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ABSTRACT

Generative Adversarial Networks (GAN) have gained a lot of
popularity from their introduction in 2014 till present. Research
on GAN is rapidly growing and there are many variants of the
original GAN focusing on various aspects of deep learning. GAN
are perceived as the most impactful direction of machine learn-
ing in the last decade. This paper focuses on the application of
GAN in autonomous driving including topics such as advanced
data augmentation, loss function learning, semi-supervised learn-
ing, etc. We formalize and review key applications of adversarial
techniques and discuss challenges and open problems to be ad-
dressed.

I INTRODUCTION

Autonomous driving is becoming a common feature in modern
vehicles. Fully autonomous driving still remains a challenging
task and there is a lot of active research to solve technical prob-
lems. Figure[2]illustrates the standard modules in an autonomous
driving system. The first stage is perception using a suite of sen-
sors. Common sensors which are already deployed are Cameras,
Radar, Ultrasonics and Lidar. The first stage in the processing is
perception where semantic objects like lanes/vehicles or geomet-
ric objects like freespace and generic obstacles are detected. They
are then fused into a generic abstract representation typically a 2D
or 3D map of objects with respect to the ego vehicle. A driving
policy algorithm uses this map to decide a trajectory for the car
to maneuver. The traditional approach is to have the modules in-
dependently designed but there are also attempts to do end to end
learning.

Progress in Deep learning has accelerated the maturity of au-
tonomous driving systems [1]. Deep learning models have be-
come a standard in perception and gradually becoming competi-
tive for other modules like fusion and driving policy. As shown in
Figure[T] the commonly used deep learning models are Convolu-
tional Neural Networks (CNN) and Recurrent Neural Networks
(RNN). These are discriminative models which are trained for
classification or regression problems. Discriminative models ex-
tract features which are sufficient to solve the classification prob-
lem and do not typically capture the complete information in the
data. Generative models on the other hand try to capture the data
distribution and hence form a more powerful representation. Gen-
erative Adversarial Networks (GAN) belong to this category and
has become an effective generative model in various domains and
tasks.
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Figure 1: Commonly used deep learning models - CNN, RNN and
GAN.

GAN have been progressing very rapidly and are seen as one
of the most impactful models in the field of machine learning.
The realism of generation of images using GAN has been impres-
sive and recent results can capture subtle expressions. In spite of
its popularity in the field of machine learning, it is relatively less
explored for applications of autonomous driving. The main appli-
cation where GAN are used in AD are image-to-image translation
for style transfer from synthetic to realistic or transfer across dif-
ferent conditions of lighting, weather, etc. Autonomous driving
systems have to be extremely robust and this requires training the
model with all possible scenarios which can happen in real life.
Collecting such a dataset is in-feasible in practice and synthetic
data simulators are commonly used to ameliorate this issue. Gen-
erative models, like GAN, provide a promising path to generate
realistic datasets in this case.

The motivation of this paper is to survey adversarial tech-
niques, distill the key ideas for applications of automated driving
and provide a list of challenges and open problems from our in-
dustrial experience. The rest of the paper is organized into four
sections. The first section describes the vanilla GAN as proposed
in the original paper [2]], prominent derivatives and recent ad-
vance. The second section discusses applications of GAN for
autonomous driving. The third section discusses the main appli-
cations of GAN in autonomous driving. The fourth section sum-
marizes results of our experiments on using GAN for soiling and
adverse weather classification. The fifth section provides the dis-
cussion of the main challenges arising with GAN. Finally, the last
section summarizes the paper and provides concluding remarks.

II OVERVIEW OF GAN

Generative Adversarial Networks were introduced in 2014 and
were immediately recognized as a perspective direction of upcom-
ing deep learning research, especially in domains such as unsuper-
vised and semi-supervised learning, or advanced data augmenta-
tion. The idea behind GAN is very simple and intuitive, which
might be one of the reasons for such a big popularity in the re-
search community. Moreover, it seems that GAN are attracting in-
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Figure 2: Modules in an autonomous driving pipeline.

terest of not only research pioneers, but as well the proof-seeking
theoreticians, since both branches are getting more or less equal
attention, and there appear both papers about new applications
as well as theoretical improvements of the existing drawbacks of
GAN. Therefore, we can see interesting applications such as un-
supervised image-to-image translation, where for example images
with horses are successfully transformed to realistically looking
images with zebras, or a shot of Yosemite National Park taken
in summer, transformed to the same scenery how it would prob-
ably look like in winter [3, 4]. The theory-deepening papers on
the other hand deal with the stabilization of the complicated GAN
learning, which often tends to get stuck in the mode collapse, i.e.
the state when the discriminator is fooled to believe in unrealistic
samples or degeneration of the generator, providing only a very
limited set of samples [31[6}[7]. The mode collapse problem arises
when the generated data do not reflect the diversity of the under-
lying data distribution.

Vanilla GAN

Vanilla GAN [2] were introduced as a two-player minimax game,
where each player is represented by a neural network. One net-
work is a generator and the other one is a discriminator. The gen-
erator’s task is to generate samples, which are as similar to the
real data samples as possible, while the discriminator’s task is to
distinguish the real samples from the generated ones. See Fig-
ure [3] for the concept idea. The optimization task should end up
at an equilibrium point, where the generator is able to generate
samples, which the discriminator cannot distinguish from the real
ones. In other words, the discriminator should output a probabil-
ity equal to 0.5 for either of the real or generated input.

By using the neural networks, one of the biggest problems
connected to generative modeling is mitigated— generative mod-
eling in computer vision problems usually requires very compli-
cated sampling functions, or complicated structures, and often
only approximate inference computation is possible. However,
using the neural networks is very simple, gradients are computed
by a simple, yet effective, back-propagation algorithm, and the
intuition behind GAN is that the complicated sampling function
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Figure 3: The conceptual idea of Generative Adversarial Net-
works. Generator (Forger) takes random noise on input and gen-
erates fake data. Discriminator (Detective) takes samples from
both real and generated data and is trying to distinguish both cat-
egories, by reporting real or fake output for each sample.

can be constructed by implicit learning.

Let us describe GAN more formally. We assume for a sim-
plicity that both models (generator and discriminator) are multi-
layer perceptrons. The task is to learn the generator’s distribution
Dg. using the data samples x. Then, let us define a prior on the
input noise variables p,(z). Using these, we can define a mapping
to the data space as a differentiable function G, represented by a
multi-layer perceptron with parameters 6,: G(z; 6,). Function G
represents our generator. Next, we define a second function D,
also as a multi-layer perceptron, with parameters 6;: D(x; 6y),
the goal of which is to represent a probability that x comes from
the data, and not from p,. The function D represents our discrim-
inator.

D is trained to maximize the probability of assigning the cor-
rect label to both the training samples and samples generated by
G. Simultaneously, G is trained to minimize the log(1 — D(G(z)).
This refers to what we have already mentioned in the beginning—
D and G are playing a two-player minimax game defined as fol-
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lows:

rrgnmng(QG) = Expy [102D(x)]

+ oy (o log (1-D(G(2)]
(€]
where V (G, D) is a value function.
Because of the computational complexity of the discrimina-

tor maximization, the game has to be solved by an iterative nu-
merical approach, which is summarized in Algorithm|[T}

Algorithm 1 Mini-batch Stochastic Gradient Descent (SGD)
training of GAN. The number of steps to apply to the discrimina-
tor, k, is a hyper-parameter. In the original paper [2], the authors
used k = 1.

1: for number of training iterations do

2. for k steps do

3: Sample mini-batch of m noise samples {z(1), ... z(™}

from noise prior pg(z).

4: Sample mini-batch of m samples {x(l),...,x<m)} from
data generating distribution pgae, (x).
5: Update the discriminator by ascending its stochastic
gradient:
1 . .
Vo, — Y, [logD (x(’)> +log (1—D (G (z(’))))] )
miz
6:  end for
7:  Sample mini-batch of m noise samples {z(!),... z(")}

from noise prior pg(z).
8:  Update the generator by descending its stochastic gradient:

o0} Fa-0(0()))

9: end for

We will here omit the theoretical results, such as the global
optimality of pg = pgara, Or the proof of convergence of the Algo-
rithm [T} those are described in the original paper [2] and are not
particularly interesting for the potential applications of the GAN
in various tasks. Instead, we will just summarize the advantages
and disadvantages of GAN in the next paragraphs.

The main disadvantage of GAN framework is the absence of
explicit representation of pg(x), and the requirement of simulta-
neous optimization of the discriminator D with the generator G.
The authors say explicitly that “G must not be trained too much
without updating D”.

There are several advantages. One was already mentioned—
no inference computation is needed, only back-propagation is
needed to compute the gradients. Moreover, a wide variety of
functions can be incorporated in the model. The comparison to
different approaches of generative modeling is summarized in [2}
Table 2]. Another advantage is that GAN, in contrast to methods
based on Markov Chains, can represent very sharp (even degen-
erate) distributions.

More information about the Vanilla GAN can be found in []],
which summarizes the NIPS 2016 tutorial on GAN.
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Prominent Derivatives of GAN

In this section, we outline several prominent derivatives of GAN.
While the list of all derivatives is nowadays containing tens of dif-
ferent instances, we will aim only at a few of them. For a reader’s
convenience, we also list the references in the Table [T}

Conditional Generative Adversarial Nets (CGAN) were in-
troduced in [9]. They are basically a straightforward extension of
the Vanilla GAN [2], whereby conditioning the model on addi-
tional information one can influence the data generation process.
This is crucial for example in the unsupervised learning scenario
since we can exploit the conditioning to generate samples of a re-
quired label. In other words, we have a possibility to omit the
costly annotation process.

The objective function of CGAN is updated by the condi-
tional variable y (e.g. a class label) as follows:

ngnmng(D,G) = Ereppua(n) [logD(x[y)]

+E.p, () log (1 =D (G(z]y) [y))] -
(2)

CGAN were shown to successfully generate MNIST [10]
digits conditioned on class labels. However, the concept of
CGAN was successfully used on more advanced tasks as well, e.g.
the fast-converging conditional GAN (FC-GAN) [[L1] presents re-
sults on CIFAR10 dataset [12] as well.

Wasserstein GAN (WGAN) is another important derivative of
GAN, they were first described in [6]. While most of the existing
derivatives of GAN are trying to come up with novel or more in-
teresting problems to solve, WGAN is pursuing a different goal—
they focus solely on the learning of GAN.

In order to learn a probability distribution, one usually use
the maximum likelihood estimation (MLE) over the training data.
Let us denote the real data distribution (density) as Py, and the
parametrized density as Py. The MLE amounts to minimization
of the Kullback-Leibler divergence KL (P, || Pg). This requires the
model density Py to exist, this requirement is often broken. When
we are dealing with distributions supported by low dimensional
manifolds, the KL divergence is either not defined or is simply
infinite.

The authors of [6] provide a theoretical analysis how dif-
ferent distances (such as total variation, KL divergence, Jensen-
Shannon divergence, and earth-mover distance, a.k.a. Wasserstein
distance) behave in the context of learning distributions. They
show on a simple example (which, however, holds for the low di-
mensional manifolds as well) that except for the Wasserstein dis-
tance all other distances are not continuous, and therefore, do not
provide clearly defined gradient everywhere. Moreover, Wasser-
stein distance, besides the guarantees of continuity and differen-
tiability, is also the Weakesﬁ]of the distances. There is also a proof
that a small Wasserstein distance corresponds to a small distance
in distributions.

'We say that a distance d is weaker than distance d’ if every sequence
that converges under d’ converges also under d.
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The goal of WGAN is, therefore, to minimize the Wasser-
stein distance W (P, Pg):

W(F,Pg)= inf

E( )~ — . 3
YeTl(PPo) (x,y) y[”x ym 3)

However, the infimum in (3) is highly intractable, so the
Kantorovich-Rubinstein duality is used, which transforms (3) into

W(PV7P9) = HfSHllp ]Ewa, [f (x)] _Ewaa [f (x)} 5 “4)

where the supremum is taken over all 1-Lipschitz functions. The
K-Lipschitz function is defined as follows: let dy and dy be dis-
tance functions on spaces X and Y, respectively. Then a function
f: X — Y isaK-Lipschitz if for all xq,x; € X,

dy (f (x1),f (x2)) < Kdx (x1,%2) - 5)

The gradient of (@) is defined as

VoW (Pr,Po) = —E. () [Vof (8o (2))] - (6)

Finding f maximizing (@) is still intractable. We can, however,
more easily approximate the problem— we can use a similar trick
as in GAN— we can train a neural network parametrized with
weights w lying in a compact space #  and then backpropagate
through E._ ;) [V f (g0 (2))]. In order to have parameters w ly-
ing in a compact space, we can clamp the weights to a fixed box
(e.g. # =[—0.01,0.01)") after each gradient update. The WGAN
learning procedure is described in Algorithm 2]

Algorithm 2 WGAN algorithm. Authors of 6] propose to use the
following default values: o = 0.00005,¢ = 0.01,m = 64, n¢itic =
5.

Require: «, the learning rate; c, the clipping parameter; m, the
batch size; ngge, the number of iterations of the critic per
generator iteration.

Require: wy, initial critic parameters; 6y, initial generator’s pa-
rameters.
while 6 has not converged do

fort=0,..., ngitc do
Sample {x()} | ~ P, a batch from the real data.
Sample {7/ H2 | ~ p(z) a batch of prior samples.

1:
2
3
4
S g Vi[RI D) T fu(ge ()]
6
7
8
9

w < w+ a - RMSProp(w, gy)
w < clip(w, —c,c)
end for
: Sample {0 " | ~ p(z) a batch of prior samples.
10:  go ¢ —Voi¥™, fu(ge(z))
11: 6+« 60— a-RMSProp(6,g4)
12: end while

The biggest advantage over vanilla GAN is that we can train
the criticE] till the optimality. This helps to prevent collapsing
modes, which is a behavior frequently reported in vanilla GAN.

2Critic is a novel name for the discriminator from GAN. The reason
for this renaming is, that unlike in GAN, in WGAN the output of this
network is not a probability.
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Improved WGAN introduced in [7]] noticed that the quick and
dirty solution of the 1-Lipschitzness by weight clipping can still
lead to flawed learning, where only poor quality samples are gen-
erated, or where still convergence failure happens. In [7] a better
solution is provided— the authors propose to penalize the norm
of the gradient of the critic with respect to its input and prove that
optimal 1-Lipschitz function’s gradient for the optimization crite-
rion in WGAN should have unit norm almost everywhere under
P, and Py.

We list the improved WGAN in Algorithm |3} so the reader
can compare both variants comfortably.

Algorithm 3 Improved WGAN algorithm. Authors of [7] propose
to use the following default values: A = 10,00 = 0.0001,3; =
07B2 = 0.9, n¢ritic = 5.

Require: The gradient penalty coefficient A, the number of critic
iterations per generator iteration nggigic, the batch size m,
Adam [13]] hyperparameters ¢, 1, 3.

Require: Initial critic parameters wy, initial generator’s parame-
ters 6p.

1: while 6 has not converged do

2 forr =0,...,ngitic do

3: fori=0,...,mdo

4: Sample {x(/ } | ~ P a batch from the real data;
{0}~ p(z) a batch of latent variables; & ~
ulo,1).

5 X+ Gy(2)

6: Feex+(1—e)x

7 LD D,y (%) — Dy (x) + A(| V3D (D)2 — 1)?

8 end for

9 w ¢ Adam(V, Ly 100w o, By, Br)

10:  end for

11:  Sample {0 } | ~ p(z) abatch of latent variables.

122 8« Adam(Vyl Y —D,(Gy(2)).0,a.B1,B)

13: end while

Boundary-Seeking  Generative  Adversarial Networks
(BGAN) were introduced in [14]. Similarly as WGAN, BGAN
are focusing on GAN learning, they train a generator to match
the target distribution that converges to the data distribution at
the limit of a perfect discriminator. The interpretation of this
is training the generator in order to produce the samples lying
on the decision boundary of the current discriminator (which
explains the name “Boundary-Seeking” GAN).

We omit the details of BGAN here and refer the reader to
the original BGAN paper [14]. The authors claim that it pro-
duces similar results as WGAN, which is proved to be more sta-
ble against the mode collapse. We list BGAN here because of its
main strength, which is a definition of a unified learning frame-
work for both discrete and continuous variables, and interesting
intuition about the samples lying on the decision boundary of the
discriminator.

GAN: Recent Advances

In this section, some of the related and recent GAN advances
are briefly described. BigGAN [15], a class-conditional image
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Table 1: Summary of the prominent GAN derivatives.

GAN Derivative \ References

|

General functional- | Vanilla GAN [2], Conditional GAN

ity (CGAN) [9]
Stabilizing  func- | Wasserstein GAN (WGAN) [6],
tionality Improved WGAN (WGAN) [7l,

Boundary-Seeking GAN (BGAN) [14]

synthesis approach, achieved a new level of performance for the
large scale of ImageNet GAN models while allowing fine control
over the trade-off between sample fidelity and variety by truncat-
ing the latent space. Moreover the authors presented an analysis
of the training stability. A new training methodology for GAN
is proposed in [16] where the generator and discriminator are
made larger starting from a low resolution and adding new lay-
ers progressively, leading to generating a high resolution, high
quality and fine details outputs. The authors described differ-
ent implementation details to discourage the competition between
the generator and discriminator. Furthermore, the proposed pro-
gressive training is showed to speed up and stabilize the train-
ing process. A novel generator architecture for GAN based on
style transfer approaches is proposed in [17]], leading to unsuper-
vised separation of attributes and stochastic effects, that enabled
fine control based on different levels of the generated images.
Moreover, the experiments showed better interpolation proper-
ties. Self-Attention Generative Adversarial Network (SAGAN)
[18] integrates a self-attention mechanism into GAN framework
that allows attention-driven modeling for image generation where
details are generated using cues from all feature locations. More-
over, it was shown that spectral normalization applied to the gen-
erator stabilizes the GAN training process.

IIT GAN APPLICATIONS FOR AUTONOMOUS
DRIVING

In this section, we discuss the potential domains of application
of GAN (in the, basically, arbitrary variant) with a focus on au-
tonomous driving. Thanks to the increasing popularity of GAN, a
lot of applications have been already identified. Most of them are,
based on the GAN nature, related to the image-to-image transla-
tion or possibilities of the semi/unsupervised learning. We further
discuss the following main categories: 1) advanced data augmen-
tation (which is split into several subcategories, such as 2D &
3D synthesis, video synthesis, super resolution, or inpainting); 2)
semi-supervised/unsupervised learning; 3) loss function learning;
4) adversarial training & testing. A short description of each of
these categories follows. For the reader’s convenience, we also
summarized all key references in a Table[2]

Advanced Data Augmentation

Data Augmentation is a natural application of GAN. There are
numerous papers dedicated to Image-to-Image translation on the
top-level conferences from last few years (|3} 4} [19]], to name a
few). GAN create realistic looking images, automatic conversion
from a black and white image to a colored one, areal image to
map, edges to a photo-realistic images of the sketched objects, or
even some advanced stuff like day to night or summer to winter, or
context-aware object placement [20] (which is a very interesting
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application for autonomous driving, giving us the possibility to
enhance existing dataset by realistic looking images which we are
lacking— e.g. small number of images with pedestrians, etc.). A
natural extension of the Image-to-Image translation is a Video-to-
Video translation, where the idea remains the same. However, the
task is much more difficult thanks to the temporal information,
which also has to remain consistent.

In [3]], the authors formulate the problem of Image-to-Image
translation as an instance of CGAN, where the objective loss,
inspired by [21], is mixed with a traditional L1 loss. Note,
that within such formulation the discriminator’s task remains un-
changed. However, the generator’s task, besides fooling the dis-
criminator, is to produce samples near the ground-truth in the L1
sense. The authors argue, that using L1 leads to less blurring,
compared to the L2. The .%7 term is formulated as follows:

211 = B ypgaa ) aope() IV = G ] - v

If we denote the equation (2)) as Zcgan (G, D), the final objective
of [3] can be expressed as:

G = a—rgmci;anaXZCGAN(GvD) +1211(G), @®)

where A tells how much we want the %7 loss influence the ob-
jective. Even though the results look impressive at the first sight,
we should point out here, that there are certain artifacts appearing
basically in all of the examples.

The authors of [3] continued working on the Image-to-
Image translation topic, and in a follow-up paper [4], they move
further, by introducing an algorithm for an unpaired Image-to-
Image translation. Briefly, the authors are learning a mapping
G: X — Y, such that the distribution of images from G(X) is in-
distinguishable from the distribution Y. Because such mapping
is highly under-constrained, they couple it with an inverse map-
ping F: Y — X and introduce a cycle consistent loss enforcing
F(G(X)) ~ X, and vice versa. The proposed algorithm is called
CycleGAN.

Because of the inverse mapping, the CycleGAN uses a
slightly different definition of Zgan than what we introduced
here:

“Z6an(G, Dy, X,Y) = EyNﬁdam(y)[]ogDY(YH
+Ex~Pdum(X) [log(l 7DY(G(X))} )

©))
The cycle consistency loss is defined as follows:
"%)’C(GJ:) = Exwpda‘a(x) [HF(G(X)) _le]
HEypa ) IGFO) =3l1] - (10)

The full objective of CycleGAN is defined as

X(G7F7DX7DY) = EGAN(GaDY7X7Y)
+$GAN(F7DX7Y>X)

+AZeye(G,F), amn

where again A controls the relative importance of the objective
components. The full optimization task is simply

G* F* = i 2(G,F,Dx,Dy) . 12
; argmin max (G,F,Dx,Dy) (12)
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As the main benefit compared to the previous work [3]], the
authors consider the ability of CycleGAN to operate without
a specific supervision. However, the main drawback remains
unsolved— the generated images, after a careful inspection, show
the same artifacts as the previous work. On the other hand, Cy-
cleGAN showed even more advanced examples of possible data
augmentation (changing of an object class, like apples <+ oranges,
or zebras <+ horses).

Since both [3]], and [4] are based on GAN, they also require
some compromises in the network architecture for both D, and G.
It might be interesting to try to adopt the ideas and using WGAN
instead.

Slightly different approach than CycleGAN is described
in [19]]. They also deal with an UNsupervised Image-to-image
Translation (UNIT). However, instead of explicitly modeling the
cycle consistency, they use an assumption of shared-latent space,
which, as the authors show, implies the cycle consistency con-
straint. The proposed UNIT framework is based on GAN and
variational autoencoders (VAE). We omit the technical details
about UNIT here and refer the reader to the original paper [19]].
The results are similar to those presented by CycleGAN, includ-
ing the artifacts appearing in the generated images.

In [22], an algorithm for conditional image synthesis with
auxiliary classifier GAN (AC-GAN) is introduced. The authors
claim that even though structurally AC-GAN are not much
different from the existing models, they seem to stabilize the
training. Despite the AC-GAN formulation, the paper focuses
on measuring the extent to which a model make use of its given
output resolution, and on measuring the perceptual variability of
samples generated by the model. In these areas, this work can be
proclaimed as a pioneer.

Synthesis: Data Synthesis using GAN can be exploited for
different autonomous driving applications. For example, data
augmentation to enable better generalization over different
weather and lighting conditions conducting visual perception
by generating abstracted views such as semantic segmentation
of input camera frames. In addition to sensor correcting such
as fixing noisy inputs and sensor modeling. Synthesis can
be achieved spatially in two and three dimensional spaces, in
addition to spatio-temporal spaces such as videos.

2D Synthesis: GAN have been proposed as a generative
framework that maps random noise to synthetic, realistically
looking images following the training data distribution. In
image-to-image translation, conditional GAN are adopted to
enable the generative framework to condition both the generator
and the discriminator on prior knowledge. In this case, the model
is trained to map from images in a source domain to images in
a target domain. Image-to-Image translation can be approached
based on two main directions: 1) paired or unpaired; 2) unimodal
or mutilmodal. In the unimodal paired image translation, for
example Pix2Pix [3], SRGAN [23], the model learns to map
images where the training data is organized in pairs of input
and output samples. In many cases, the paired training data
could not be available. In the unimodal unpaired approach,
for example CycleGAN [4], DiscoGAN [24], StarGAN [25],
UNIT [26], the image translation is conducted on unpaired data
from two domains, where it learns a mapping between the two
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Table 2: Summary of applications of GAN for autonomous driv-
ing.

GAN Applications [ References

2D Synthesis Pix2Pix [3]], SRGAN [23], CycleGAN
[4], DiscoGAN [24], StarGAN [25],
UNIT [26], Pix2PixHD [27]], Bicycle-
GAN [28], MUNIT [29], Augmented
GAN [30]

3D Synthesis 3D-GANJ[31]], PrGAN [32], PC-GAN
(331

Video Synthesis video-to-video [34], TGAN [35], [36]]

Domain  Adapta- | Pixel level [37], GraspGAN [38], [39],

tion [40]

Object Detection SeGAN [41], [42], Perceptual-GAN
(43]

Super Resolution SRGAN [23]

Inpainting [441], 1451, [46]

Advanced Data | Context-aware Synthesis and Place-

Augmentation ment of Object Instances [20]]

domains without supervision. In multimodal image translation,
it is possible to generate several images of different styles based
on a single source image. Multimodal translation can be paired
Pix2PixHD [27], BicycleGAN [28], or unpaired MUNIT [29],
Augmented GAN [30].

3D Synthesis: Recently, one of the essential sensors used for
automated driving is LiDAR, mainly because of its physical
ability to perceive accurate depth and to produce 3D point clouds,
regardless of lighting conditions. Most of GAN approaches
are not applicable to 3D point clouds, however Point Cloud
GAN (PC-GAN) [33] proposed a two fold modification to GAN
algorithm for learning to generate point clouds. Moreover,
studies were provided for transforming images into point clouds.
3D-GAN framework is introduced in [31] to map from a
low-dimensional probabilistic space to the space of 3D objects.
PrGAN [32], investigated the task of generating a distribution
over 3D structures given 2D views of multiple objects taken
from unknown viewpoints. This approach produces 3D shapes of
comparable quality to GAN trained on 3D data, allows generating
new views from an input image in an unsupervised manner.

Video Synthesis: The goal of video-to-video synthesis is to
learn a mapping from an input video to a realistic output video.
Simply applying image to image synthesis results in temporally
incoherent videos. Recently, a video synthesis approach based
on GAN framework is proposed in [34] where a spatio-temporal
adversarial objective is used to synthesis 2k resolution videos
of street scenes up to 30 seconds long. This allows developers
and artists to create new interactive 3D virtual worlds for
different domains including automotive domain. Temporal GAN
(TGAN) [35]], on the other hand, learns a semantic representation
of unlabeled videos and generates videos, using a temporal
generator and an image generator. Earlier, a GAN network
for video with a spatio-temporal convolutional architecture is
proposed in [36] where the foreground of the scene is separated
from the background, generating small one second videos.
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Figure 4: Successful application of GAN for autonomous driving - Image to Image Translation

Domain adaptation from simulation to real: Autonomous
driving systems usually require collecting and annotating a lot of
training data. On the other hand, using simulated environments
enables much easier collection, but models trained on simulated
environments often fail to generalize on real environments.
Domain adaptation allows a machine learning model trained on
samples from a source domain to generalize to a target domain.
GAN based Pixel-Level domain adaptation method is proposed
in [37]] where the adaptation process showed to produce plausible
samples and to generalize well to object classes unseen during
the training. GraspGAN [38]] extended the pixel-level domain
adaptation to reduce the number of real world samples needed by
up to 50 times for vision-based grasping system. Reinforcement
Learning for Autonomous Driving model trained in virtual
environment is shown to perform well in real environment [39].
Two image-to-image translation networks are used. The first
network translates virtual images to their segmentation, the
second network translates segmented images into their realistic
counterpart.  Accordingly, the driving policy can be easily
adapted to real environment. A method for transferring a
vision-based lane following driving policy from a simulated
to a real environment is presented in [40] where a model for
end-to-end driving is constructed by learning to translate between
simulated and real images, jointly learning a control policy from
this common latent space using labels from an expert driver in the
simulated environment. It was shown that the proposed system
is capable of leveraging simulation to learn a driving policy to
directly transfer to real world scenarios.

Object Detection: In real life situations, especially for au-
tonomous driving, objects often occlude each other and inferring
the occluded objects is essential for scene understanding and
taking decisions. SeGAN [41]] is an approach for both segmen-
tation and generation of the occluded parts of objects, where
the proposed network has three parts: segmentor, generator,
and discriminator. On the other hand, some occlusions are very
rare in the training data. Learning a model invariant to such
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occurrences is proposed in where an adversarial network
learns to generate challenging occlusions and deformations
examples. Detection of small objects is often challenging task.
Perceptual-GAN model narrows representation difference
of small and large objects, where the generator learns to transfer
the small objects representations large ones to fool the competing
discriminator.

Super Resolution: In autonomous driving domain, low resolu-
tion sensors may be used. Generating the corresponding high
resolution representations could enable and enhance the systems
that were trained on high resolution inputs. However, estimating
a high resolution representation from a low resolution counterpart
is a highly challenging task. SRGAN is a generative adver-
sarial network for image super-resolution framework able to infer
photo-realistic natural images for 4x upscaling factors. A percep-
tual loss function is proposed consisting of both an adversarial
loss for natural output, and a content loss for perceptual similarity.

Inpainting: In real life autonomous driving situations, sensors
may read noisy data or may suffer from failures causing incom-
plete readings. Inpainting can provide a solution. Globally and
locally consistent image completion approach is proposed in [44]
where global and local context discriminators are trained to dis-
tinguish real images from completed ones. The global discrimina-
tor is used for the entire coherent of the generated image and the
local discriminator ensures the local consistency. The approach
showed to naturally complete the missing fragments. Inpainting
is a challenging task especially for large missing parts. [43]] pro-
posed a method for semantic image inpainting by conditioning
on the available data making the inference possible irrespective
of how the missing parts are structured. [46] introduced context
encoders that predict missing parts of a scene from their surround-
ings. Using an adversarial loss is found to produce sharper results.
Moreover, the network learns a representation that captures both
the appearance and the semantics of the scene.
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Semi-supervised/Unsupervised Learning

Unsupervised learning is the holy grail of machine learning. It
is the hardest scenario of machine learning, as it requires just a
bunch of unannotated data, and the output is a learned meaningful
model, which pursues a certain task (which can be inferred from
the data).

Recently, one of the most popular approaches to unsuper-
vised learning are Variational Autoencoders (VAE). They are built
on top of the standard function approximators (neural networks)
and can be trained by stochastic gradient descent. Our description
of VAE framework follows [47]].

In principle, VAE is aiming to maximize the probability of
each x in the training set under the generative process, according
to

plo) = [ plalz: O)p(2)dz 13
where z € & is a latent variable specifying the class of the gen-
erated object. The intuition behind this framework is nothing else
than maximum likelihood principle— if the model is likely to pro-
duce training set samples, then it is also likely to produce similar
samples, and unlikely to produce dissimilar ones. VAE approx-
imately maximizes the probability function. The name “autoen-
coders” comes from the training objective, which, derived from
this setup, have an encoder and a decoder, and resembles a tra-
ditional autoencoder. The benefit of VAE is that we can sample
from p(x) (without performing Markov Chain Monte Carlo).

To solve the maximization, VAE have to deal with the prob-
lem of how to define latent variables z (i.e. decide what informa-
tion they represent), as well as how to deal with the integral over
Z.

VAE assume that there is no simple interpretation of dimen-
sions of z, rather they claim that samples of z might be drawn
from a simple distribution, i.e. .4"(0; %), where .# is the identity
matrix (notice, that any distribution in d dimensions can be gen-
erated by taking a set of d variables that are normally distributed,
and map them through a sufficiently complicated function). Con-
ceptually, the approximation of p(x) is straightforward one just
needs to sample a large number of samples {z,...,2,}, and then
compute p(x) = %Z?:l p(x|z;). A problem arises in high dimen-
sional spaces because then n might be extremely large, to get an
accurate estimate of p(x).

The key idea behind VAE is to attempt to sample values of
z that are likely to produce X and compute P(X) just from those.
For this purpose, let us define a new function Q(z|X), which takes
a value of X and give us a distribution over z values, that are likely
to produce X . Hopefully, the space of z values that are likely under
Q will be much smaller than the space of all 7’s, that are likely
under the prior P(z). This lets us compute £, o P(X|z). However,
if z is sampled from an arbitrary distribution with a probability
density function Q(z) (i.e. which is not necessarily .47(0,1)), we
need to relate E,.oP(X|z) with P(X). By defining a Kullback-
Leibler divergence between P(z|X) and Q(z), applying a Bayes
rule to P(z]X), and some basic algebra, we finally arrive at a core
equation of VAE:

log P(X) — KL[Q(2]X)[|P(z]X)] = E;~g [log P(X|2)]

—KL[QG[X)[P(z)].  (14)
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Figure 5: Standard VAE model represented as a graphical model.
The rectangle is a “plate notation”, meaning that we can sample
from z and X N times, while the model parameters 0 remain fixed.

The left hand side is the quantity we want to maximize (log P(X)
plus an error term making Q produce z’s that can reproduce a
given X; this term should be small if Q is high-capacity). The right
hand side is optimizable via stochastic gradient descent, given the
right choice of Q. Note, that the right hand side already looks like
an autoencoder, since Q is “encoding” X into z and P is “decod-
ing” it to reconstruct X.

In (T4), we are maximizing log P(X), while simultaneously
minimizing KL[Q(z|X)||P(z|X)]. The second term on the left-
hand side is pulling Q(z|X) to match P(z|X). With an assumption
of an arbitrarily high-capacity model for Q(z|X) it will actually
match P(z]X), in which case the KL divergence term will be zero,
and we will be optimizing log P(X) directly.

In order to make VAE work, it is essential to drive Q to pro-
duce codes for X, that P can reliably decode. See Figure [g] left,
for a different view on the problem. The forward pass of this
network works fine. However, the backpropagation of the error
through a layer sampling z from Q(z]X) is not possible, since
this is a non-continuous operation and therefore has no gradi-
ent. The solution is a so-called “reparametrization trick” [13],
which moves the sampling to an input layer. Figure [f] right de-
picts the reparametrization scheme. We should point out that this
trick works only if sampling from Q(z|X) is possible through eval-
uation of a continuous function 4(1n,X) in X, where 7 is a noise
from a distribution that is not learned. This basically means that
0(z]X) (and therefore also P(z)) cannot be a discrete distribu-
tion. At the test time, when we want to generate new samples,
we simply input values of z ~ .47(0,1) into the decoder. This is
schematically shown in Figure[7}

We will skip the definition of Conditional VAE here since
the extension is quite straightforward, and refer the reader to the
VAE tutorial paper [47] for details.

In [48]], the authors show how to combine GAN and VAE in
such a way, that the best of both worlds is used, and the limitations
of both methods are mitigated. They propose to use a hybrid loss
function which combines VAE and GAN:

Z0,m) = Eg | —Alx—%(E)h
Dy (%0(2)) Co(2)
e ) T TG | P

We need to build four networks here. The classifier Zg (x), which
is trained to discriminate between reconstructions from an auto-
encoder, and real data points. A second classifier, which is trained
to discriminate between latent samples produced by the encoder
and samples from a standard Gaussian. The deep generative
model % (z). And also the encoder network gy (z|x), which can
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|
Figure 6: A training-time variational autoencoder implemented as a feed-forward neural network, where P(X |z) is Gaussian. Red shows
non-differentiable sampling operations. Blue shows loss layers. The left diagram is without using a reparametrization trick, while the
right is with it. The feed-forward behavior of both networks is identical. However, the backpropagation algorithm can be applied only to

the one on the right. Taken from [47)].

Decoder (P)

| Sample z from .4(0,1) |

Figure 7: The testing-time variational autoencoder allowing us
to generate new samples. The “encoder” pathway is simply dis-
carded.

be implemented using arbitrary deep network. The authors re-
fer to @ as a-GAN. The algorithm alternates between updates
of parameters of the generator 6, encoder 7, synthetic likelihood
discriminator ¢, and the latent code discriminator @. For the de-
tailed description of the algorithm, we refer the reader to the orig-
inal paper [48]].

The problem of semi-supervised learning is covered in [49],
which shows, that deep generative models and approximate
Bayesian inference exploiting recent advances in variational
methods can be used to provide significant improvements, mak-
ing generative approaches highly competitive for semi-supervised
learning. The authors describe a new framework for semi-
supervised learning with generative models, employing rich para-
metric density estimators formed by the fusion of the probabilistic
modeling and deep neural networks.

Interesting view of unsupervised learning of visual repre-
sentations is shown in [30]], where the problem is posed as solv-
ing a jigsaw puzzle. The authors introduce the context-free net-
work (CEN), which takes image tiles as input and explicitly limits
the receptive field. The experimental evaluation shows that the
learned features capture semantically relevant content.

Authors of [531] argue that unsupervised pre-training is ben-
eficial for deep learning in general. Their results suggest, that
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unsupervised pre-training guides the learning 6 towards basins of
attraction of minima that support a better generalization from the
training dataset.

Learned Loss Functions

Last but not least domain of GAN applications is its implicit abil-
ity of learning non-trivial loss functions. In certain setup, the
GAN optimization criterion expresses the loss function indirectly,
and therefore by optimizing the complex GAN criterion, we are
also optimizing a loss function which we do not have to formu-
late explicitly. Unlike the previous domains, this is so far the least
explored topic, so there are not many papers available in this area.

In [32], the authors propose discriminative adversarial net-
works (DAN) for semi-supervised learning and loss function
leaminéﬂ Unlike the vanilla GAN, DAN uses two discrimina-
tors, instead of a generator and a discriminator. It can be seen
as a framework to learn a loss function for predictors, that also
implements semi-supervised learning.

DAN [52] are adversarial networks framework, that uses
only discriminators. The authors propose a DAN formulation
suitable for semi-supervised learning. However, we believe that
other formulations suitable for the fully supervised learning are
also possible. The original DAN use two discriminators: the pre-
dictor P, and the judge J. While P receives a data point x on input
and outputs a prediction p(x), J receives a data point x together
with a label y, and produces a single scalar J(x,y) representing
the probability that x, y came from the labeled training data, rather
than being predicted by P. See Figure[§]for an illustration of the
DAN framework. Note the similarity between DAN and CGAN—
while in CGAN the idea is to generate x conditioned on y, in DAN

3We should point out that in the DAN is used on two different
tasks of Natural Language Processing field. However, there do not seem
to be any burdens prohibiting usage in the computer vision field.
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the goal is to predict y conditioned on x. The cost function for
DAN looks as follows:

min mJale(J, P) = Eiyppalry) [1027(x,7)]

+]Ex~pdm(x) [lOg(l 7](X7P(X)))] .
(16)

The important characteristic of this DAN formulation is that
P does not make use of labels, so the semi-supervised learning is
pretty straightforward within this framework. Even more impor-
tantly, there is no need for specification of a loss function for the
predictor, it is learned implicitly by the judge.

Another mention of an implicit loss function learning is
in [3], where the model learned to do image-to-image mapping
without explicit specification of the loss function. A connection
of GAN-based loss function learning for the generative model,
and cost function learning in reinforcement learning (aka inverse
reinforcement learning) is presented in [S3|]. In contrast, DAN
concentrates on learning loss functions for discriminative models.

Adversarial training/testing

Adversarial examples were first introduced as attacks to weaken
the performance of CNN by addition of noise [54]. This led to
adversarial training [S5] where adversarial examples were added
to training to make the model more robust. Follow-up work on
this eventually led to GAN model. The topic of adversarial train-
ing can also be interpreted as loss function learning, i.e. we can
use adversarial loss for improving the final classifier robustness.
A nice example of adversarial training is EL-GAN [56], where a
GAN framework is used for loss embedding, by which the prob-
lem of ill-posed formulation of some tasks is mitigated. Since
there are very stringent requirements on safety in AD, the adver-
sarial examples generation might be used as a tool for testing cor-
ner cases and robustness. An automated testing mechanism for
autonomous driving using deep learning were provided in [S7],
[S8]] but they do not leverage GAN.

IV  OUR RESULTS

In this section, we would like to present some of our results from
autonomous driving GAN application. To be more specific, we
present the results on the soiling and adverse weather classifica-
tion/enhancement.

The problem of soling and adverse weather classification
consist of the recognition of image deterioration and its possi-
ble enhancement. The image deterioration by soiling and adverse
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weather is caused either by presence of some “soiling categories”
(e.g. splashes of mud, rain drops, freeze, dust, etc.) on the cam-
era lens, or by adverse weather conditions (e.g. heavy rain, snow,
blizzards, etc.). The reasons for dealing with this problem are
mainly two-fold: 1) by recognition of soiling type on the camera
lens, we can leverage this information to initiate the cleaning sys-
tem for the lens; 2) we can leverage the information to enhance
the image quality (we call this “desoiling” in general, it consist
of effects such as image “dehazing”, “deraining”, etc.). While the
reasons for doing 1) are obvious, we can use 2) for example to
improve the quality of the recognition pipeline.

We decided to use GAN for this problem generally because,
as the reader can imagine, obtaining the relevant data is both
very problematic and expensive (just imagine that someone has
to annotate manually each rain drop on the camera lens during
the heavy rain conditions). In Figure 0] we show how the mud
splashed on camera can impact the image quality as well as an
example of how the image taken during heavy rain looks like.
Another reason is the semi-supervised learning potential, which
can be easily achieved by GAN.

We started with a proof of concept experiment— we sorted
our images to two categories, namely “clean” category, which
consists of images that are not affected by soiling, and “soiled”
category, consisting of images deteriorated by the presence of
soiling. In Figure[T0] we show the representatives of both classes.
This allowed us to try using the CycleGAN [4]. We were happy to
see, that just after a few epochs the generator started to correctly
recognize which parts of the image are soiled. In the end of the
training, we got a generator which is capable of “desoiling” the
image as well as a generator which can introduce some soiling to
the image, see Figure @ for some examples. Note, that due to
the relatively small dataset used for this experiment, the “desoil-
ing” generator learned to introduce shadow of the car body to the
image. This is because the vast majority of images in the “clean”
category contained shadow of the car body. On the other hand, the
“soiling” generator learned that the weather was usually cloudy on
our images from the “soiled” category.

The CycleGAN experiment encouraged us in the presump-
tion that GAN could be a nice solution for our ptoblem. It also
started several hypotheses, such as it might be eventually possible
to get semantic segmentation of the soiling without having such
explicit annotations, which would be very tedious and expensive
to obtain. Another one is that by learning a high quality gener-
ators which introduce soiling in the image, we might be able to
use them for the advanced data augmentation and create much
bigger annotation using all data form various project, which are
intentionally “clean”.
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Figure 9: From left to right: a) soiled camera lens mounted to the car body; b) the image quality of the soiled camera from the previous

image; c) an example of image soiled by a heavy rain.

Figure 10: The examples of the “clean” and “soiled” categories for our CycleGAN experiment.

In the latter direction, the experiment contains an important
flaw— it is not able to produce soling with variable output. Be-
cuase of that, we tried another experiment with the MUNIT
approach. The main motivation for switching to MUNIT was its
ability to split content from the style, which would help our in-
tention to possess the control over generated images and there-
fore ease the further classifiers training. Our proof of concept for
MUNIT failed due to the lack of high quality data. The resulting
images from the generator contained a lot of artifacts and the con-
trol over the generated classes was not to our satisfaction. How-
ever, we still think that it is a promising branch to explore further.
We depict our results from MUNIT experiment in Figure[T2]

We believe that thanks to GAN, the problem of soiling
and adverse weather classification/enhancement is possible to
be solved even with a minimalist annotation efforts. We con-
tinue our research in the soiling and adverse weather classifica-
tion/enhancement problematic with a lots of further research di-
rection specified.

V DISCUSSION

In this section, we would like to discuss the main challenges of
GAN. Namely, we discuss the problem of quantitative evaluation,
adversarial attacks with respect to safety, or optimization stability.

Quantitative Evaluation

One of the critical challenges for GAN is their quantitative eval-
uation. The classic approach for generative models evaluation is
based on the model likelihood. However, this approach is is usu-
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ally intractable [39]]. The Inception Score (IS) [3]l, on the other
hand, provides a way to quantitatively evaluate the quality and
diversity of the generated samples, where conditional label distri-
bution of samples containing meaningful objects should have low
entropy and the variability of the samples should be high. Using
the generic Inception Net [60] trained on ImageNet [61], it was
found that IS is well correlated with scores from human annota-
tors. However, IS is found to be insensitive to the prior distribu-
tion over labels. Fréchet Inception Distance (FID) [62] provides
another approach for quantifying the quality of generated sam-
ples, where the samples are embedded into a feature space given
by a specific layer of the Inception Net. Then these are modeled as
a continuous multivariate Gaussian distribution. Finally, to quan-
tify the quality of samples, the mean and covariance is estimated
for the generated and the real data and the Fréchet distance is eval-
uated. FID score showed to be consistent with human judgment.
Unlike IS, FID can detect intra-class mode dropping. IS mainly
captures precision where FID captures both precision and recall.

Adversarial examples and Safety

Adversarial examples are inputs to machine learning models that
have been intentionally modified in a way to fool the model.
These modifications are, usually, not even noticed by a human
observer, yet the classifier still makes wrong classifications.
Moreover, adversarial examples can be used to perform attacks
on machine learning systems even in a physical world. It was
shown in [63]] that machine learning systems are vulnerable
to adversarial examples in physical world scenarios. Most of
adversarial example attacks require knowledge of either the
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Figure 11: The results obtained from the CycleGAN proof of concept for the problem of soiling and adverse weather classification. Note
the legend on the first image, which is self-explanatory.
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Figure 12: The results from the MUNIT experiment. Note that there are frequent artifacts present. However, it seems that sometimes
the generated clean image did not contain the shadow of the body car, and the soiling generator is capable to introduce high variety of
soiling categories.
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model or its training data. However, [64] introduced a practical
demonstration of an attacker with no such knowledge known
as black box attacks. For the autonomous driving, attackers
can target autonomous vehicles by using stickers to create an
adversarial sign that the vehicle would interpret as another
other sign leading to performing unwanted or even dangerous
behaviour. In the Universal Adversarial Training [65], instead of
adding tailored perturbations to an image, an update can be added
to any image in a broad class of images, while changing the
predicted classes. One example for defensive approaches is the
Defensive Distillation mechanism [66] that trains a model whose
surface is smoothed in the directions an attacker will typically try
to exploit, making it difficult to discover adversarial examples.
Furthermore, Reinforcement Learning (RL) agents can also be
manipulated by adversarial examples which causes a degraded
or even a dangerous policy. Adversarial examples represent
a concrete problem in AD safety and designing methods for
preventing adversarial examples is an active area of research.

Optimization Stability

GAN training requires to find a Nash equilibrium [67] of non-
convex non-cooperative game with high-dimensional parameters.
The training typically consist of some form of gradient descent.
Moreover, the optimization is, due to convergence issues, de-
signed to minimize some loss function, rather than to find the
Nash equilibrium. In [S]], the authors use the heuristic understand-
ing of the non-convergence problem to introduce several tech-
niques for its improving, such as feature matching trying to pre-
vent overtraining of the discriminator, minibatch discrimination,
which, by allowing the discriminator to see several data samples
in combination, prevents generator from collapsing to always gen-
erate the same sample, and many other “hacks” trying to over-
come the identified problems.

The authors of [68]] tried to approach the known conver-
gence and stability problems of GAN training differently. They
described the source cause of these problems by identifying the
Kullback-Leibler (KL) divergence minimization task hidden in
the probability distribution learning. The problem arises when
dealing with distributions supported by low-dimensional mani-
folds, because for these the KL is either not defined or simply
infinite. As a solution to overcome this problem, the authors pro-
pose to use a different distance function, which consists of the
earth-mover, or Wasserstein, distance. In experimental evalua-
tion, they show that the desirable stabilization effect is achieved.
The algorithm proposed in [68]] have one flaw, which is the clip-
ping of weights to enforce 1-Lipshitzness required in the opti-
mization theory of WGAN. This flaw was corrected by [7], where
the gradient penalty was introduced.

VI CONCLUSIONS

We compiled a detailed overview of GAN models and provide a
taxonomic survey of various applications of GAN in autonomous
driving. GAN have a potential for high impact for autonomous
driving applications but there is slow progress in this area. There
are plenty of other applications beyond the standard image trans-
lation application. We also discussed the main challenges and
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open problems which have to be resolved in order for it to be
more practically used. We hope that this paper encourages further
research in applying GAN for autonomous driving applications.
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