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Abstract 

Our goal is to develop methods for lossless encoding of automotive 

lidar sensor data with very low computational complexity and high 

compression ratio. In this paper, we propose a solution that is 

based on organizing and packing lidar data into a 2-D image 

array and subsequently using existing image compression methods.  

This approach leverages image compression technology that has 

been developed and proven over many years of R&D, 

standardization, and wide deployment. In our approach, the X,Y,Z 

coordinates of lidar scan points are quantized, packed into one or 

more 2-D images, and subsequently compressed by an image 

codec. In addition, lidar scan points are re-ordered to optimize 

spatial prediction and compression efficiency. We have obtained 

initial results on automotive lidar data scans using several 

compression engines. Results using PNG and JPEG-LS and using 

very simple packing techniques show significant compression 

gains over traditional lidar data coding methods. 

Introduction  

Lidar sensors (a.k.a. LIDAR or LiDAR) are used widely for 

autonomous driving to perceive the vehicle environment. Multiple 

lidar sensors may be used in a single vehicle, and the resolution of 

lidar sensors is steadily increasing, resulting in a very large amount 

of data captured in each vehicle. Today, high-end lidar sensors 

generate on the order of a million of data points per second.  

Some or all of this sensor data needs to be buffered on the vehicle, 

uploaded to a data center, and stored in the data center. In addition, 

some of the sensor data may have to be moved around within the 

data center or between data centers for various types of processing. 

The cost of such data storage and movement is steadily increasing 

as the amount of data increases rapidly. Hence, there is a growing 

need for compression of lidar sensor data.  

In the case of camera (image & video) data, there is a very strong 

set of compression technologies available, including hardware and 

software, based on many years of R&D, standards development 

and wide deployment (JPEG, MPEG, H.26X, etc). However, this is 

not the case for lidar sensor data. There is a lack of compression 

tools for point cloud data in general, and lidar sensor data in 

particular. Only a few compressed formats have been developed, 

such as PCD with binary compression [1] and LAS/LASzip [2]. 

There are no broadly accepted industry standards for lidar 

compression, and there is undoubtedly much room to improve 

compression performance.  

Our objective is to develop methods for compression of lidar 

sensor data with high compression ratio that satisfy the following 

requirements relevant to the autonomous driving use case:  

• Lossless or near-lossless (loss is negligible for perception 

algorithms) 

• Real-time encoding & decoding  

• Computational complexity/cost must be kept very low 

(multiple streams handled simultaneously) 

• Dynamic range of data samples is ~1 mm up to ~100/200 m, 

i.e. about 1:105  

• Preserving point order is not required (i.e. permutation of 

points is allowed) 

Approach 

In this paper, we propose a solution that is based on organizing and 

packing the data into a 2-D image array and subsequently using 

existing image compression methods.  Such an image-based lidar 

data encoding approach has several significant benefits, as follows.  

1. High compression ratio. By packing lidar data into a 2-D 

image array and utilizing image compression techniques, this 

approach exploits 2-D spatial correlation between the samples 

of lidar data. This leads to a higher compression ratio, 

compared to other methods.  

2. Very low complexity. Raw lidar data from automotive lidar 

sensors are essentially scans across 2 degrees of freedom 

(azimuth and elevation). In many cases, it is straightforward 

to pack this scan data into a 2-D grid. Subsequently, a low 

complexity image compression method can be used. 

3. Leverages existing image compression technology. Image 

compression technology has been developed and proven over 

many years of R&D, standardization, and wide deployment. 

Hence, this approach enables quicker adoption, and reduces 

cost by potentially using the same compression technology for 

both the camera and lidar data in autonomous vehicles.  

In this paper, we use lossless image compression and refrained 

from using lossy methods, due to the requirements for the 

autonomous driving application. However, the above advantages 

extend to the use of lossy methods for compressing lidar data as 

well, and indeed much higher compression ratios could be 

achieved. Extending further, video compression methods can be 

used to encode sequences of lidar scans. This promises again 

higher compression ratio, at the cost of increased complexity. In 

this paper, we only explored the use of still image (intra-frame) 

coding methods.  

Prior Work 

Traditionally, there exist two classes of solutions to the problem of 

compression of lidar data and similar types of depth/distance data.  

The first class consists of solutions that directly encode raw 

distance data [4][7]. One disadvantage of such solutions is that the 

raw distance representation is strongly dependent on the specific 

sensor and its calibration information. This calibration information 

is needed to calculate the X,Y,Z coordinates in 3-D space of the 

sensed points at the decoder. Hence, this calibration information 

needs to be coded with the data. Furthermore, this approach might 

make the decoding process itself dependent on the specific type of 

sensor or application context. While this approach technically 

works fine in a closed environment, interoperability is reduced 

from a standardization and industry perspective.  

The second class consists of solutions that encode the data as a 

point cloud. A point cloud consists of a set of points in 3-D space, 

each specified by its position, i.e. X,Y,Z coordinate values. For 

example, encoding a point cloud using an octree decomposition, or 
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point cloud file formats such as PCD [1] and LAS [2], fall in this 

class.  

So far, traditional solutions in the second class address the more 

general problem of point cloud compression and are generally 

inefficient. Lidar sensor data has a specific structure due to the 

scanning nature of the lidar sensing process. Existing solutions in 

this class have not taken advantage of this structure, which allows 

significant improvement of compression performance.  

More advanced methods have been proposed by Golla and Klein 

[5] and Cohen et al. [8], which consist of decomposition of a point 

cloud into “patches” that can be parameterized on a 2-D grid and 

encoding patches using height maps.  

The notion of using existing (standard) image and video 

compression tools for encoding point cloud or lidar data has been 

explored previously in [4], [6], [7] and [9]. Some of these prior 

proposals are focused on multimedia applications and apply lossy 

compression tools, making the results difficult to compare. Also, 

most of these existing methods apply compression to range images 

directly. The work by Houshiar and Nuechter [6] is notable for a 

broad comparison of methods, including a variety of image 

compression tools, as well as a discussion of dynamic range of 

lidar data values and precision of the representation.  

Currently, a subgroup within MPEG is developing a standard for 

point cloud compression [10] that will include image- and video-

based coding tools (intra-frame and inter-frame coding); including 

lossy and lossless coding of geometry as well as additional point 

attributes (e.g. reflectance or color). Discussion of and comparison 

with compression tools being developed by MPEG is beyond the 

scope of this paper.  

Proposed Method 

The proposed solution for compression of lidar sensor data is based 

on organizing and packing the data into a 2-D image array and 

subsequently using an existing image compression method. In the 

following, we first discuss the characteristics of lidar sensor data in 

detail, and then describe the specific encoding/decoding steps.  

 

Lidar Sensor Data 

Although lidar data is often visualized as point clouds in a 3-D 

space, it is important to note that the raw measurement is simply a 

distance value. Lidar sensors scan the environment using one or 

more laser beams, for example 16, 32, or 64 beams for Velodyne 

sensors [12][13][14], and 4 beams for Ibeo LUX sensors [15]. 

Laser pulses are emitted at specific azimuth angles and elevation 

angles, hence each full scan can be considered parameterized in 2 

dimensions, on a 2-D grid. Such a 2-D scanning grid is isomorphic 

to a 2-D image grid. Please note that Velodyne and Ibeo sensors 

are used in this paper only as examples, for purposes of technical 

research, and similar reasoning applies to other sensor products.  

In the case of a Velodyne sensor, the raw lidar distance data for a 

single scan is already provided in a format that is equivalent to a 

2-D array or 2-D image grid [11]. One minor issue is that the laser 

beams are emitted in an interleaved manner, and the data received 

is row-interleaved as a result. However, it is a simple matter to 

de-interleave “rows” in the lidar data, given the known laser beam 

firing sequence. Figure 1 and Figure 2 illustrate the result for a 

portion of a lidar scan from public Velodyne HDL-32E sensor 

data. For this data, the full image has a very elongated shape of 32 

rows by 1846 pixels per row. Note that the figures below show 

only a small part of each full lidar scan.  

 

 
Figure 1. Portion of a 32-beam lidar scan, visualized as a point cloud 
in 3-D space at top, and raw distance values mapped to a 2-D 
image at bottom. The red rectangle highlights the approximate area 
of the top scan captured in the image at bottom. Public Velodyne 
data set.  

 
Figure 2. Portion of a lidar scan visualized in image form. The top 
image contains the raw distance values (identical to the image 
shown in Figure 1). The bottom three images show the 
corresponding X, Y, and Z values. These images were contrast-
stretched and mapped to 8-bits to enhance visibility of the objects in 
the scene (the actual 16-bit values are difficult to show directly). 
These images contain 32 rows by 1846 columns, but in this figure 
the images were cropped horizontally. Derived from public Velodyne 
data set.  

In the case of Ibeo or similar lidar sensors with smaller field of 

view, the typical case is that multiple sensors are used around a 

single vehicle, and pre-fusion of this data is applied using a 

hardware device. Subsequently, this pre-fused data is provided 

simply as a list of data points, where the original scan ordering 

may be lost [16]. An example of sequences of such X,Y,Z values is 

shown in Figure 3, and the 3-D visualization of the corresponding 

point cloud is shown in Figure 4. However, the original scanning 

pattern of e.g. 4 or 8 laser beams can be recovered from the data 

itself, by straightforward analysis techniques. As a result, we map 

lidar data originating from a distinct beam (elevation) to a distinct 

row in the image. In the case of this type of lidar data, each 2-D 

image contains only 4 or 8 rows.  

D 

X 

Y 
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Ultimately, the goal would be to pack the lidar data into one or 

more images such that compression efficiency is optimized. 

Although not explored in this paper, this can be achieved by re-

ordering the scan points before encoding in a way that optimizes 

spatial prediction.  

 

Figure 3. Example sequence of X,Y,Z values from pre-fused 4-beam 
lidar data (note this is a small subset of the entire sequence).   

 
Figure 4. Point cloud visualization of the 4-beam lidar data shown in 
Figure 3.  

It is possible that a lidar sensor does not receive a return for a 

specific laser emission pulse (e.g. when there is no object to reflect 

the pulse). In such cases, we treat this as a missing data point and 

simply encode it with a 0 value (for X, Y and Z, as well as 

distance). We treat the 0 values just as normal data values during 

encoding. Since such events tend to happen in entire regions of the 

scan (and image), the image compression engine can handle it 

efficiently. The effect is similar to encoding a separate occupancy 

map, which signals valid data points in the encoded image.  

Coding individual X,Y,Z position values in fixed point 

representation is more efficient and precise compared to floating 

point representation. As mentioned above, these values have a 

relatively high dynamic range. Today, the precision of lidar 

sensors typical in autonomous vehicles is on the order of 1-2 cm 

[13][14][15]. The precision may improve; however a precision of 1 

cm or 1 mm is likely sufficient. Conversion of floating point to 

fixed point values can use any suitable quantization method. In this 

paper, we simply applied uniform quantization across the range of 

possible values. As an example, to uniformly quantize X,Y,Z 

values to 1 cm accuracy, each individual floating point value 

(where 1.0 typically corresponds to 1 meter) is multiplied by 100 

and subsequently rounded to the nearest integer. A suitable offset 

is added to handle negative values. The resulting values are 

represented by 16 bits (2 bytes).  

Image-based Encoding/Decoding  

A diagram with an overview of the proposed method is shown in 

Figure 5 below. The specific steps for encoding lidar sensor data 

are as follows:  

1. Converting raw distance data from the lidar sensor to X,Y,Z 

point positions. This step is dependent on the specific lidar 

sensor and its calibration information. After conversion to 

X,Y,Z data, this calibration data is no longer needed. The 

conversion is a standard operation, taking the raw distance as 

well as known elevation angle and azimuth angle of the lidar 

beam for a lidar point as input, and computing X,Y,Z values.  

2. Quantizing X,Y,Z values and converting from floating point 

to fixed point representation; we have used uniform 

quantization by scaling the values by 100.0, rounding to the 

nearest integer and adding a constant offset. Subsequently, 

each value is represented by a 16 bit value.  

3. Packing the X,Y,Z values into one or more 2-D arrays; see the 

previous discussion for further detail.  

4. Applying an existing lossless image compression/encoding 

method on the data in the 2-D array(s). In this paper, we 

applied the JPEG-LS lossless compression standard [17] and 

PNG encoding [18]. Both JPEG-LS and PNG can encode 

samples with up to 16 bits of bit-depth.  

 

The output of the encoding steps consists of one or more 

compressed file(s) or bitstream(s) in standard format (e.g. 

JPEG-LS or PNG format). The original lidar data can be decoded 

simply by:  

1. Applying the corresponding image decompression method. 

2. Unpacking the X,Y,Z values from the decompressed 2-D 

image array(s).   

3. Dequantizing the X,Y,Z values and converting to floating 

point representation.  

 

 
Figure 5. Overview of encoding and decoding steps using image-
based compression of lidar X,Y,Z data.  

Experimental Results 

In our experiments, we compared the following approaches to 

encoding lidar scan data.  

1. Using traditional point cloud or lidar formats such as PCD or 

LAS. Specifically, we encoded the each individual lidar scan 

as: a) PCD ASCII, b) PCD binary, c) PCD binary 
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compressed, d) LAS, e) LAZ (i.e. LASzip), and report 

compression efficiency for each.  

2. Proposed approach as shown in Figure 5, where data is 

converted to X,Y,Z values, quantized, packed into image 

arrays and then compressed as a single 3-channel image 

(single image with XYZ channels treated as RGB channels). 

We report compression efficiency for: a) the uncompressed 

PPM image file, b) applying Linux gzip to the PPM file, 

c) PNG compression, d) JPEG-LS compression, and e) ZFP 

compression.  

3. Proposed approach as shown in Figure 5, where data is 

converted to X,Y,Z values, quantized, packed into image 

arrays and then compressed separately as three 1-channel 

images (similar to grayscale images). We report compression 

efficiency for: a) the three uncompressed PGM image files, 

b) applying Linux gzip to the PGM files, c) PNG 

compression, d) JPEG-LS compression, and e) ZFP 

compression.  

4. Alternative approach shown in Figure 6, where raw lidar 

distance values are directly quantized and packed into a single 

image array, and then compressed as a 1-channel image. 

Again, we report compression efficiency for: a) the 

uncompressed PGM image file, b) applying Linux gzip to the 

PGM file, c) PNG compression, d) JPEG-LS compression. 

ZFP is a method proposed for compression of floating point arrays 

[3], which we applied after scaling and quantization of floating 

point X,Y,Z or distance values, to the same precision used for our 

image compression results. The results for LAS and LASzip are 

based on using the same precision (0.01 m).  

 

 
Figure 6. Overview of encoding and decoding steps using image-
based compression of lidar distance (range) data.  

The main compression efficiency metric used is the average 

number of bytes per point, which is simply computed from the file 

size (in bytes) and dividing it by the number of points in a lidar 

scan. Subsequently, the average is taken over all the scans in a 

sequence. We don’t express the result as a compression ratio, since 

there is not a well-established reference. No distortion metric is 

used since only lossless compression is applied. All our results 

only consider the geometry data (X,Y,Z coordinates or 

distance/range data), excluding other attributes such as reflectance 

or color.   

Experimental results were obtained using data sets from both 

Velodyne [13] and Ibeo [15] lidar sensors. Again, please note that 

this data is only used as example data, and used only for research 

purposes. Two public Velodyne data sets were used, captured with 

the HDL-32E sensor, from a moving vehicle, each 100 scans over 

10 sec (10 scans/sec), about 59,000 points per scan. The first is 

referred to as the “Tunnel” lidar stream, the second is referred to as 

the “Highway” lidar stream. For these two streams, the average 

number of bytes per point for all methods listed is shown in Figure 

7 and Figure 8 respectively.  

Figure 9 shows average number of bytes per point for a subset of 

methods, applied to a lidar stream captured from a vehicle using 

Ibeo Lux 4L lidar sensors. The data consisted of 600 scans 

captured over 24 sec (25 scans/sec), about 4,000 points per scan. In 

the vehicle setup, data from 6 individual sensors were pre-fused by 

a hardware fusion device.  

 

 
Figure 7. Compression efficiency (average byte/point) on 32-beam 
“Tunnel” lidar data.  

 
Figure 8. Compression efficiency (average byte/point) on 32-beam 
“Highway” lidar data.  

While the ASCII PCD format is clearly very inefficient, PCD 

binary format and PCD binary compressed format reach to about 
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10 bytes/point. LAS itself encodes at a fixed 20 bytes/point as 

expected, while LASzip can reach under 5 bytes/point.  

Image-based compression is generally more efficient, as can be 

seen in the results. Raw PGM or PPM files use about 6 bytes/point 

as expected (2 bytes for X, for Y, and for Z). Image-based 

compression with PNG and JPEG-LS is generally the most 

efficient in these results, approximately 2 bytes/point or less.  

These results indicate that there is no advantage in encoding the X, 

Y, and Z images as a single 3-channel image as compared to 

encoding as three separate 1-channel images. The results appear 

equivalent when using JPEG-LS. In fact, when using PNG, the 

results appear worse when encoding as a single 3-channel image.  

As shown in Figure 7 and Figure 8, encoding the data as a single 

range/distance image always results in the smallest file size, and is 

more efficient than encoding three X, Y and Z images. As 

discussed, the trade-off is higher complexity at the decoder.  

 

 
Figure 9. Compression efficiency (average byte/point) on 4-beam 
pre-fused lidar data.  

The tables below show the same results in numerical form.  An 

additional column is included showing the compressed data rate (in 

Mbit/s) for information. Table 1 and Table 2 shows results taken 

with a vehicle-mounted Velodyne HDL-32E sensor. Table 3 shows 

results on lidar data from vehicle-mounted Ibeo 4L sensors.  

Table 1. Compression efficiency (average byte/point) on 

32-beam “Tunnel” lidar data.  

Table 2. Compression efficiency (average byte/point) on 

32-beam “Highway” lidar data. 

 

Table 3. Compression efficiency (average byte/point) on 

pre-fused 4-beam lidar data.  

 
 

Conclusions 

In this paper, we explored application of existing standard image 

compression technology to lidar scan data, for automated driving 

applications. Using proven image compression technology for lidar 

data compression potentially reduces risk and development time, 

compared to developing a new compression method from scratch. 

Another benefit is enabling the use of the same compression 

technology for both image and lidar data in the context of 

automated driving applications, which involve capture and storage 

of large amounts of image and video data in addition to lidar data.  

We have shown how raw lidar scan data can be packed into a 2-D 

image format with very low complexity. We have applied several 

lossless image compression engines to the re-organized lidar data. 

Our initial lossless compression results on lidar data are quite 

promising, in particular when using JPEG-LS. These results were 

obtained using very simple methods to pack the lidar data into 2-D 

arrays and with very little optimization. We expect an increase in 

compression efficiency can be achieved by packing the data using 

better methods. Additional significant gains in compression 

efficiency can be achieved by using video compression techniques, 

as well as using lossy compression techniques (in a way where the 

fidelity can be tightly controlled). Finally, a performance 

comparison should be made to the upcoming MPEG Point Cloud 

Compression standard insofar it can support the automated driving 

application requirements.  

 

geometry packing compression file type  file size (bytes) byte/point Mbit/s

PCD ASCII 3045411.7 51.6 243.6

PCD binary 711881.0 12.1 57.0

PCD binary compressed 636188.6 10.8 50.9

LAS 1179868.6 20.0 94.4

LAZ (LASzip) 264164.7 4.5 21.1

PGM (raw) 353943.5 6.0 28.3

PGM.GZ (gzipped) 165216.7 2.8 13.2

PNG 109239.1 1.9 8.7

JPEG-LS 122033.6 2.1 9.8

ZFP 217791.7 3.7 17.4

PGM (raw) 117981.2 2.0 9.4

PGM.GZ (gzipped) 59114.0 1.0 4.7

PNG 45006.7 0.8 3.6

JPEG-LS 49631.0 0.8 4.0

ZFP 84522.7 1.4 6.8

range as single 

1-channel image

point cloud

x,y,z as three 

1-channel images

geometry packing compression type  file size (bytes) byte/point Mbit/s

PCD ASCII 117336.3 28.8 9.4

PCD binary 52969.7 13.0 4.2

PCD binary compressed 51511.4 12.6 4.1

LAS 81683.2 20.1 6.5

LAZ (LASzip) 10873.3 2.7 0.9

PGM (raw) 26469.9 6.5 2.1

PGM.GZ (gzipped) 12634.7 3.1 1.0

PNG 9936.4 2.4 0.8

JPEG-LS 11603.3 2.8 0.9

PPM (raw) 26437.9 6.5 2.1

PPM.GZ (gzipped) 14643.0 3.6 1.2

PNG 14712.8 3.6 1.2

JPEG-LS 11543.3 2.8 0.9

point cloud

x,y,z as single 

3-channel image

x,y,z as three 

1-channel images

geometry packing compression type  file size (bytes) byte/point Mbit/s

PCD ASCII 2887908.2 49.9 231.0

PCD binary 705706.2 12.2 56.5

PCD binary compressed 602628.6 10.4 48.2

LAS 1169577.4 20.0 93.6

LAZ (LASzip) 243527.7 4.2 19.5

PGM (raw) 350856.1 6.1 28.1

PGM.GZ (gzipped) 140470.0 2.4 11.2

PNG 90096.8 1.6 7.2

JPEG-LS 98897.7 1.7 7.9

ZFP 188589.4 3.3 15.1

PGM (raw) 116952.0 2.0 9.4

PGM.GZ (gzipped) 52713.0 0.9 4.2

PNG 39016.2 0.7 3.1

JPEG-LS 40985.3 0.7 3.3

ZFP 73619.4 1.3 5.9

range as single 

1-channel image

point cloud

x,y,z as three 

1-channel images
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