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Abstract
Semantic segmentation is an essential aspect of modern au-
tonomous driving systems, since a precise understanding of the
environment is crucial for navigation. We investigate the el-
igibility of novel snapshot hyperspectral cameras –which cap-
ture a whole spectrum in one shot– for road scene classification.
Hyperspectral data brings an advantage, as it allows a better
analysis of the material properties of objects in the scene. Un-
fortunately, most classifiers suffer from the Hughes effect when
dealing with high-dimensional hyperspectral data. Therefore we
propose a new framework of hyperspectral-based feature extrac-
tion and classification. The framework utilizes a deep autoen-
coder network with additional regularization terms which focus
on the modeling of latent space rather than the reconstruction er-
ror to learn a new dimension-reduced representation. This new
dimension-reduced spectral feature space allows the use of deep
learning architectures already established on RGB datasets.

Introduction
Environmental perception and analysis are crucial for au-
tonomous driving, especially in off-road scenarios. The correct
semantic interpretation of a scene is a vital factor for successful
autonomous navigation. In this case the application of hyperspec-
tral sensors offers advantages as they provide a more detailed view
of the composition and surface of materials, plants and ground
materials than conventional cameras. These sensors capture spec-
tral information over a specific part of the electromagnetic spec-
trum, turning the hyperspectral image (HSI) into a 3D datacube
with spatial-spectral properties. Therefore, HSIs have been used
in many applications, such as environmental monitoring, earth ob-
servation, object recognition, agriculture, etc. assuming that each
scene is static. Because a big disadvantage of established sensors
are the scan requirements for the construction of a hyperspectral
cube (hypercube) of a scene like in displayed in figure 1. This
leads to slow acquisition rates and motion artifacts when observ-
ing dynamic scenes such as driving scenarios. However, this dis-
advantage can be overcome with novel snapshot mosaic (SSM)
sensors [Geelen et al., 2014], which can capture multiple spectra
in one image and can therefore be used on unmanned land ve-
hicles to provide hyperspectral classification of dynamic scenes.

To effectively use this data, supervised hyperspectral image clas-
sification is one of the most active research areas in hyperspectral
data analysis. A special target function is calculated here to enable
the learning of characteristics from annotated data. Recently, the
great success of Deep Neural Networks (DNNs) in various com-
puter vision tasks has been observed. Therefore, in some studies
DNNs were trained using HSI data, where the desired features and

(a) Raw image taken by the VIS camera.

(b) Raw image taken by the NIR camera.

(c) A schematic representation of a hypercube.
Figure 1: Examples of raw hyperspectral images taken with VIS
and NIR camera with visible mosaic pattern. And a schematic
representation of a hypercube used in this work.

the classifier are integrated into a uniform mapping function that
can be learned together. This requires extensive, annotated data
for training. However, annotating pixels in an HSI is costly and
time consuming. Therefore, procedures must be developed that
can be trained with limited annotated data. A common approach
is to use unsupervised feature learning methods where features are
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extracted unattended and then integrated into a supervised classi-
fier. Inspired by the idea of deep learning and the new SSM hyper-
spectral sensors, we propose a HSI spectral-spatial classification
system based on dimension reduction and deep features. First
we train an autoencoder (AE) with custom regularizations focus-
ing on modeling the latent space rather the reconstruction error
to learn a new dimension-reduced representation of hyperspectral
data. The learned representation is then used as input data for
HSI spatial-spectral classification using deep convolution neural
networks (DCNNs). Our goal is to examine the use of hyperspec-
tral data and deep learning for dynamic scene understanding in
autonomous driving scenarios.
The remainder of this paper is organized as follows. Section in-
troduces related works with an overview of common algorithms
for feature extraction and spectral-spatial classification. Then our
general sensor setup is presented in section . Our feature extrac-
tion and classification approach is described in detail in section .
And in the section we present our experiments and results uti-
lizing our new hand-labeled dataset. Finally a conclusion of our
work is given in the last section.

Related Work
The standard procedure in the field of image-based scene seg-
mentation is characterized by taking RGB images and trying to
distinguish different classes, as Chetan et al. [Chetan et al., 2010]
and others demonstrate. But in recent years hyperspectral
imaging and classification has gained in importance. Hyper-
spectral data provide a more in-depth view of the structure and
composition of objects and materials such as plants and soils than
RGB data. Given hyperspectral data, the aim of classification
is to assign a unique name to each spectral vector so that it is
clearly defined by a certain class. Conventional hyperspectral
classifiers use only spectral information, and the classification
algorithms typically include methods like k-nearest neighbors,
maximum probability, minimum distance, and logistic regression
like mentioned by Foody et al. [Foody and Mathur, 2004]. Un-
fortunately, most of supervised classifiers monitored, suffer from
the Hughes effect [Hughes, 1968], especially when dealing with
high-dimensional hyperspectral data. There is an exponential
growth of samples that are needed to maintain statistical confi-
dence as dimensions grow. Furthermore there are other critical
problems in the classification of hyperspectral data, such as the
limited number of annotated data and large spatial variability
of spectral signatures [Camps-Valls and Bruzzone, 2005]. To
compensate for the high dimensionality and the limited amount
of annotated data [Ambikapathi et al., 2013], some techniques
were developed which focus on dimension reduction. Alterna-
tively dimension transformation[Jimenez and Landgrebe, 1999,
Harsanyi and Chang, 1994, Bruce et al., 2002] and band
selection [Samadzadegan et al., 2012, Chang et al., 1999,
Serpico and Bruzzone, 2001] are ways for dealing with
high dimensionality. SVM classifiers have long been the
most modern methods [Zhuo et al., 2008] for hyperspectral
classification, as they have a low sensitivity to high dimen-
sionality and do not suffer from the Hughes phenomenon
[Gualtieri and Chettri, 2000]. In order to deal with the spatial
variability of the spectral signature, some recent approaches try
to take into account spatial information as proposed by Tarabalka
et al. [Tarabalka et al., 2009] and Plaza et al. [Plaza et al., 2009],

which has gained in importance in recent years. It has been shown
that these methods allow significant performance improvements
in classification. Plaza et al. [Plaza et al., 2009] presented a
method based on the fusion of morphological information and
original data, followed by an SVM and providing good classifica-
tion results. Several spectral-spatial classifiers take into account
the spatial smoothness based on the pixel-wise classification,
e.g. the use of a segmentation map to regularize the pixel-wise
classification result, as proposed by Huang et al. and Tarabalka
[Huang and Zhang, 2009, Tarabalka, 2010]. Furthermore Li et al.
[Li et al., 2013] proposed a new approach which uses spatial and
spectral information with the help of loopy belief propagation
and active learning. Recently, deep learning utilizing neural
networks has proven to be promising in many areas, including
classification or regression tasks, especially with the use of im-
ages [Krizhevsky et al., 2012, Hinton and Salakhutdinov, 2006,
Zuo and Wang, 2014]. Neural networks learn to represent
features through a multi-level training process and can learn
structures by minimizing the mean square error of all samples
from different classes. The hierarchical structure resembles the
recognition process of the human brain, which is able to learn
more abstract concepts than hardcoded feature representation
methods. Furthermore Mou et al. [Mou et al., 2017] proposed
a novel neural network with a new activation function and a
modified gated recurrent unit for hyperspectral image classifica-
tion, which analyze hyperspectral pixels as sequential data. The
networks mentioned above are 1-D deep learning architectures
that are equipped with fully connected layers. In comparison, a
convolutional neural network (CNN) uses local connections to
deal with spatial dependencies via sharing weights and can thus
significantly reduce the number of parameters of the network
compared to conventional 1-D fully connected neural networks.
CNNs have already surpassed other methods in various areas,
such as scene understanding [Long et al., 2015, Noh et al., 2015].
Furthermore a few supervised CNNs for hyperspectral-spatial
classification have been proposed. A regularized 3-D CNN-based
feature extraction model to extract efficient spectral-spatial
features was introduced by Chen et al. [Chen et al., 2016].
Ghamisi et al. [Ghamisi et al., 2016] combined a CNN with a
fractional order darwinian particle swarm optimization algorithm
to iteratively select the most informative bands for training in
hyperspectral data. Despite the great success of the supervised
CNNs, there is a need for a good supply of labeled training sam-
ples, which unfortunately are difficult to obtain. So supervised
CNNs usually suffer from a small number of training samples
or unbalanced data sets. For this reason, the unsupervised
learning of spectral-spatial features, which has quick access to
any amount of unlabeled data, is conceptually of great interest.
The main purpose of unsupervised feature learning is to extract
essential features from unlabeled data, detect and remove input
redundancies and obtain only key aspects of the data in robust
and discriminatory representations.
Lin et al. [Lin et al., 2013] and Chen et al. [Chen et al., 2014] pro-
posed stacked autoencoders to extract hierarchical features from
the spectral range of hyperspectral images for classification. Fur-
thermore Zhao et al. [Chen et al., 2015] presented a multi-scale,
stacked autoencoder to learn an effective feature representation
from unlabeled data combined with a linear SVM for hyper-
spectral data classification. Later this scheme was improved by
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Tao et al. [Tao et al., 2015] who proposed an autoencoder which
learns an overcomplete sparse feature representation, which tends
to be more effective and discriminative for classification. Re-
cently Wang et al. [Wang et al., 2018] presented a novel low-rank
representation based HSI classification framework where the un-
supervised learning scheme and the robust classification are mod-
elled separately.

Sensors
The sensors used in this work utilize a specific filter mosaic
structure, which has a per-pixel design developed by IMEC
[Geelen et al., 2014]. The filters are arranged in a rectangular mo-
saic pattern of n rows and m columns, which is repeated w times
over the width and h times over the height of the sensor. We
used two different camera models from Ximea, the MQ022HG-
IM-SM4X4-VIS (VIS) which captures the visible spectrum 470–
630 nm and the MQ022HG-IM-SM5X5-NIR (NIR) which is de-
signed for the near-infrared range 600-975 nm. The VIS camera
has a 4×4 mosaic pattern and the NIR 5×5 which results in a spa-
tial resolution of approx. 512×272 pixels (4×4) and 409×217
pixels (5× 5). The cameras provide images in a lossless format
with 8 bits per sample. Therefore the raw data captured by the
camera needs a special preprocessing to construct a hypercube
with spectral reflectances from the raw data like seen in figure
1. Preprocessing consists of cropping the raw-image to the valid
sensor area, removing the vignette and converting to a three di-
mensional image, which we call a hypercube, like described in
[Winkens et al., 2017].

Semantic Scene Analysis
Autoencoder for dimension reduction
An autoencoder [Hinton and Salakhutdinov, 2006,
Vincent et al., 2010] is a symmetrical neural network that
allows the properties of a dataset to be learned unsupervised.
It takes an input x ∈ RD and maps it to a latent representation
h ∈ RM using a nonlinear mapping h = f (ωx + β) where β is
a bias vector and ω defines a weight matrix which needs to be
trained. Furthermore f defines a nonlinear activation function
such as a sigmoid function. A reverse mapping y = f (ω′h+β′) is
used to reconstruct the input data x from the latent representation
h with ω′ = ωT . If M < D, the autoencoder is called undercom-
plete and learns a low-dimensional compressed data depiction,
representing the most salient features of the data distribution.
The learning process minimizes the reconstruction error

L =
1
n

n

∑
i=1

(x− y)2 (1)

and as a side-effect a latent space is constructed. If the autoen-
coder is linear and the loss function is defined as the mean squared
error like in equation 1, the autoencoder spans a subspace compa-
rable to a principal component analysis (PCA). Learning an un-
dercomplete representation forces the autoencoder to capture the
most salient features of the training data.
Autoencoders are often trained with a single layer encoder and
a single layer decoder only [Goodfellow et al., 2016]. But the
construction of deep autoencoder networks with several hidden
layers can offer many advantages such as higher robustness to

noise, capturing of non linear relationships and generally a supe-
rior function approximation. The universal approximator theorem
[Csáji, 2001] guarantees that a neural feedforward network with
at least one hidden layer can represent an approximation of any
function with an arbitrary degree of accuracy, assuming that it has
enough hidden units. So-called regularized autoencoders use a
loss function that stimulates the model to learn different properties
other than the ability to copy the input into its output. These prop-
erties, among others, include denoising, missing inputs or sparsity
of the representation.

In contrast to common procedures where the primary focus is on
minimizing the reconstruction error, our focus is on constructing
a latent space that enables a meaningful compressed representa-
tion of the hyperspectral data. We have taken various measures to
achieve this, which we explain in the following. The latent space
is explicitly conditioned by introducing special-regularizations.

To shape this space the batch size needs to be considered as it
solely determines the shape of the latent data distribution. Au-
toencoders are generally trained using mini batches and stochastic
gradient descent (SGD). The mini batch size depends on the spe-
cific task. Smaller sizes lead to rapid changes while larger sizes
consider more data and change the network slower. Here the batch
size must be large enough to make a statistical statement but has
to be small enough to find a suitable solution.

We use a structured loss S to shape the latent distribution which is
defined as

S = g(x̄−µ∗)+g(σx−σ
∗) (2)

where g computes the sum of squared elements across the first
dimension of a tensor and x̄,σx define the mean and standard de-
viation of x. The term σ∗ denotes the desired standard deviation
and similar to this µ∗ denotes the desired mean. This formulation
of the loss ensures that the statistical properties are present for
each latent dimension and are not just valid for the overall space.
Furthermore, we introduce a weight decay W = ∑

n
i
∣∣wi

∣∣ to pre-
vent the network from overfitting. This term limits the growth of
network weights and simultaneously reduces the number of free
weight parameters. It leads to a well defined model and is an
example for a common sparsity constraint. The overall cost of
the training task is defined as C = α0 ·L+α1 · S+α2 ·W where
α0� α1� α2. This forces the training process to first minimize
the reconstruction error and as soon as this problem is solved with
sufficient accuracy, the distribution of the latent representation is
optimized. Overall, the growth of the weights is limited and it can
even be reduced over time if no other improvement to the model
is possible otherwise.

Utilizing these concepts we construct our architecture with three
encoding operations and three decoding operations which share
their weights. As depicted in figure 2 each layer has a hyperbolic
tangent activation. This keeps the outputs of every layer, even the
network outputs in a defined range. As the last layer has also a sig-
moid activation, target values of 1 or −1 would lead to increasing
weights. To keep the weights in the last layer from exploding, we
scale the input data to be in range from −0.5 to 0.5. With respect
to this activation the latent space is conditioned to have µ∗ = 0
and σ∗ = 0.1.
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Figure 2: Instance of our autoencoder for hyperspectral NIR data with 25 channels. The latent space has a dimension of 3.
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Figure 3: Scheme of our classification framework, which has two parts: A spectral hyperpixel vector as input for the autoencoder. The
latent space of the autoencoder is reassembled to an image with 3 channels and serves as input for the CNN with an output layer for
semantic segmentation.

Name IoU Cityscapes Hyperspectral Year Ref

Encoder-Decoder (SegNet) 57.0 yes 2015 [Badrinarayanan et al., 2015]
DenseNet NA yes 2016 [Jégou et al., 2016]
PSPNet 81.2 no 2016 [Zhao et al., 2016]
RefineNet 73.6 no 2016 [Lin et al., 2016]
FRRN 71.8 yes 2016 [Pohlen et al., 2017]
MobileUNet NA yes 2017 [Howard et al., 2017]
DeepLabv3 82.1 no 2017 [Chen et al., 2017]
GCN 80.5 no 2017 [Peng et al., 2017]
DenseASPP 80.6 no 2018 [Yang et al., 2018]
BiSeNet 68.4 no 2018 [Yang et al., 2018]

Table 1: Overview of tested and trained network architectures.

Neuronal Nets for Semantic Segmentation
The most successful semantic segmentation approaches in re-
cent years have been relying on convolutional neural net-
works (CNNs). Pixel-wise classification was performed us-
ing CNN features from various scales, followed by aggrega-
tion of noisy pixel predictions across superpixel regions. Long
et al. [Long et al., 2015] introduced fully convolutional networks
(FCNs) for semantic segmentation which opened up a new spec-
trum of analysis through end-to-end training. We want to inves-
tigate the effectiveness of our autoencoder architecture in combi-
nation with different neuronal networks. Furthermore, we want to
make a statement about which data provides the best results. For
this purpose we have created a dataset in which the data from VIS
and NIR camera was recorded synchronously. We then extracted
and annotated the synchronized hypercubes from both cameras.
This allows us to investigate which data (VIS,RGB,NIR) repre-
sentation is most effective for scene segmentation. In table 1 an
overview of network architectures we have tested with our au-
toencoder is given. Unfortunately not all architectures are able
to process data with more than three channels without extensive
changes to their structure. This is also due to the fact that they
use a pre-trained ResNet in the frontend, which relies on RGB
data and is not compatible with our high dimensional data. The
networks which can be trained high dimensional data are marked

accordingly. With regard to table 1 we trained four networks with
hyperspectral (VIS,NIR) data and the others were trained using
RGB or compressed (autoencoder) data.

Experiments
As far as we know, there is no publicly available set of hyper-
spectral data recorded by the MQ022HG-IM-SM4X4-VIS camera
and MQ022HG-IM-SM5X5-NIR camera that use snapshot mo-
saic technology (SSM) to capture hyperspectral data. So we had
to create a new dataset ourselves, which includes several hundreds
annotated hypercubes and is publicly available. We equipped a
standard car with the cameras manufactured by Ximea and col-
lected several hours of data where we drove through suburbs and
rural areas, from which we selected a subset for labeling hyper-
spectral data. Therefore we have published a freely available syn-
chronized and calibrated autonomous driving dataset, which cov-
ers different scenarios. To the best of our knowledge it is the
first dataset providing snapshot mosaic hyperspectral data from
the visible to the near infrared range. We offer semantic labels
for synchronized VIS and NIR data to investigate the use of hy-
perspectral data for semantic scene understanding especially in
autonomous driving scenarios.

Our Autoencoder Network
To train our autoencoder network we have extracted more than
1,000,000,000 hyperpixels from our datasets. The autoencoder
itself receives a single hyperpixel vector with 16 (VIS) or 25
(NIR) channels as input. To specify a fixed value range, the hy-
perpixel vectors are normalized accordingly so that every channel
has a value range between −0.5 and 0.5. This means that the
mean value is about 0, so the latent space is already given a cer-
tain structure. This normalization per channel is very important,
because normalization over the whole vector could lead to bad
conditioning of the individual channels. The training was carried
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(a) Overall distribution of raw input values and denormalized output values.

(b) Histogram with the distribution of the mean values overall.
Figure 4: Results of our autoencoder training evaluation based on 1,000,000,000 hyperspectral vectors from the NIR camera.

out with a batch size of 100000 and a learning rate of 0.001. Our
training results for the autoencoder based on NIR data are dis-
played in figure 4. The overall input and output value distribution
shows that the autoencoder was able to compress and reconstruct
the input data very well. Here only small deviations in the distri-
bution are to be recognized. In figure 4b a histogram with 64 bins
displays the distribution of the mean values from input and out-
put data. This also indicates that our autoencoder network makes
only few errors reconstructing the given data It can therefore be
concluded that the autoencoder has built up a very efficient three-
dimensional feature space of the 25-dimensional input data. This
clearly indicates the precision of our autoencoder.

Deep Neural Network
Since we want to classify hyperpsectral data, we can unfortu-
nately not use pre-trained nets. Therefore we have to train the net-
work weights from scratch with only limited data. As described
above, our pre-trained autoencoder is connected to different net-
works with fixed autoencoder weights, so that only the neural net-
work weights are optimized during the training. Whereas the au-
toencoder learned a three-dimensional feature space from the in-
put data in the first stage. We report the results of our combined
network trained on nearly 200 annotated hypercubes with seman-
tic annotations including 10 classes on a resolution of 256× 512
pixels. Since our hyperspectral data set cannot keep up with data
sets like Cityscapes in size, we use data augmentation to increase

the data set artificially. The network was trained for 200 itera-
tions with a batch size of four by minimizing a cross-entropy loss
utilizing RMSProp optimizer.
In figure 5a the results of the training with the 16 channel VIS data
are displayed. As mentioned above, only a part of the networks
can be trained directly with the hypercubes. In the end three net-
works could achieve reasonable results. DenseNet and SegNet
did not work well and after a short time they did not train any-
thing meaningful anymore. Looking at the results, it turned out
that everything was simply classified as street. In order to make
a targeted comparison possible, we generated RGB data from the
16 VIS channels, the results are displayed in figure 5b. Most of
the networks show the same behavior as the previous experiment
and classify almost everything as street after a short time. In con-
trast, BiseNet and MobileUNet achieved good results. In figure
5c the results of the experiments with raw NIR data are displayed.
Overall, the results of the networks FRRN-A, MobileUNet and
Encoder-Decoder are better than those trained with VIS and the
RGB data. As before, DenseNet can do little with hyperspectral
data and has not trained anything useful. Finally, we combined the
available architectures with our pre-trained autoencoder architec-
ture. Since our autoencoder has a three-dimensional latent space,
we can train all selected networks. The results using compressed
NIR data are better than with raw NIR data. It is also noticeable
that the networks that showed superb results on other data repre-
sentations are also ahead. The best architecture using compressed
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Figure 5: Results of our evaluation on our dataset.

NIR data is the BiseNet which already showed good results on the
RGB data. It clearly shows that the combination of Autoencoder
and NIR data in combination with BiSeNet achieves the best re-
sults. This is followed by the unprocessed NIR data. The VIS
data is the worst performer here. RGB data show significantly
better results with BiseNet than the unprocessed 16 VIS channels
representation.

Conclusion
We proposed a spatial-spectral feature learning framework for
HSI classification which combines unsupervised and supervised
deep learning methods. To better characterize each hyperpixel in
the spectral space, we proposed the unsupervised learning of a
deep autoencoder with additional regularization terms which fo-
cus on the modeling of latent space rather the reconstruction error
to learn a new dimension-reduced representation. This new fea-
ture space allows the use of deep learning methods and networks
already showing impressive results on RGB data. Therefore we
adopted deep learning methods by testing differen convolutional
neural networks for spatial and spectral road scene classification.
Experiments were carried out on our novel hyperspectral ground
truth dataset which is freely available. The results and reconstruc-
tion error of the trained autoencoder show promising robustness
and transferability of the learned features. The combination of
our autoencoder network and established deep learning classifiers
leads to an accurate pixel-level classification performance as our
experiments indicate. Our future work involves incorporating dif-
ferent deep learning architectures into our framework to further
improve the classification accuracy. Additionally we intend to
fuse 3D laser data with the hyperspectral data in a next step.
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