

Image-based Compression of Lidar Sensor Data

Peter van Beek; Intel & Mobileye Silicon Valley Innovation Center; San Jose, California, USA

Abstract

Our goal is to develop methods for lossless encoding of automotive

lidar sensor data with very low computational complexity and high

compression ratio. In this paper, we propose a solution that is

based on organizing and packing lidar data into a 2-D image

array and subsequently using existing image compression methods.

This approach leverages image compression technology that has

been developed and proven over many years of R&D,

standardization, and wide deployment. In our approach, the X,Y,Z

coordinates of lidar scan points are quantized, packed into one or

more 2-D images, and subsequently compressed by an image

codec. In addition, lidar scan points are re-ordered to optimize

spatial prediction and compression efficiency. We have obtained

initial results on automotive lidar data scans using several

compression engines. Results using PNG and JPEG-LS and using

very simple packing techniques show significant compression

gains over traditional lidar data coding methods.

Introduction

Lidar sensors (a.k.a. LIDAR or LiDAR) are used widely for

autonomous driving to perceive the vehicle environment. Multiple

lidar sensors may be used in a single vehicle, and the resolution of

lidar sensors is steadily increasing, resulting in a very large amount

of data captured in each vehicle. Today, high-end lidar sensors

generate on the order of a million of data points per second.

Some or all of this sensor data needs to be buffered on the vehicle,

uploaded to a data center, and stored in the data center. In addition,

some of the sensor data may have to be moved around within the

data center or between data centers for various types of processing.

The cost of such data storage and movement is steadily increasing

as the amount of data increases rapidly. Hence, there is a growing

need for compression of lidar sensor data.

In the case of camera (image & video) data, there is a very strong

set of compression technologies available, including hardware and

software, based on many years of R&D, standards development

and wide deployment (JPEG, MPEG, H.26X, etc). However, this is

not the case for lidar sensor data. There is a lack of compression

tools for point cloud data in general, and lidar sensor data in

particular. Only a few compressed formats have been developed,

such as PCD with binary compression [1] and LAS/LASzip [2].

There are no broadly accepted industry standards for lidar

compression, and there is undoubtedly much room to improve

compression performance.

Our objective is to develop methods for compression of lidar

sensor data with high compression ratio that satisfy the following

requirements relevant to the autonomous driving use case:

• Lossless or near-lossless (loss is negligible for perception

algorithms)

• Real-time encoding & decoding

• Computational complexity/cost must be kept very low

(multiple streams handled simultaneously)

• Dynamic range of data samples is ~1 mm up to ~100/200 m,

i.e. about 1:105

• Preserving point order is not required (i.e. permutation of

points is allowed)

Approach

In this paper, we propose a solution that is based on organizing and

packing the data into a 2-D image array and subsequently using

existing image compression methods. Such an image-based lidar

data encoding approach has several significant benefits, as follows.

1. High compression ratio. By packing lidar data into a 2-D

image array and utilizing image compression techniques, this

approach exploits 2-D spatial correlation between the samples

of lidar data. This leads to a higher compression ratio,

compared to other methods.

2. Very low complexity. Raw lidar data from automotive lidar

sensors are essentially scans across 2 degrees of freedom

(azimuth and elevation). In many cases, it is straightforward

to pack this scan data into a 2-D grid. Subsequently, a low

complexity image compression method can be used.

3. Leverages existing image compression technology. Image

compression technology has been developed and proven over

many years of R&D, standardization, and wide deployment.

Hence, this approach enables quicker adoption, and reduces

cost by potentially using the same compression technology for

both the camera and lidar data in autonomous vehicles.

In this paper, we use lossless image compression and refrained

from using lossy methods, due to the requirements for the

autonomous driving application. However, the above advantages

extend to the use of lossy methods for compressing lidar data as

well, and indeed much higher compression ratios could be

achieved. Extending further, video compression methods can be

used to encode sequences of lidar scans. This promises again

higher compression ratio, at the cost of increased complexity. In

this paper, we only explored the use of still image (intra-frame)

coding methods.

Prior Work

Traditionally, there exist two classes of solutions to the problem of

compression of lidar data and similar types of depth/distance data.

The first class consists of solutions that directly encode raw

distance data [4][7]. One disadvantage of such solutions is that the

raw distance representation is strongly dependent on the specific

sensor and its calibration information. This calibration information

is needed to calculate the X,Y,Z coordinates in 3-D space of the

sensed points at the decoder. Hence, this calibration information

needs to be coded with the data. Furthermore, this approach might

make the decoding process itself dependent on the specific type of

sensor or application context. While this approach technically

works fine in a closed environment, interoperability is reduced

from a standardization and industry perspective.

The second class consists of solutions that encode the data as a

point cloud. A point cloud consists of a set of points in 3-D space,

each specified by its position, i.e. X,Y,Z coordinate values. For

example, encoding a point cloud using an octree decomposition, or

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 043-1

https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-043
© 2019, Society for Imaging Science and Technology

point cloud file formats such as PCD [1] and LAS [2], fall in this

class.

So far, traditional solutions in the second class address the more

general problem of point cloud compression and are generally

inefficient. Lidar sensor data has a specific structure due to the

scanning nature of the lidar sensing process. Existing solutions in

this class have not taken advantage of this structure, which allows

significant improvement of compression performance.

More advanced methods have been proposed by Golla and Klein

[5] and Cohen et al. [8], which consist of decomposition of a point

cloud into “patches” that can be parameterized on a 2-D grid and

encoding patches using height maps.

The notion of using existing (standard) image and video

compression tools for encoding point cloud or lidar data has been

explored previously in [4], [6], [7] and [9]. Some of these prior

proposals are focused on multimedia applications and apply lossy

compression tools, making the results difficult to compare. Also,

most of these existing methods apply compression to range images

directly. The work by Houshiar and Nuechter [6] is notable for a

broad comparison of methods, including a variety of image

compression tools, as well as a discussion of dynamic range of

lidar data values and precision of the representation.

Currently, a subgroup within MPEG is developing a standard for

point cloud compression [10] that will include image- and video-

based coding tools (intra-frame and inter-frame coding); including

lossy and lossless coding of geometry as well as additional point

attributes (e.g. reflectance or color). Discussion of and comparison

with compression tools being developed by MPEG is beyond the

scope of this paper.

Proposed Method

The proposed solution for compression of lidar sensor data is based

on organizing and packing the data into a 2-D image array and

subsequently using an existing image compression method. In the

following, we first discuss the characteristics of lidar sensor data in

detail, and then describe the specific encoding/decoding steps.

Lidar Sensor Data

Although lidar data is often visualized as point clouds in a 3-D

space, it is important to note that the raw measurement is simply a

distance value. Lidar sensors scan the environment using one or

more laser beams, for example 16, 32, or 64 beams for Velodyne

sensors [12][13][14], and 4 beams for Ibeo LUX sensors [15].

Laser pulses are emitted at specific azimuth angles and elevation

angles, hence each full scan can be considered parameterized in 2

dimensions, on a 2-D grid. Such a 2-D scanning grid is isomorphic

to a 2-D image grid. Please note that Velodyne and Ibeo sensors

are used in this paper only as examples, for purposes of technical

research, and similar reasoning applies to other sensor products.

In the case of a Velodyne sensor, the raw lidar distance data for a

single scan is already provided in a format that is equivalent to a

2-D array or 2-D image grid [11]. One minor issue is that the laser

beams are emitted in an interleaved manner, and the data received

is row-interleaved as a result. However, it is a simple matter to

de-interleave “rows” in the lidar data, given the known laser beam

firing sequence. Figure 1 and Figure 2 illustrate the result for a

portion of a lidar scan from public Velodyne HDL-32E sensor

data. For this data, the full image has a very elongated shape of 32

rows by 1846 pixels per row. Note that the figures below show

only a small part of each full lidar scan.

Figure 1. Portion of a 32-beam lidar scan, visualized as a point cloud
in 3-D space at top, and raw distance values mapped to a 2-D
image at bottom. The red rectangle highlights the approximate area
of the top scan captured in the image at bottom. Public Velodyne
data set.

Figure 2. Portion of a lidar scan visualized in image form. The top
image contains the raw distance values (identical to the image
shown in Figure 1). The bottom three images show the
corresponding X, Y, and Z values. These images were contrast-
stretched and mapped to 8-bits to enhance visibility of the objects in
the scene (the actual 16-bit values are difficult to show directly).
These images contain 32 rows by 1846 columns, but in this figure
the images were cropped horizontally. Derived from public Velodyne
data set.

In the case of Ibeo or similar lidar sensors with smaller field of

view, the typical case is that multiple sensors are used around a

single vehicle, and pre-fusion of this data is applied using a

hardware device. Subsequently, this pre-fused data is provided

simply as a list of data points, where the original scan ordering

may be lost [16]. An example of sequences of such X,Y,Z values is

shown in Figure 3, and the 3-D visualization of the corresponding

point cloud is shown in Figure 4. However, the original scanning

pattern of e.g. 4 or 8 laser beams can be recovered from the data

itself, by straightforward analysis techniques. As a result, we map

lidar data originating from a distinct beam (elevation) to a distinct

row in the image. In the case of this type of lidar data, each 2-D

image contains only 4 or 8 rows.

D

X

Y

Z

043-2
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

Ultimately, the goal would be to pack the lidar data into one or

more images such that compression efficiency is optimized.

Although not explored in this paper, this can be achieved by re-

ordering the scan points before encoding in a way that optimizes

spatial prediction.

Figure 3. Example sequence of X,Y,Z values from pre-fused 4-beam
lidar data (note this is a small subset of the entire sequence).

Figure 4. Point cloud visualization of the 4-beam lidar data shown in
Figure 3.

It is possible that a lidar sensor does not receive a return for a

specific laser emission pulse (e.g. when there is no object to reflect

the pulse). In such cases, we treat this as a missing data point and

simply encode it with a 0 value (for X, Y and Z, as well as

distance). We treat the 0 values just as normal data values during

encoding. Since such events tend to happen in entire regions of the

scan (and image), the image compression engine can handle it

efficiently. The effect is similar to encoding a separate occupancy

map, which signals valid data points in the encoded image.

Coding individual X,Y,Z position values in fixed point

representation is more efficient and precise compared to floating

point representation. As mentioned above, these values have a

relatively high dynamic range. Today, the precision of lidar

sensors typical in autonomous vehicles is on the order of 1-2 cm

[13][14][15]. The precision may improve; however a precision of 1

cm or 1 mm is likely sufficient. Conversion of floating point to

fixed point values can use any suitable quantization method. In this

paper, we simply applied uniform quantization across the range of

possible values. As an example, to uniformly quantize X,Y,Z

values to 1 cm accuracy, each individual floating point value

(where 1.0 typically corresponds to 1 meter) is multiplied by 100

and subsequently rounded to the nearest integer. A suitable offset

is added to handle negative values. The resulting values are

represented by 16 bits (2 bytes).

Image-based Encoding/Decoding

A diagram with an overview of the proposed method is shown in

Figure 5 below. The specific steps for encoding lidar sensor data

are as follows:

1. Converting raw distance data from the lidar sensor to X,Y,Z

point positions. This step is dependent on the specific lidar

sensor and its calibration information. After conversion to

X,Y,Z data, this calibration data is no longer needed. The

conversion is a standard operation, taking the raw distance as

well as known elevation angle and azimuth angle of the lidar

beam for a lidar point as input, and computing X,Y,Z values.

2. Quantizing X,Y,Z values and converting from floating point

to fixed point representation; we have used uniform

quantization by scaling the values by 100.0, rounding to the

nearest integer and adding a constant offset. Subsequently,

each value is represented by a 16 bit value.

3. Packing the X,Y,Z values into one or more 2-D arrays; see the

previous discussion for further detail.

4. Applying an existing lossless image compression/encoding

method on the data in the 2-D array(s). In this paper, we

applied the JPEG-LS lossless compression standard [17] and

PNG encoding [18]. Both JPEG-LS and PNG can encode

samples with up to 16 bits of bit-depth.

The output of the encoding steps consists of one or more

compressed file(s) or bitstream(s) in standard format (e.g.

JPEG-LS or PNG format). The original lidar data can be decoded

simply by:

1. Applying the corresponding image decompression method.

2. Unpacking the X,Y,Z values from the decompressed 2-D

image array(s).

3. Dequantizing the X,Y,Z values and converting to floating

point representation.

Figure 5. Overview of encoding and decoding steps using image-
based compression of lidar X,Y,Z data.

Experimental Results

In our experiments, we compared the following approaches to

encoding lidar scan data.

1. Using traditional point cloud or lidar formats such as PCD or

LAS. Specifically, we encoded the each individual lidar scan

as: a) PCD ASCII, b) PCD binary, c) PCD binary

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 043-3

compressed, d) LAS, e) LAZ (i.e. LASzip), and report

compression efficiency for each.

2. Proposed approach as shown in Figure 5, where data is

converted to X,Y,Z values, quantized, packed into image

arrays and then compressed as a single 3-channel image

(single image with XYZ channels treated as RGB channels).

We report compression efficiency for: a) the uncompressed

PPM image file, b) applying Linux gzip to the PPM file,

c) PNG compression, d) JPEG-LS compression, and e) ZFP

compression.

3. Proposed approach as shown in Figure 5, where data is

converted to X,Y,Z values, quantized, packed into image

arrays and then compressed separately as three 1-channel

images (similar to grayscale images). We report compression

efficiency for: a) the three uncompressed PGM image files,

b) applying Linux gzip to the PGM files, c) PNG

compression, d) JPEG-LS compression, and e) ZFP

compression.

4. Alternative approach shown in Figure 6, where raw lidar

distance values are directly quantized and packed into a single

image array, and then compressed as a 1-channel image.

Again, we report compression efficiency for: a) the

uncompressed PGM image file, b) applying Linux gzip to the

PGM file, c) PNG compression, d) JPEG-LS compression.

ZFP is a method proposed for compression of floating point arrays

[3], which we applied after scaling and quantization of floating

point X,Y,Z or distance values, to the same precision used for our

image compression results. The results for LAS and LASzip are

based on using the same precision (0.01 m).

Figure 6. Overview of encoding and decoding steps using image-
based compression of lidar distance (range) data.

The main compression efficiency metric used is the average

number of bytes per point, which is simply computed from the file

size (in bytes) and dividing it by the number of points in a lidar

scan. Subsequently, the average is taken over all the scans in a

sequence. We don’t express the result as a compression ratio, since

there is not a well-established reference. No distortion metric is

used since only lossless compression is applied. All our results

only consider the geometry data (X,Y,Z coordinates or

distance/range data), excluding other attributes such as reflectance

or color.

Experimental results were obtained using data sets from both

Velodyne [13] and Ibeo [15] lidar sensors. Again, please note that

this data is only used as example data, and used only for research

purposes. Two public Velodyne data sets were used, captured with

the HDL-32E sensor, from a moving vehicle, each 100 scans over

10 sec (10 scans/sec), about 59,000 points per scan. The first is

referred to as the “Tunnel” lidar stream, the second is referred to as

the “Highway” lidar stream. For these two streams, the average

number of bytes per point for all methods listed is shown in Figure

7 and Figure 8 respectively.

Figure 9 shows average number of bytes per point for a subset of

methods, applied to a lidar stream captured from a vehicle using

Ibeo Lux 4L lidar sensors. The data consisted of 600 scans

captured over 24 sec (25 scans/sec), about 4,000 points per scan. In

the vehicle setup, data from 6 individual sensors were pre-fused by

a hardware fusion device.

Figure 7. Compression efficiency (average byte/point) on 32-beam
“Tunnel” lidar data.

Figure 8. Compression efficiency (average byte/point) on 32-beam
“Highway” lidar data.

While the ASCII PCD format is clearly very inefficient, PCD

binary format and PCD binary compressed format reach to about

043-4
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

10 bytes/point. LAS itself encodes at a fixed 20 bytes/point as

expected, while LASzip can reach under 5 bytes/point.

Image-based compression is generally more efficient, as can be

seen in the results. Raw PGM or PPM files use about 6 bytes/point

as expected (2 bytes for X, for Y, and for Z). Image-based

compression with PNG and JPEG-LS is generally the most

efficient in these results, approximately 2 bytes/point or less.

These results indicate that there is no advantage in encoding the X,

Y, and Z images as a single 3-channel image as compared to

encoding as three separate 1-channel images. The results appear

equivalent when using JPEG-LS. In fact, when using PNG, the

results appear worse when encoding as a single 3-channel image.

As shown in Figure 7 and Figure 8, encoding the data as a single

range/distance image always results in the smallest file size, and is

more efficient than encoding three X, Y and Z images. As

discussed, the trade-off is higher complexity at the decoder.

Figure 9. Compression efficiency (average byte/point) on 4-beam
pre-fused lidar data.

The tables below show the same results in numerical form. An

additional column is included showing the compressed data rate (in

Mbit/s) for information. Table 1 and Table 2 shows results taken

with a vehicle-mounted Velodyne HDL-32E sensor. Table 3 shows

results on lidar data from vehicle-mounted Ibeo 4L sensors.

Table 1. Compression efficiency (average byte/point) on

32-beam “Tunnel” lidar data.

Table 2. Compression efficiency (average byte/point) on

32-beam “Highway” lidar data.

Table 3. Compression efficiency (average byte/point) on

pre-fused 4-beam lidar data.

Conclusions

In this paper, we explored application of existing standard image

compression technology to lidar scan data, for automated driving

applications. Using proven image compression technology for lidar

data compression potentially reduces risk and development time,

compared to developing a new compression method from scratch.

Another benefit is enabling the use of the same compression

technology for both image and lidar data in the context of

automated driving applications, which involve capture and storage

of large amounts of image and video data in addition to lidar data.

We have shown how raw lidar scan data can be packed into a 2-D

image format with very low complexity. We have applied several

lossless image compression engines to the re-organized lidar data.

Our initial lossless compression results on lidar data are quite

promising, in particular when using JPEG-LS. These results were

obtained using very simple methods to pack the lidar data into 2-D

arrays and with very little optimization. We expect an increase in

compression efficiency can be achieved by packing the data using

better methods. Additional significant gains in compression

efficiency can be achieved by using video compression techniques,

as well as using lossy compression techniques (in a way where the

fidelity can be tightly controlled). Finally, a performance

comparison should be made to the upcoming MPEG Point Cloud

Compression standard insofar it can support the automated driving

application requirements.

geometry packing compression file type file size (bytes) byte/point Mbit/s

PCD ASCII 3045411.7 51.6 243.6

PCD binary 711881.0 12.1 57.0

PCD binary compressed 636188.6 10.8 50.9

LAS 1179868.6 20.0 94.4

LAZ (LASzip) 264164.7 4.5 21.1

PGM (raw) 353943.5 6.0 28.3

PGM.GZ (gzipped) 165216.7 2.8 13.2

PNG 109239.1 1.9 8.7

JPEG-LS 122033.6 2.1 9.8

ZFP 217791.7 3.7 17.4

PGM (raw) 117981.2 2.0 9.4

PGM.GZ (gzipped) 59114.0 1.0 4.7

PNG 45006.7 0.8 3.6

JPEG-LS 49631.0 0.8 4.0

ZFP 84522.7 1.4 6.8

range as single

1-channel image

point cloud

x,y,z as three

1-channel images

geometry packing compression type file size (bytes) byte/point Mbit/s

PCD ASCII 117336.3 28.8 9.4

PCD binary 52969.7 13.0 4.2

PCD binary compressed 51511.4 12.6 4.1

LAS 81683.2 20.1 6.5

LAZ (LASzip) 10873.3 2.7 0.9

PGM (raw) 26469.9 6.5 2.1

PGM.GZ (gzipped) 12634.7 3.1 1.0

PNG 9936.4 2.4 0.8

JPEG-LS 11603.3 2.8 0.9

PPM (raw) 26437.9 6.5 2.1

PPM.GZ (gzipped) 14643.0 3.6 1.2

PNG 14712.8 3.6 1.2

JPEG-LS 11543.3 2.8 0.9

point cloud

x,y,z as single

3-channel image

x,y,z as three

1-channel images

geometry packing compression type file size (bytes) byte/point Mbit/s

PCD ASCII 2887908.2 49.9 231.0

PCD binary 705706.2 12.2 56.5

PCD binary compressed 602628.6 10.4 48.2

LAS 1169577.4 20.0 93.6

LAZ (LASzip) 243527.7 4.2 19.5

PGM (raw) 350856.1 6.1 28.1

PGM.GZ (gzipped) 140470.0 2.4 11.2

PNG 90096.8 1.6 7.2

JPEG-LS 98897.7 1.7 7.9

ZFP 188589.4 3.3 15.1

PGM (raw) 116952.0 2.0 9.4

PGM.GZ (gzipped) 52713.0 0.9 4.2

PNG 39016.2 0.7 3.1

JPEG-LS 40985.3 0.7 3.3

ZFP 73619.4 1.3 5.9

range as single

1-channel image

point cloud

x,y,z as three

1-channel images

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 043-5

References

[1] The PCD (Point Cloud Data) file format,

http://pointclouds.org/documentation/tutorials/pcd_file_format.php

[2] M. Isenburg, "LASzip: lossless compression of LiDAR data,"

European Lidar Mapping Forum (ELMF), Salzburg, Austria, 2011.

[3] P. Lindstrom, "Fixed Rate Compressed Floating-Point Arrays," IEEE

Trans. on Visualization and Comp. Graphics, vol. 20, no. 12, Dec.

2014.

[4] F. Nenci et al., "Effective Compression of Range Data Streams for

Remote Robot Operations using H.264," Int. Conf. on Intelligent

Robotics and Systems (IROS), Chicago, IL, USA, 2014.

[5] T. Golla and R. Klein, "Real-time Point Cloud Compression," Int.

Conf. on Intelligent Robotics and Systems (IROS), Hamburg,

Germany, 2015.

[6] H. Houshiar and A. Nuechter, "3D Point Cloud Compression using

Conventional Image Compression for Efficient Data Transmission,"

Int. Conf. on Information, Communication and Automation

Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 2015.

[7] C. Tu et al., "Compressing Continuous Point Cloud Data Using Image

Compression," Int. Conf. on Intelligent Transportation Systems

(ITSC), Rio de Janeiro, Brazil, 2016.

[8] R. Cohen et al, "Compression of 3-D point clouds using hierarchical

patch fitting," Int. Conf. on Image Processing (ICIP), Beijing, China,

2017.

[9] R. Mekuria et al., "Design, Implementation, and Evaluation of a Point

Cloud Codec for Tele-Immersive Video," IEEE Trans. on Cir. and

Systems for Video Technology, vol. 27, no. 4, April 2017.

[10] MPEG, Point Cloud Compression,

https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-

compression.

[11] Velodyne, "Application Note, HDL-32E: Packet Structure & Timing

Definition," https://velodynelidar.com/downloads.html.

[12] Velodyne, "VLP-16 Lidar Sensor Datasheet,"

https://velodynelidar.com/downloads.html.

[13] Velodyne, "HDL-32E Lidar Sensor Datasheet,"

https://velodynelidar.com/downloads.html.

[14] Velodyne, "HDL-64E S3 Lidar Sensor Datasheet,"

https://velodynelidar.com/downloads.html.

[15] Ibeo automotive, "Ibeo LUX 4L / LUX 8L / LUX HD Data Sheet",

2017.

[16] Ibeo automotive, "Interface Specification for ibeo LUX, ibeo LUX

systems and ibeo Evaluation Suite," 2017.

[17] M. Weinberger et al., "The LOCO-I Lossless Image Compression

Algorithm: Principles and Standardization into JPEG-LS," IEEE

Trans. on Image Processing, 2000.

[18] W3C, "Portable Network Graphics (PNG) Specification (Second

Edition)," ISO/IEC 15948:2003 (E), W3C Recommendation,

November 2003.

Author Biography

Peter van Beek is with Intel’s Silicon Valley Innovation Center, supporting

development of Mobileye's solutions for safe and scalable autonomous

driving. Before joining Intel, Peter was at Sharp Labs of America,

developing image/video/vision technology for mobile robot and security

camera applications; 4K TV applications; automated visual inspection;

video streaming; and multimedia applications. Peter received M.Sc.Eng

and Ph.D. degrees in Electrical Engineering from the Delft University of

Technology, the Netherlands.

043-6
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression
https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression
https://velodynelidar.com/downloads.html
https://velodynelidar.com/downloads.html

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

