education. He is Director of Stanford’s Center for

Cognitive and Neurobiological Imaging and Deputy Director of Stanford’s

Neuroscience Institute. Wandell’s research centers on vision science,

spanning topics from visual disorders, reading development in children, to
digital imaging devices and algorithms for both magnetic resonance imaging

and digital imaging.

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 053-5

http://paperpile.com/b/uORQqx/yNRn
http://paperpile.com/b/uORQqx/yNRn
http://paperpile.com/b/uORQqx/yNRn
http://paperpile.com/b/uORQqx/5qfy
http://paperpile.com/b/uORQqx/5qfy
http://paperpile.com/b/uORQqx/5qfy
http://paperpile.com/b/uORQqx/5qfy
http://paperpile.com/b/uORQqx/5qfy
http://paperpile.com/b/uORQqx/iH0P
http://paperpile.com/b/uORQqx/iH0P
http://paperpile.com/b/uORQqx/iH0P
http://paperpile.com/b/uORQqx/iH0P
http://arxiv.org/abs/1807.09384
http://paperpile.com/b/uORQqx/iH0P
http://paperpile.com/b/uORQqx/zubm
http://paperpile.com/b/uORQqx/zubm
http://paperpile.com/b/uORQqx/kjE8
http://paperpile.com/b/uORQqx/kjE8
http://paperpile.com/b/uORQqx/uVgt
http://paperpile.com/b/uORQqx/uVgt
http://paperpile.com/b/uORQqx/uVgt
http://paperpile.com/b/uORQqx/uVgt
http://paperpile.com/b/uORQqx/YXt6
http://paperpile.com/b/uORQqx/YXt6
https://github.com/ISET/isetcam
http://paperpile.com/b/uORQqx/YXt6
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/5Muz
http://paperpile.com/b/uORQqx/NqNl
http://paperpile.com/b/uORQqx/NqNl
https://github.com/tensorflow/models
http://paperpile.com/b/uORQqx/NqNl
http://paperpile.com/b/uORQqx/fH8y
http://paperpile.com/b/uORQqx/fH8y
http://paperpile.com/b/uORQqx/fH8y
http://paperpile.com/b/uORQqx/5nRV
http://paperpile.com/b/uORQqx/5nRV
http://paperpile.com/b/uORQqx/5nRV
http://paperpile.com/b/uORQqx/5nRV
http://paperpile.com/b/uORQqx/5nRV
http://paperpile.com/b/uORQqx/5nRV
http://paperpile.com/b/uORQqx/oasG
http://paperpile.com/b/uORQqx/oasG
http://paperpile.com/b/uORQqx/oasG
http://paperpile.com/b/uORQqx/oasG
http://arxiv.org/abs/1710.06270
http://paperpile.com/b/uORQqx/oasG
http://paperpile.com/b/uORQqx/aty0
http://paperpile.com/b/uORQqx/aty0
http://paperpile.com/b/uORQqx/aty0
http://paperpile.com/b/uORQqx/aty0
http://paperpile.com/b/uORQqx/xzj6
http://paperpile.com/b/uORQqx/xzj6
http://paperpile.com/b/uORQqx/xzj6
http://arxiv.org/abs/1810.08705
http://paperpile.com/b/uORQqx/xzj6
http://paperpile.com/b/uORQqx/oNl8
http://paperpile.com/b/uORQqx/oNl8
http://paperpile.com/b/uORQqx/oNl8
http://paperpile.com/b/uORQqx/oNl8
http://paperpile.com/b/uORQqx/dkxM
http://paperpile.com/b/uORQqx/dkxM
http://paperpile.com/b/uORQqx/dkxM
http://paperpile.com/b/uORQqx/dkxM
http://arxiv.org/abs/1805.04687
http://paperpile.com/b/uORQqx/dkxM

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

	Results
	Accumulation of assets
	Scene assembly
	Scene rendering
	Sensor modeling
	Evaluating the impact of alternative camera designs

	Discussion
	Appendix

