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Abstract 

 

We describe an open-source simulator that creates sensor 

irradiance and sensor images of typical automotive scenes in urban 

settings.  The purpose of the system is to support camera design and 

testing for automotive applications.  The user can specify scene 

parameters (e.g., scene type, road type, traffic density, time of day) 

to assemble a large number of random scenes from graphics assets 

stored in a database. The sensor irradiance is generated using 

quantitative computer graphics methods, and the sensor images are 

created using image systems sensor simulation.  The synthetic 

sensor images have pixel level annotations; hence, they can be used 

to train and evaluate neural networks for imaging tasks, such as 

object detection and classification. The end-to-end simulation 

system supports quantitative assessment – from scene to camera to 

network accuracy - for automotive applications.   

Introduction  
The massive growth of the mobile imaging market produced 

enormous innovation in camera design. Cameras for consumer 

photography are designed around image quality metrics that account 

for human observers (Wang et al. 2004).  The expected massive 

growth in imaging applications for machine-learning (ML) 

motivates us to consider the potential for new camera designs. 

Camera metrics for ML applications should include metrics that 

address the critical requirements of ML: accuracy and 

generalization. Specifically, we must understand how well networks 

trained using images from one camera perform with inputs from a 

different camera.  

Classically, domain adaptation methods are used to adjust for 

the differences between the available data and the target domain 

(Wu and Dietterich 2004; Duan et al. 2009). Two recent techniques 

specifically address the limits of generalization between synthetic 

and real images. Domain randomization introduces random 

variations into the synthetic image with the hope that such 

perturbations force the network to focus on critical information 

(Tremblay et al. 2018).  Domain stylization uses photorealistic 

image style transfer algorithms to transform synthetic images so that 

an independent network cannot discriminate synthetic and measured 

images (Dundar et al. 2018; Li et al. 2018).  There is also valuable 

ongoing work to improve the realism of synthetic images, which can 

be automatically labeled and used for training and ML validation 

(Tsirikoglou et al. 2017; Wrenninge and Unger 2018). 

A limitation of domain adaptation methods for our purpose is 

that they do not explicitly represent camera parameters.  Hence, this 

limits the ability to explore optics and sensor factors such as the 

lenses, color filters, or pixel size. For guiding camera design, it is 

essential to incorporate real camera parameters when creating 

synthetic images. Because of this requirement, the simulation must 

be able to create physically accurate synthetic scene radiance 

distributions that enable us to model the impact of wavelength-

dependent components, including the optics and sensors (Blasinski 

et al. 2018).   

This paper describes an open-source and freely distributed 

toolbox to synthesize scene spectral radiances and sensor data for 

neural network automotive applications. The software includes 

procedural methods to generate a large number and variety of scenes 

from graphics assets stored in a database. The software simulates 

optics and sensors to support the exploration of novel camera 

designs. We are using these synthetic sets with ML systems to 

develop metrics that evaluate the performance and generalization of 

camera and ML systems. 

Methods 
 

       
Figure 1.  ISET3d scripts control and set parameters for multiple software 

components. These components randomly sample computer graphics (CG) 

assets from the Flywheel database (Scitran), assemble the data into a scene 
spectral radiance (SUMO-SUSO) that is rendered into a spectral irradiance at 

the sensor surface (PBRT) as well as pixel level metadata (depth, object, and 
material labels). The irradiance is transformed into a sensor response based on a 

pixel and sensor model (ISETCam).  The collection of images is grouped into 
data sets that are used to train and evaluate networks (ISETCloud). 

 

The simulation tools combine several components (Figure 

1).  Users control the overall computation, from scene generation to 

sensor simulation, using scripts in the Matlab toolbox ISET3d. The 

functions in this toolbox control the critical stages of collecting and 

assembling the scene assets, modeling the scene parameters (e.g., 

surface properties, object and camera positions), calculating the 

scene radiance, modeling the sensor properties and calculating the 

sensor response, and invoking the ML application. 

Computer graphics assets are stored in a database that is 

accessed using the Matlab SciTran toolbox. This toolbox addresses 

the Flywheel.io database to randomly sample and download objects 

and sky maps. The density, positions, and velocity of the objects 

(cars, pedestrians, cyclists, signs and traffic lights, trees) are defined 

by an open source microscopic road traffic simulator (Simulation of 

Urban Mobility, SUMO)(Behrisch et al. 2011). We also developed 

software (Simulation of Urban Static Objects, SUSO) to calculate 

the positions of static objects (buildings).  The collection of objects 

and their properties is assembled into two files.  The recipe file, 

stored in JSON (Javascript object notation) format, lists the objects 
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and their parameters.  The resources file includes the data necessary 

for rendering the objects (e.g., textures in png format and meshes 

(points, triangle vertices, faces) in pbrt format). 

PBRT, an open-source, physically based ray-tracing software, 

is the critical component that implements ray tracing (Pharr, Jakob, 

and Humphreys 2016). PBRT uses principles of physics to model 

the interaction between light and matter in the 3D world. PBRT 

simulates physically accurate spectral radiance, transforming the 

radiance into sensor irradiance by implementing a camera lens 

model. We added features to PBRT to enable specification of a 

multi-element camera lens comprised of  spherical, aspherical, or 

biconic surfaces with arbitrary wavelength-dependent indices of 

refraction and to account for the effects of diffraction (Freniere, 

Groot Gregory, and Hassler 1999).  Finally, we inserted methods so 

that PBRT generates images comprising the metadata used for ML 

training (distance maps, object labels, material labels). To simplify 

sharing, we placed the modified PBRT into a Docker Container that 

includes its dependencies. The container runs on a wide variety of 

computational platforms without the need for compilation. 

ISETCam converts spectral irradiance data into pixel 

responses.  This code enables the user to specify a large range of 

pixel and sensor properties and it also includes methods for the 

image systems pipeline (Farrell, Catrysse, and Wandell 2012; 

Farrell and Wandell 2015).  Finally, ISETCloud manages the cloud-

scaling of rendering jobs via Kubernetes running on the Google 

Cloud Platform (GCP).  This software also sends training and 

evaluation jobs that run using Tensorflow on the GCP.  The 

collection of software tools described here significantly extend the 

system described in a previous paper (Blasinski et al. 2018). 

Results 

Accumulation of assets 

 

 
Figure 2.  (A) The mesh defining a car is rendered as a Lambertian surface. (B) 

Different materials are assigned to the various car parts. (C) Different material 

color and new lighting are assigned. (D) The car is rotated but the camera position 
is unchanged. 

 

 Our database currently contains computer graphics assets 

representing more than 200 buildings, 100 vehicles, 80 pedestrians, 

and other street elements (e.g., trees, signs, traffic lights).  Each 

asset is stored separately with its own 3d description file 

(assetRecipe.json) and resources file (pbrt format) for rendering. 

Figure 2 illustrates a typical car asset, rendered with different types 

of surface material, color, and lighting.  

This growing collection of assets were obtained by converting 

open-source assets from various sources (e.g., Blender, Maya, 

Adobe, commercial vendors).  The parts of these open assets (e.g., 

doors, tires, windshield) were not consistently labeled, and thus we 

edited the labels and scaled all the sizes to meters.  Most of the assets 

were converted to the PBRT asset format using a utility that converts 

Cinema4D data into the PBRT format that is part of the PBRT 

distribution. 

Scene assembly 

 

 
Figure 3. Scenes generated on the same road and sky map, but randomly 

sampling buildings, trees, environmental objects and setting different traffic and 
environmental parameters.  (A,D) High traffic density. (B,C) Low traffic density. 

The camera position is chosen to be consistent with the car that is acquiring the 
image (not shown). 

 
 Synthetic scenes for ML applications should be able to vary, 

matching the complexity of the real world (Figure 3). To manage a 

large number of assets needed to create realistic scenes we find it 

useful to store the assets and their metadata (e.g., high level verbal 

descriptions) in a searchable database (MongoDB). We use a 

database (https://flywheel.io) that runs on the Google Cloud 

Platform (GCP) and can be accessed from any computer on the 

Internet.  The database also has a software development kit that 

enables the user to query the database in a number of programming 

languages and to download collections of assets.  

The software includes functions that place the mobile assets 

(cars, people, buses, trucks, bicyclist) into a realistic spatial 

organization on the streets using Simulation of Urban MObility 

(SUMO) (Behrisch et al. 2011). Users can specify scenes either by 

naming specific assets or by setting statistical parameters to control 

random selection methods. This procedure creates quite complex 

and realistic traffic scenarios, including scenes with pedestrians 

crossing roads, vehicles changing lanes, vehicle braking when the 

traffic light turns red, etc. To add further variation to each rendered 

scene, we developed software to insert static assets, Simulation of 

Urban Static Objects (SUSO).  This software randomly samples 

static assets from the database (buildings, trees, street lights, etc.,) 

and places them into the scene.   

The collection of assets and asset positions form an important 

part of the scene ‘recipe’.  This is a JSON file that is built up during 

the simulation process.  The file includes the information about the 

scene metadata.  The assets needed for the rendering are collected 

up into a zip-file of computer graphics resources (cgresources.zip). 

Scene rendering 
Once assets are assembled and placed, we use PBRT to 

calculate the scene spectral irradiance at the sensor surface.  The 

calculation follows the conventional ray tracing approach: multiple 

rays are sent from each point on the sensor surface through the optics 

into the scene. 

A B 
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We use the extensibility of the PBRT software to add several 

computational modules, including extended lens modeling as 

described in the Methods section. In addition, we added a module to 

randomize the directions of rays passing near an aperture (Freniere, 

Groot Gregory, and Hassler 1999). We can use different lens 

description files to simulate different lens effect (Figure 4A).   

 

 

 
Figure 4. (A) Optics: Chromatic Aberration; (B) Material: Retroreflective; (C) 

Non-uniform Motion blur 
 

Also, we added a retroreflective material class to model the 

properties of certain street signs (Figure 4B). In this case, rays 

incident on the surface are likely to be reflected back in the direction 

from which they arrive. PBRT also incorporates rendering methods 

that calculate the impact on the irradiance when certain assets have 

linear motion (Figure 4C). In PBRT, a transformation matrix is used 

to move an object from one point to a different point through 

translation, rotation and scale. When rendering motion blur in the 

system, we define the camera shutter rate, start and end 

transformation matrices for certain objects, and a transformation 

time (one second by default). Thus, cars traveling in different 

directions at different speeds(meters/second) can be rendered 

accurately. In addition, the PBRT realistic camera model can 

simulate different types of lenses (Figure 5).  A number of different 

lens models are included in the software distribution, and more can 

be added if the user has lens prescription data are available. 

 

 
Figure 5. A comparison of cameras with different imaging lenses.  (A): wide 

angle lens; (B): fisheye lens 
 

 Real-world datasets require labeling, either manually or by AI 

algorithms.  In either case, quality assurance is necessary to reduce 

errors.  To obtain depth information, an extra device (lidar) is 

usually needed. However, for synthetic PBRT renderings, a ray from 

the camera to the scene can return object information, including 

shape, surface properties, and position. We implemented 

modifications to PBRT to return these labels for depth map, class, 

and instance label (Figure 6).  Hence, accurate pixel-level labels can 

be generated at a relatively low computational cost.  

 

Sensor modeling 

The  ISETCam (Isetcam n.d.) software converts the spectral 

irradiance data into pixel voltages and digital outputs (Farrell, 

Catrysse, and Wandell 2012; Farrell and Wandell 2015).  Using 

ISETCam we can simulate different types of sensors, varying 

parameters such as the color filter array and pixel size (Figure 7).  

 

 
Figure 6. The PBRT simulation produces sensor irradiance images as well as 

metadata. (A) The irradiance data can be converted into a camera sensor image; 
(B-D) The PBRT simulation also produces pixel-level metadata of depth, object 

class, and specific object instance. The metadata are necessary for machine-
learning applications. 

 

We were particularly interested to understand the effects of 

pixel size on the ability to identify cars and pedestrians in a typical 

driving scene.  Thus, we simulated sensors that were matched in all 

ways with the exception that Sensor A has a 6-micron pixel and 

Sensor B has a 3-micron pixel.  Maintaining the field of view means 

that Sensor A is 752 x 480, while sensor B is 1504 x 960.   All other 

parameters (color filters, frame rate, dark noise, read noise, PRNU, 

DSNU, and exposure duration) were equated. 

 

 
Figure 7. The sensor irradiance data can be used to calculate sensor responses 

for arbitrary color filter arrays. The four images illustrate sensor responses for 

four different types:(A) RGGB (B) RCCC (C) RGBW, and (D) Monochrome. 

Evaluating the impact of alternative camera 
designs 

Changes to most camera parameters involve a trade-off in 

functionality.  For example, shrinking pixel size increases the 

sampling resolution of the image and reduces signal-to-noise at each 

pixel.  A critical goal of these simulations is to produce enough 

synthetic data that we can evaluate these tradeoffs by quantifying 
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network performance.  This should help us make informed camera 

design decisions. 

As an illustration, we evaluated the performance of two 

identical cameras, differing only in pixel size (3-micron vs. 6-

micron) and thus the number of pixel samples (see Appendix I for 

the sensor parameters). We fine-tuned a coco pre-trained 

model(Models n.d.): Faster RCNN Resnet101 to identify cars and 

pedestrians from a sample of synthetic images estimated from these 

two cameras.  The network was fine-tuned on 8000 images from 

Berkeley Deep Drive Dataset (Yu et al. 2018) and then tested on 

1500 held-out synthetic images that we created. The test set includes 

the images we generated with random parameters for traffic flow 

simulation, we think the large test set of randomly generated traffic 

scenes is representative of the real-world driving scenarios. We 

measured the average precision for recognizing cars and pedestrians 

in the test set as a function of distance, a quantity that depends on 

the sensor spatial resolution (Figure 8).  

 

 
Figure 8. Sensor parameters for the simulation in Tables 1 and 2 (Appendix).  

 

 The curves for both cars and pedestrians follow a similar 

pattern: average precision declines over distance.  The performance 

of the 6-micron camera matches the 3-micron camera until a 

distance of about 40 meters, and then it is slightly less accurate from 

40-150 meters. Under the simulated day time driving conditions, the 

system with the smaller pixel sees about 5 meters further at equal 

performance level.  It is likely that under low light conditions there 

will be benefits from the 6-micron camera, although we have not run 

that particular simulation   

We use this example to demonstrate the ability to make specific 

performance evaluations of a meaningful automotive task. The 

evaluation includes factors spanning the scene, the camera, and the 

network. Camera design can best be supported by the ability to 

evaluate the tradeoffs and help us improve the full imaging system 

- from scene to camera to algorithm. 

Discussion 
A principal goal of this paper is to create a platform that will 

enable us to experiment with camera and sensor designs.  The key 

novelty of this work is the ability to synthesize a large number of 

scene spectral radiance data that can be used as inputs to simulated 

cameras.  A critical advance compared to our previous work is the 

insertion of the SUMO-SUSO software; these tools create large 

numbers of scenes from the Flywheel database of assets.  The ability 

to create scenes using an automated procedure enables us to sweep 

out a statistical specification of the driving conditions (e.g., traffic 

flow density of different assets) and create many possible scenes.  

There were additional advances in the PBRT rendering 

methods as well, so that the synthetic spectral irradiance data are 

increasingly accurate. Spectral irradiance data, rather than synthetic 

RGB images, are necessary to calculate the output of experimental 

camera designs. 

Finally, these tools enable us to create new metrics that 

evaluate the tradeoff arising from selecting different camera 

parameters.  Assessing the tradeoffs in ML performance for object 

detection as a function of targets at different distances is one 

performance metric, just as changing pixel size is one camera design 

example.  There is an opportunity to design many metrics that may 

be helpful, and we hope to pursue this direction in future work. 

Appendix 

 
Parameter Specification A Specification B 

Optical Format 1/3 inch 1/3 inch 

Active Imager Size 4.51 mm(H) x 2.88 mm(V) 4.51 mm(H) x 2.88 mm(V) 

Active Pixels 752H x 480 V 1504H x 960 V 

Pixel Size 6 um x 6 um 3 um x 3 um 

Color Filter Array RGGB Pattern RGGB Pattern 

Full Resolution 752 x 480 1504 x 960 

Frame Rate 60fps 60fps 

Dark Noise 1.0mV/pixel/second 1.0mV/pixel/second 

Read Noise 1.0 mV 1.0 mV 

Table 1. Sensor parameters for the evaluation results shown at Figure 8.  In both 

cases, the optics were a wide angle, 112-degree field of view and a 6 mm focal 
length. 

 
Parameter Specification 

Feature Extractor faster_rcnn_resnet101 

Number of Layers 101 

First stage features stride 16 

First stage IOU threshold 0.7 

First stage max proposals 300 

Optimizer momentum optimizer 

Regularizer l2_regularizer 

Score converter SOFTMAX 

Table 2. Network model parameters (“Faster RCNN Resnet 101”).  The model 

was run on the GCP using TensorFlow. 
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