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Abstract
Free space is an essential component of any autonomous

driving system. It describes the region, which is typically the road
surface, around the vehicle which is free from obstacles. However,
in practice, free space should not solely describe the area where
a vehicle can plan a trajectory. For instance, in a single lane
road with two way traffic the opposite lane should not be included
as an area where the vehicle can plan a driving path although it
will be detected as free space. In this paper, we introduce a new
conceptual representation called DriveSpace which corresponds
to semantic understanding and context of the scene. We formulate
it based on combination of dense 3d reconstruction and semantic
segmentation. We use a graphical model approach to fuse and
learn the drivable area. As the drivable region is highly depen-
dent on the situation and dynamics of other objects, it remains a
bit subjective. We analyze various scenarios of DriveSpace and
propose a general method to detect all scenarios. As it is a new
concept, there are no datasets available for development and test,
however, we are working on creating the same to show quantita-
tive results of the proposed method.

INTRODUCTION
In this paper, we propose an iterative upgrade to the sens-

ing and control architecture for autonomous vehicle. In Figure 1,
we show a high-level conceptual diagram of the traditional and
the proposed architecture. The traditional1 architecture is similar
to that which is proposed by Lin et al. [1] and Pendleton et al.
[2]. However, in such architectures, the context of the vehicle’s
environment is implicit in the other components (e.g. perception
and planning). Here, we argue that as contextualisation is an ex-
tremely important component in automated driving, it deserves
to be an explicit component of autonomous vehicle architectures.
With that in mind, we introduce the concept of a contextual driv-
able area, known as DriveSpace.

Related to this are two well known and important concepts:
free space and drivable area. The relationship of DriveSpace to
free space and drivable area is demonstrated in Figure 2. Free
space aims to detect an area that is free of obstacles around the
host vehicle. This is not the logical inverse of detecting an obsta-
cle, as an object detector has a limited detection rate i.e. there are
sometimes missed objects within the expected detection range.
Therefore, object detection alone cannot be used to define free
space, as missed objects could be present in the free space. This
has been extensively studied for autonomous driving by Schreier
et al. [3] and Neumann et al. [4] over the past few years and more

1The authors note that despite the fact that autonomous driving is an
area of new and active research, we can refer to “traditional” approaches
in autonomous driving

Figure 1. Traditional vs Proposed Autonomous Driving Pipeline

recently by Hanish et al. [5] for fisheye cameras that are widely
used in automotive.

Free space is used to maintain environmental maps. It is
used to erase both static and dynamic obstacles that are no longer
present at the observed location while also being utilized when
multiple sensors are being combined for a single environmental
representation in a fusion map. A good free space model will
erase dynamic obstacles from their previously known positions
instantaneously without erasing correct static obstacle informa-
tion. Furthermore free space shall also erase falsely detected ob-
stacles. An additional advantage of such a free space model is
to partially correct the error in ego vehicle odometry calculations,
when re-detection of a static obstacle is not at the same position.
Recent advances in the System on Chip (SoC) hardware offers
feasibility to utilize dense optical flow and dedicated accelerators
for Convolution Neural Networks (CNNs).

Drivable area is perhaps a little less well defined in the liter-
ature. However, this can broadly be seen as the free space around
the vehicle in which the vehicle is allowed to travel. For example,
some research considers road detection [6], lane marking and kerb
detection [7], flat traversable areas [8], and even image-map fu-
sion approaches [9]. There has been some work done on general
drivable area detection [10, 11] but there is no systematic defini-
tion for this problem and there is no public dataset for evaluation
as this is a highly contextual and subjective problem.

In this paper, we prefer to define drivable area as the geo-
metric constraints of where the vehicle can traverse. That is, it is
limited by the objects in the scene, be they above the ground or
holes in the traversable area, and the space around and between
objects. Drivable area does not typically consider context of the
scene, such as markings, stop lights, etc. This is a good example
of what we said at the beginning of this section: context of the
scene is absorbed into other components of the traditional auto-
mated driving sensing architecture, whereas in our proposal we
have a specific component to handle the contextual information,
i.e. DriveSpace. Equally, we can think of DriveSpace as being a
complete contextualisation to free space and drivable area detec-
tion.
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Figure 2. DriveSpace in the context of other concepts such as free space,

drivable area and trajectory planning

Thus, in this paper, we provide initial design concepts into
a dense and contextualised free space and drivable area solution,
DriveSpace, which fully leverages dense depth and semantics to
resolve the issues encountered in the previous free space estima-
tion algorithms.

OVERVIEW OF DRIVESPACE
In the previous section, we provided a brief motivation for

DriveSpace. In this section, we provide a more concrete defi-
nition, while providing further motivation. DriveSpace is a re-
gion around the host vehicle that is obstacle free, safe and legal to
drive. It is also dynamic, adapting based on the changing driving
environment. In Figure 2, DriveSpace is presented in the context
of free space and drivable area. It is also given in the context of the
immediate and the planned trajectories. The immediate trajectory
is limited by the DriveSpace, as shown in Figure 2. For exam-
ple, if the traffic light in the diagram is red, then the DriveSpace
ends at the traffic light, and therefore the immediate trajectory is
limited. On light change to green, the DriveSpace would expand
tothe maximum detection range of the given sensors.

Let S f s ⊂ R3 refer to the free space around the vehicle, and
Sda ⊂ R3 refer to the drivable area. Furthermore, let DriveSpace
be represented by D, the restriction exists that D ⊂ Sda ⊂ S f s.
This makes sense according to the following examples:

• The ego-vehicle cannot get arbitrarily close to another ob-
ject (zero distance), and must always stay a ”safe” distance
from other obstacles. So while we may have drivable area
right up to another obstacle, depending on the context of the
situation (e.g. ego-vehicle velocity, whether the other ob-
stacle is a pedestrian, vehicle or other object type, etc.), the
DriveSpace area is adapted.

• An appropriate lane marking will limit the DriveSpace, but
not drivable area (by our definition) nor free space. How-
ever, this is malleable. For example, in Figure 3, we de-
scribe a scenario where the DriveSpace adapts based on the
ego vehicle status.

• Road signs, traffic lights, etc., all provide further contextual
information to limit the DriveSpace

• The behaviour of other road users can adapt the DriveSpace.
For example, a pedestrian near the road that possibly has the
intention of crossing can shrink the DriveSpace in their sur-

Figure 3. Lane semantics for DriveSpace

rounding region, causing the autonomous vehicle to move
away from the kerb. Thus, very advanced contextual algo-
rithms, such as pedestrian intent [12], driver intent [13], and
other user intention in general [14], can provide significant
cues.

In general, one could achieve robust DriveSpace by incor-
porating vital cues from free space, semantic segmentation, lane
detection, kerb detection, object detection, High Definition (HD)
Maps, etc. that can incorporated through multiple sensing modal-
ities. For the purposes of this paper the authors focus on camera
information because of the ability of image processing to provide
structural, semantic and navigational information about the envi-
ronment of the vehicle. Few examples are provided below to aid
the reader in fully understanding DriveSpace.

In Figure 3, a DriveSpace scenario is shown for both cases
of two way single lanes and multi-lane traffic. DriveSpace will
adapt as per driving context. In case of a multi-lane traffic sce-
nario, if the host vehicle provides indicator left or right, depend-
ing on which lane the vehicle will move, the DriveSpace will be
able to cover the region of interested lane. Without this context,
the DriveSpace would be limited to the current lane. In case of
dynamic object moving towards the vehicle or otherwise, DriveS-
pace region will adapt it’s size automatically.

The simplest case of lane separation is two way lanes. There
are more complex scenarios especially in case of junctions and
four way crossings. A complex scenario is shown in Figure 4,
where the red and yellow regions demonstrate DriveSpace of cars
going in opposite direction. This is complex to infer from stan-
dard free space and lane detection. Higher level semantic percep-
tion is needed to understand the context and validity of DriveS-
pace.

In lower speed scenarios (e.g. parking), two objects can be
detected by the sensors on the host vehicle. Free space detection
will give the area between the obstacles as free space. However,
if the obstacles are close together (closer than the width of the
host vehicle plus an error margin) then the area between the ob-
stacles should not be considered as DriveSpace, as the vehicle
cannot manoeuvre between the obstacles. Thus, DriveSpace can
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Figure 4. Example of a complex lane crossing scenario. Figure is repro-

duced from KITTI. The red demosntrates the DriveSpace of a car turning left,

the orange shows the drivespace of a vehicle driving forward. Yellow would

be the DriveSpace of other vehicle.

take additional contextual information about the obstacles in the
host vehicles environment to determine the drivable area.

The requirement for legal manoeuvring in DriveSpace must
be considered malleable, as otherwise the autonomous vehicle
will become stuck in many scenarios. For example, consider the
situation that there is a road in which it is illegal to cross the cen-
tral lane marking (often denoted by a solid marking). If there is
an obstruction (e.g. another parked vehicle) that prevents the ego-
vehicle from proceeding within it’s own lane, then the ego-vehicle
must be able to contextualise and cross the marking safely, even
if it is technically considered breaking the law.

Ultimately, we head towards a definition of DriveSpace as
follows: DriveSpace is the area in which the vehicle can safely
and legally (within reason) manoeuvre considering the immediate
context of its environment. It is formed by the following relations:

Timm ⊂ D ⊂ Sda ⊂ S f s ⊂ R3

where Timm is the set of immediately possible trajectories for the
vehicle, and the other terms have been previously defined. As in
the traditional autonomous vehicle architecture as show in Figure
1 the DriveSpace information is continuously fed to a planning
module for usage in updating the optimal vehicle trajectories.

BUILDING BLOCKS OF DRIVESPACE
In this section, we discuss the building blocks of DriveS-

pace. Firstly, we make use of existing surround-view cameras
which provide full 360◦perception around the vehicle. We are
also interested in commercial deployment and leverage the hard-
ware accelerators in automotive SOCs. Real-time design is an-
other important criteria for the proposed algorithm as emphasized
in [15] and [16].

Surround view cameras
Surround view cameras are best suited for near field sensing.

These systems consist of four fisheye cameras with > 180◦ Field
of view (FOV). Usually the front camera is mounted in front grill,
left and right mirror cameras are mounted on wing mirrors and
rear camera mounted under boot lip and are connected to a single
Electronic Control Unit (ECU). Commercially, this setup has been
extensively used for surround viewing applications. As a result of
increasing computational power, they can additionally support a

Figure 5. Surround view camera cocoon

diverse set of applications. More details of surround view cameras
are provided by Yu et al. [17] and Heimberger et al. [18].

From the perspective of parking systems, the cues and layout
are setup according to the human visual system. Because of this,
cameras are impossible to replace, even with expensive LIDAR
sensors. Cameras capture dense semantics, sometimes not avail-
able in other sensors and they are relatively inexpensive sensors,
with low power consumption as a result of their passive nature.
For surround view systems, wide-angle fish-eye lenses are used
in which the horizontal field of view can exceed beyond 180◦.
This means that it is not possible to create a single undistorted
view. Most of the academic literature in computer vision, is fo-
cused on rectilinear images and with fisheye distortion there are
many challenges to re-target algorithms. Typically, these consist
of four cameras which form a camera network with a small over-
lap between them. Four cameras are usually sufficient to cover the
near field environment around a vehicle. Figure 5 shows the four
views of a typical camera network such as this. It is important to
note that they use wide-angle lenses to cover a larger FOV and
hence the fisheye distortion.

Semantic Segmentation
Semantic image segmentation has witnessed tremendous

progress recently with deep learning. Semantic segmentation is
targeted towards partitioning the image into semantically mean-
ingful parts as shown in Figure 6 with various applications. Se-
mantic segmentation for automated driving has many a priori con-
straints relative to a general version. In this section, we discuss the
various aspects which brings a simplifying structure to the prob-
lem. For more details on semantic segmentation for automated
driving, please refer to work by Siam et al. [19]. Prior informa-
tion could simplify model complexity greatly. There are different
types of prior information that can be used. Spatial priors such as
the fact that lanes lie on a ground plane, or that road segmented is
mostly in the bottom half of the images. Geometric priors on the
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Figure 6. Segmentation of an automotive scenes

shapes of objects, for examples lanes are thick lines that are all
converging into a vanishing point. Examples of color priors are
the color of traffic lights or white lanes. Finally, Location priors,
for example the lane, road or buildings locations based on high
definition maps or aerial maps.

Typically automotive systems uses a multi-camera network.
Current systems have at least four cameras and it is increasing to
more than ten cameras for future generation systems. It covers
the entire 360◦ field of view surrounding the car. The geometric
structure of the four cameras and the motion of the car induces
a spatio-temporal structure across the four images. For example,
when the car is turning left, the region imaged by the front camera
will be imaged by the right-mirror camera after a delay. There is
also similarity in the near-field road surface in all the four cameras
as they belong to the same road surface.

Dense SFM
Depth estimation refers to the set of algorithms aimed at ob-

taining a representation of the spatial structure of the environment
within the sensors FOV. In the context of automated parking, it is
the primary mechanism by which computer vision can be used to
build a map. This is important for all parking use cases: it enables
better estimation of the depth of parking spaces over the existing
ultrasonic-based parking systems, and thus better trajectory plan-
ning for both forward and backward perpendicular and fishbone
park manoeuvring; it increases the reliability of kerb detection,
improving the parallel parking manoeuvre; and, it provides an ad-
ditional detection of obstacles, which, in fusion, reduces signifi-
cantly the number of false positives in auto emergency braking.

Depth estimation is the primary focus of many active sensor
systems, such as Time of Flight (TOF) cameras, lidar and radar,
this remains a complex topic for passive sensors such as cameras.
There are two main types of depth perception techniques for cam-
eras: namely stereo and monocular [20]. The primary advantage
of stereo cameras over monocular systems is improved ability to
sense depth even when the camera system is static. It works by
solving the correspondence problem for each pixel, allowing for
mapping of pixel locations from the left camera image to the right
camera image. The map showing these distances between pixels
is called a disparity map, and these distances are proportional to
the physical distance of the corresponding world point from the
camera. Using the known camera calibrations and baseline, the
rays forming the pixel pairs between both cameras can be pro-

Figure 7. Dense point cloud around the vehicle

jected and triangulated to solve for a 3D position in the world for
each pixel. Figure 7 shows an example of dense 3D reconstruc-
tion.

Monocular systems are also able to sense depth [21], but mo-
tion of the camera is required to create the baseline for recon-
struction of the scene. This method of scene reconstruction is re-
ferred to as structure from motion (SFM). Pixels in the image are
tracked or matched from one frame to the next using either sparse
or dense techniques. The known motion of the camera between
the processed frames as well as the camera calibration, are used to
project and triangulate the world positions of the point correspon-
dences. Bundle adjustment [22] is a commonly used approach
to simultaneously refine the 3D positions estimated in the scene
and the relative motion of the camera, according to an optimal-
ity criterion, involving the corresponding image projections of all
points.

After the Optical Flow computation step, the flow vectors
are separated to static and dynamic vectors. These are calculated
using 3 parts 1) epipolor geometry constraint, 2) spatial con-
sistency constraint and 3) temporal propagation constraint. The
dynamic points are separated out and passed through a lattice
based clustering algorithm. In contrast to a regular clustering
method, here we have the points distributed on a regular lattice
and the partial ordering of the points in the lattice can be
exploited to produce better clustering algorithms. The other
points which are static go through a structure from motion (SFM)
pipeline. Firstly, the relative pose of the camera is calculated
by a combination of planar homography based on points on the
ground plane and essential matrix computation for non-ground
points. The complementary combination provides robustness to
the estimate which is key to the accuracy of the next steps in the
SFM pipeline. 3D reconstruction is computed using re-projection
error metric and iterative least squares.

PROPOSED SOLUTION FOR DRIVESPACE
DriveSpace modeling around the ego vehicle involves con-

sideration of many variables such as the road surface, ground
markings, vulnerable user behavior, dynamic vehicles’ motion di-
rection and static objects characteristics etc. DriveSpace can be
modeled as a supervised learning problem, reinforcement learning
problem or even as a graphical model inference. Though super-
vised approaches involve the collection of semantically annotated
data, it is proven to be an efficient solution in a number of relative
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Figure 8. Block diagram of DriveSpace algorithm.

tasks. In [23], authors modelled drivable road area as two stage
problem, first collecting the labels via OpenStreetMaps, vehicle
pose sensors and camera parameters and later using the driven
paths as labels to train a CNN. In [24], the images from a vehicle
mounted camera are fused with its corresponding local route maps
to obtain map-fusion image. The map-fusion image having com-
plementary features is used to train a CNN, namely FCN-VGG16,
to extract the drivable road regions. Though the proposed method
models the drivable region in an unsupervised fashion it is limited
to fixed route autonomous vehicles. In this paper we discuss how
DriveSpace can be posed as a supervised learning problem and
show how it can be modeled as a late fusion of traditional com-
puter vision and deep learning algorithms. Figure 8 shows the
proposed architecture. In this work we argue that using only cam-
era sensors and perception techniques we can efficiently model
drivable regions around an autonomous vehicle. The key stages
involved are, estimating geometric clues via dense reconstruction,
semantic clues via convolutional neural networks and drivepspace
extraction via probabilistic fusion of geometric and semantic in-
formation.

Data Augmentation
The labeling data for DriveSpace is a subset of semantically

labeled data for free space. Below we show how the internal and
external heuristics and priors help in building efficient labeling
data for DriveSpace.

1. Free Space Segmentation: Free space is generally not se-
mantically labelled directly, however, road segmentation is
part of a wide variety of public datasets for autonomous
driving applications and is available with pixel level accu-
racy. While road segmentation is not the same as free space
for certain driving environments there is complete overlap
between the two e.g. highway environment.

2. Lane Information: The initial labeled data for free space
can be modified based on the lane in which the ego vehicle
is traveling, as shown in Figure 9,

3. Static Object Detection: Static objects annotated near the
free space boundary regions are considered as those are
the potential candidates for DriveSpace divergence. Also
they play crucial role in differentiating the free space from
DriveSpace during modeling. An instance based labelling of
objects is more suitable for modelling individual behaviours.

4. Dynamic Object Detection: Dynamic object annotation,
be it vulnerable road users or vehicles, helps in estimating
the dynamic variations in the DriveSpace regions. Hence the
annotations for the same helps in modeling the DriveSpace.

5. HD Map Localisation: Knowledge of the accurate posi-
tion of the vehicle within a HD map, gained through camera
landmark localisation, provides access to a vast amount of
geometric, semantic and real-time data around the vehicle
that can be captured and utilized without a great deal of ex-
tra annotation effort.

DriveSpace Modeling
The recent trend is to model all these prior semantic clues

as an end to end learnable system as an ample amount of data
is available for this type of dense parametric learning. Another
efficient way is to model this as a fusion system, where a num-
ber of computer vision or deep learning algorithm inferences are
fused for better estimation. Both the methodologies have their
own advantages and disadvantages. The unified learning frame-
work needs vast and varied data to be captured and annotated at
significant cost. However, this approach can suffer if the data is
weakly labeled or noisy, whereas the fusion systems are efficient
at handling these issues as human engineered priors are induced.
An optimal way is to make the system end to end learnable with
strong geometric and structured priors included inherently.

CNNs, fusion and hybrid models are further explained be-
low:

1. Deep Convolutional Neural Networks: CNNs have
shown remarkable performance in pixel level segmentation
tasks such as road segmentation. Unlike the free space de-
tection, DriveSpace detection can’t be handled in as trivial a
manner in terms of labelling. To pose the problem as pixel
level loss function, the annotations related to prior structures
specified in the previous section should be considered while
labeling as shown in Figure 9.

2. Fusion based Methodology: In this approach the DriveS-
pace is modeled as a hierarchical model. At each stage the
information is extracted such that it forms the basis for the
next stage. The information is modeled at pixel level which
forms basis for object and geometric stages. Further this ob-
ject level information is passed to scene level processing. As
it involves carefully designed feature engineering blocks, it
makes the method robust to noisy data samples.

3. Hybrid Method: In this method the geometric clues can
be induced into the learnable framework in an explicit or
implicit fashion. As shown in the Figure 8, the geometric
and object level clues are provided as external inputs to the
CNN along with the image information. This modeling not
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Figure 9. Data Annotation Strategy for DriveSpace

only encapsulates the visual information but also the spatial
correlations between the objects of interest.

In the case of autonomous vehicles, multiple camera archi-
tectures can be leveraged to fuse more semantic information into
the models. The same is shown in the proposed hybrid architec-
ture. The proposed architecture involves two pipelines joined by
a fusion algorithm.

Geometric Vision Pipeline: The geometric pipeline extracts
dense depth information that helps in encoding the semantic infor-
mation in an directly applicable environment related dimension
compared to the image dimension. The major building blocks
of proposed geometric pipeline are Dense Optical Flow (DOF)
and Structure From Motion (SFM). Flow information can be used
to estimate the six degrees of freedom camera motion for stereo
rectification in addition to differentiating the dynamic and static
objects. The depth estimation helps in clustering semantic infor-
mation in the temporal domain.

Deep Semantic Pipeline: As stated earlier modeling
DriveSpace as a pixel level semantic segmentation problem may
not be an efficient solution because of the spatial and temporal
correlations between the objects in the scene may not be cap-
tured. Conversely, the semantic information inferred by a well
trained CNN can help the fusion algorithm to efficiently infer the
free space region.

The major blocks of deep semantic pipeline are an en-
coder/decoder architecture based CNN for segmentation at image
level and an object extraction algorithm to extract out the possible
object like structures in the semantic map. The loss function for
the semantic segmentation is mean softmax cross entropy over all
the pixels. The number of classes here are limited to road, lanes,
pedestrians and vehicles. While the road segmentation acts as a
pixel level super set of DriveSpace, the lanes, pedestrians and ve-
hicles brings the contextual information for extracting the subset
of pixels from the road superset.

Fusion: Here we propose fusion and tracking in the image
domain leveraging all image feature information which provides
further semantic information. Image-level fusion of two comple-
mentary cues is from reconstruction and recognition where epis-
temic uncertainty provides confidence of what it is (e.g.: Edge
has gradient score which provides confidence) and spatial uncer-
tainty provides confidence of where it is on the image. Fusion is
performed by combination of the two epistemic uncertainty heat
maps. We propose a spatio-temporal object tracking using Prob-
abilistic Graphical Models (PGM) after image level fusion. PGM

Figure 10. Illustration of context based detection of car [26] (left) and oc-

clusion handling of pedestrians from car (right)

can capture the global structure of the scene. Global context helps
in improving robustness of detection. Figure 10 illustrates how
human beings can easily detect the car because of the external
context of road and buildings even though the image features of
the car are very blurred. This can also help handle occlusion rea-
soning and handling of missing foot points.

To enable fusion, we obtain uncertainty heat maps from the
estimations of the two blocks. For semantic segmentation, un-
certainty can be obtained by Bayesian modeling as discussed in
[25]. For geometric vision pipeline, uncertainties can be heuris-
tically obtained by using confidence metric and prior noise vari-
ances. We model the uncertainties as random variables and do
a weighted fusion to get a single object map. Once we get the
objects, we categorize them into 3 parts based on their nature
and criticality as shown in Figure 11 (top). Each object is then
modelled as a random state vector as shown in Figure 11 (bot-
tom). We use spatio-temporal PGMs to connect all these objects
and find weights across object relationships. This way it can ex-
ploit spatial context to improve estimation (e.g.: pedestrian on
curb/road) and can handle occlusion via spatial reasoning (e.g.:
occluded pedestrian inferred from other pedestrians or occluding
object reasoning). In order to meet real-time constraints, we pro-
pose to use approximate inference through Conditional Indepen-
dence Assumptions (Markov), Sampling (Monte Carlo) and belief
propagation.

One of the main advantages of PGM is the ability to encode
prior knowledge in a Bayesian formalism. Automotive scenes
have plenty of known rigid structure/rules which can be incor-
porated. There are varying levels of model complexity and un-
certainty. For large uncertainty, generic model with least assump-
tions can be used (e.g.: Pedestrian Detection). For less uncer-
tainty, assumptions can be encoded by experience/observation
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Figure 11. Classification of objects into 3 parts (top) and representation of

each object (bottom)

(e.g.: Lane Detection). Prior information could simplify model
complexity greatly (e.g.: Rotation Matrix with less degrees of
freedom). We propose incorporation of the following types of
priors

• Spatial, e.g. lanes lie on ground plane.
• Geometric, e.g. lanes have predefined shape and thickness.
• Color, e.g. lanes are typically white.
• Location, e.g. lane location based on HD maps.

CONCLUSION
Free space and drivable area are important concepts for au-

tonomous driving. In this paper, we generalize and contextualise
these notions to DriveSpace. DriveSpace the provides the basis
for context aware autonomous vehicles. We first motivated the
need for defining DriveSpace via concrete use cases which require
semantic understanding of the environment and making a context
based decision. We proposed an architecture and discussed steps
to achieve the solution. As it is a newly proposed concept, there
is no dataset available and this remains the main bottleneck. Fu-
ture work is to develop a DriveSpace dataset and systematically
compare the various proposed methods.
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