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Abstract
In this paper we propose a data driven model for an au-

tonomous highway pilot. The model is split into two basic parts,

an acceleration/deceleration model and a lane change model. For

modeling the acceleration, a Bayesian Network is used. For the

lane change model, we apply a Hidden Markov Model. The lane

change model delivers only discrete lane change events like stay

on lane or change to left or right, but no exact trajectories. The

model is trained with simulated traffic data, and validated in two

different scenarios: in the first scenario, a single model controlled

vehicle is embedded into a simulated highway scenario. In the

second scenario, all vehicles on a highway are controlled by the

model. The proposed model shows reasonable driving behavior

in both test scenarios.

Introduction
Private transport has become more and more important over

the last decades since people put emphasis on individual mobility.

Together with the economic growth this leads to a rapidly increas-

ing number of traffic participants. It is not possible to match the

increased number of vehicles with appropriate expansion of in-

frastructure. This results in a rising traffic density which demands

increased attention from the driver.

It is known that human driving errors are the main reason for

traffic accidents [1–3]. Therefore it is reasonable to try to elim-

inate the main risk factor, the human behavior, in today’s traffic.

Thus, an autonomous driving system is an important contribution

to increase traffic safety significantly.

Even though increased safety is the main advantage of an

autonomous driving system, there are also more benefits. Au-

tonomous drivers can be more economical by anticipatory driving

and employing a smoother driving style than most human drivers

do. Furthermore, by communicating with other vehicles and the

infrastructure, autonomous driving will be able to increase traffic

throughput in the future.

However, the aim of this contribution is to create a high-

way pilot that participates in normal highway traffic by predicting

the driving maneuvers acceleration/deceleration and lane change.

These maneuvers can be seen as the driver’s intention on the tac-

tical level of the scheme introduced by [4]. The intention of the

driver cannot be observed directly, it has to be inferred from other

observable signals. There are many potential signals that can be

used to infer the driver’s intention, for instance the ego vehicles

environment, pedal positions, steering wheel actions, viewing di-

rection of the driver, and many more. The effort for measuring

these signals is different. Depending on the type of the signal,

some are more difficult and less robust to determine than others.

In this paper, we assume that only the most basic signals are avail-

able, this means the ego vehicle’s actual and desired velocity, the

positions and velocities of the surrounding vehicles and some ba-

sic information about the highway such as the number of lanes.

A wide range of papers have been published dealing with the

task of autonomous driving. A survey over different approaches

and a general theory of driver behavior is provided in [5–7].

The driver’s actual intention is recognized in [8, 9] using Hidden

Markov Models (HMMs). A recognition and prediction method

for certain driving events and maneuvers using HMMs is pro-

posed in [10, 11]. The intended action of a driver is modeled

as a sequency of mental states using Markov Dynamic Models

in [12]. Optimal policy determination in a certain prediction hori-

zon is proposed in [13] by assuming a markov process for the pol-

icy states. This approach is extended in [14] by predicting other

drivers behavior using change point detection and Viterbi algo-

rithm. Collision avoidance by steering is considered in [15] using

a stochastic switched ARX model. A broad range of different

Bayesian Network (BN) models for driver behavior modeling and

prediction is proposed in [16–20]. They all use different variables

and net structures. The acceleration and deceleration behavior of

a driver is modeled as a Dirichlet process mixture model in [21].

A various range of features is extracted from vehicle’s sensor sig-

nals in [22] and classified using Relevance Vector Machines. The

prediction of different models in different nodes is combined in a

competition function to increase the accuracy of the decision [23].

Lane change is predicted in a 2 seconds horizon using the veloci-

ties and accelerations of the vehicles ahead and locally-weighted

projection regression for classification in [24]. Lane change pre-

diction in urban streets for drivers of different aggressiveness lev-

els using a legistic regression model is proposed in [25], while

using support vector machines for lane change detection is pro-

posed in [26]. Risk function orientated autonomous overtaking

integrating safety indicators as time headway and time to colli-

sion is discussed in [27]. A control algorithm for autonomous

overtaking using stochastic model predictive control is presented

in [28]. It relies on suitable prediction for longitudinal and lateral

speeds of the surrounding vehicles.

In this paper, we propose a dual model to realize a high-

way pilot: the acceleration and deceleration is predicted by a BN

model [29,30], while the lane change is predicted by a HMM [31].

Even though similar models are proposed in literature before, all

of them mentioned above use more or different input signals than

we have available. The acceleration model only takes the velocity

of the ego vehicle and the preceding vehicle into account. The

lane change model considers the traffic in the lane of the ego ve-

hicle as well as the traffic in the lanes on the left and right side of

the ego vehicle.
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Problem Statement
An automated highway pilot faces several challenges. The

main task is to integrate into the moving traffic and to avoid col-

lisions. However, it has limited knowledge of the surrounding

environment and the other vehicles.

In our particular application scenario, the highway pilot

knows the number of lanes in driving direction and its actual lane.

Furthermore it has a desired velocity value, i.e. the velocity that

it would like to drive on a free road. The highway pilot receives

measurement data from its on-board sensors. These data contain

information about the 5 surrounding vehicles of the ego vehicle:

• Vehicle in front in the same lane

• Vehicle in front in the right lane

• Vehicle in front in the left lane

• Vehicle behind in the right lane

• Vehicle behind in the left lane

The sensors deliver the distance of the ego vehicle to the surround-

ing vehicles and the actual velocity of those vehicles. The distance

values are in relation to the ego vehicle, i.e. the vehicles in front of

the ego vehicle have positive distances, the vehicles behind of the

ego vehicle have negative distances. The velocity value represents

the absolute driving velocity of each vehicle. For simplicity rea-

sons, we assume that all sensors work and deliver correct values

at all time instances.

The task of the highway pilot is to predict a certain acceler-

ation and lane change to be performed within the following time

step. We also assume that lane changes and desired accelerations

are performed and completed in one time step of 0.5s.

Models
In highway driving scenarios, there are numerous driving sit-

uations and events. It is simply impossible to enumerate all sorts

of situation a driver might face during a highway ride. Therefore a

rule based highway pilot will not be able to cover the whole range

of occurring situations. Hence we decided to use data driven mod-

els to predict the desired acceleration and lane change of the ego

vehicle. The parameters of the models are trained using data of a

simulated highway scenario.

We are well aware of the fact that satisfying autonomous

driving results have been achieved by employing deep learning

approaches in combination with high performance computation

hardware [32]. However, since our hardware resources are re-

stricted to ordinary personal computers, we are looking for mod-

els with less computational effort.

According to the introduction section, researchers report that

especially HMMs and BNs are capably to fit the needs of au-

tonomous driving. After testing some approaches we decided to

train separate models for acceleration and lane change. For ac-

celeration a BN performed best, while for changing lanes a HMM

delivered better results than other tested models. The details of the

models are described in the following subsections. The selection

of the proposed input structures was performed using well known

feature selection filter and wrapper approaches [33]. The models

are applied in a time resolution of 0.5s, i. e. each 0.5 seconds the

models deliver a new prediction for the following time step based

on the actual sensor values.

We intentionally don’t use physical units in the description

of the model. The models we use are data driven and the model

Figure 1. Structure of the BN.

inputs are normalized before applying the model. We only have

to make sure that the training and test data use the same physical

units.

Acceleration Model
The acceleration model considers only the traffic in the ac-

tual lane of the ego vehicle, i. e. it evaluates the ego vehicle itself

and its preceding vehicle. A simple BN using the following inputs

performed best amongst all evaluated input and net structures

• Ego vehicle velocity ve

• Ego vehicle desired velocity vd
e

• Distance to vehicle in front d f

• Velocity of vehicle in front v f

From the ego vehicle’s velocity ve and the velocity of the vehicle

in front v f , the velocity difference ∆v f = ve −v f is computed and

used as a model input instead of just using v f . The net structure

that is used is shown in Fig. 1 with ae denoting the acceleration

of the ego vehicle as the output of the model.

The conditional probability tables (CPT) of the BN are

trained based on training data using maximum a posteriori (MAP)

estimation [34]. For that purpose the continuous input and output

signals are quantized in certain bins. The bins are defined accord-

ing to the training data.

Given the CPTs and the quantized input signals, the accel-

eration can be predicted. Even with incomplete data a prediction

could be made using for instance Gibbs sampling for the miss-

ing inputs. In a certain time step, the model delivers a probability

value

P
(

ae,i|ve,v
d
e ,d f ,∆v f

)

, i = 1, . . . ,n (1)

for each acceleration bin denoted by 1, . . . ,n in ascending

order, with ve, vd
e , d f and ∆v f denoting here the quantized input

values. The probabilities pi = P
(

ae,i|ve,v
d
e ,d f ,∆v f

)

fulfill the

conditions pi ∈ [0,1] and ∑n
i=1 pi = 1.

The straightforward way of choosing the bin with the highest

probability results in a deterministic driver that performs exactly

the same driving maneuvers every time. However, the more real-

istic scenario is a probabilistic driver that chooses between some

possible driving maneuvers in a probabilistic way. To realize this,

we compute the cumulative sums of the output probabilities pi by

ci = ∑i
j=1 p j for i = 1, . . . ,n. Then a random number r ∈ [0,1] is

generated and the highest acceleration bin i with r <= ci is chosen

as the model output.
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Figure 2. Example of an acceleration profile before and after smoothing.

The quantization of the input and output signals entails that

the model delivers also a quantized output. Since it is not de-

sirable to have a quantized acceleration and velocity profile, the

acceleration values are smoothed in a post processing step to ob-

tain a smoother profile. The smoothing is done using Whittaker’s

smoother [35–37]. A comparison between a typical velocity pro-

file in our tests before and after acceleration smoothing can be

seen in Fig. 2.

Lane Change Model
The HMM for lane change considers both the traffic situation

on ego vehicles lane and the traffic situation in the two neighbor-

ing lanes (left and right of the ego vehicle’s lane). The inputs for

the lane change model are computed from the raw sensor data.

These inputs are the observations of the HMM, while the lane

change is the hidden state to be predicted. The raw sensor data

needed to compute the model inputs are

• Ego vehicle velocity ve

• Ego vehicle desired velocity vd
e

• Distance to vehicle in front d f

• Velocity of vehicle in front v f

• Distance to vehicle in front in the right lane d f ,r

• Velocity of vehicle in front in the right lane v f ,r

• Distance to vehicle behind in the right lane db,r

• Velocity of vehicle behind in the right lane vb,r

• Distance to vehicle in front in the left lane d f ,l

• Velocity of vehicle in front in the left lane v f ,l

• Distance to vehicle behind in the left lane db,l

• Velocity of vehicle behind in the left lane vb,l

From these data, certain input features for the model are com-

puted. The difference of the ego vehicles velocity to its desired ve-

locity is computed as ∆vd
e = ve−vd

e . The velocity difference of the

ego vehicle to its preceding vehicle is computed as ∆v f = ve−v f .

For the vehicle in the right lane and in the left lane of the

ego vehicle, the estimated time to collision (ETTC) is computed.

Therefore, we again compute the velocity differences to the sur-

rounding vehicles as

∆v f ,r = ve − v f ,r

∆vb,r = ve − vb,r

∆v f ,l = ve − v f ,l

∆vb,l = ve − vb,l

(2)

and the resulting ETTCs as

ETTC f ,r =

{

d f ,r

∆v f ,r
if ∆v f ,r > 0

∞ if ∆v f ,r ≤ 0

ETTCb,r =

{

db,r

∆vb,r
if ∆vb,r < 0

∞ if ∆vb,r ≥ 0

ETTC f ,l =

{

d f ,l

∆v f ,l
if ∆v f ,l > 0

∞ if ∆v f ,l ≤ 0

ETTCb,l =

{

db,l

∆vb,l
if ∆vb,l < 0

∞ if ∆vb,l ≥ 0
.

(3)

To get just one single value for each lane, we finally com-

pute the minimum of the two ETTCs on each lane according to

ETTCr = min
(

ETTC f ,r,ETTCb,r

)

for the right lane of the ego

vehicle and ETTCl = min
(

ETTC f ,l ,ETTCb,l

)

for the left lane of

the ego vehicle. In the case that there are no vehicles at certain po-

sitions in relation to the ego vehicles, the according input features

are set to default values.

Finally, the features ∆vd
e , d f , ∆v f , ETTCr, and ETTCl are

used as model inputs, i.e. as observations of the HMM. The transi-

tion and the emission probabilities of the HMM are trained based

on training data using a maximum likelihood estimator [38]. For

that purpose, the continuous input and output signals are quan-

tized in certain bins. The bins are defined according to the training

data.

Given the inputs, the transition and the emission probabili-

ties, the HMM predicts the lane change value c ∈ {−1,0,1} with

the meaning

c =







−1 . . . change to right lane

0 . . . stay on lane

1 . . . change to left lane.

(4)

As in the acceleration model, the lane change model de-

livers a probability value P(c) for each possible lane change

c ∈ {−1,0,1} with ∑c∈{−1,0,1} P(c) = 1.

The final selection of the lane change maneuver is realized

analogously to the acceleration model by computing the cumula-

tive sums of the probabilities and generating a random number.

However, to avoid totally random lane changes, a majority vote of

predicted lane changes is performed over the last few time steps.

Additionally, to consider safety issues, the distances to the vehi-

cles in the target lane is observed. If one of those distances is

below a certain safety distance, the lane change will not be per-

formed. Furthermore, a separate lane change model is trained and

applied if the ego vehicle is in the far right or far left lane. Those

models exclude lane changes to the not existing neighboring lane.

Training and Test Setup
The models were trained using simulated data of the com-

mercial traffic simulation system PTV VISSIM [39]. Four data

sets on a highway with four lanes were produced, two of them on

a 2 km highway section and two of them on a 4 km highway sec-

tion. Altogether approximately 2 hours of traffic data with 10190

vehicles were simulated. The data contain only flowing traffic

with velocities between 80 and 160 km/h. From all vehicles, the
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features were extracted and used as training data for the proposed

models.

For testing the models, two different approaches were imple-

mented. In the first one, a single instance of vehicle controlled by

the proposed models was embedded in a simulated 4-lane VIS-

SIM highway scenario using a Matlab interface. In the second

one, a Matlab highway scenario was created containing only ve-

hicles controlled by the proposed models. The vehicles are cre-

ated randomly at the beginning of a highway section with a ran-

dom desired speed, initial speed and lane. Then the vehicles drive

along this highway section applying the models in every time step.

On each lane, a vehicle was created with a probability of 20%

each second (i.e. 1 vehicle every 5 seconds) and with a mini-

mal time difference of 2 seconds in the same lane. Moreover, the

desired velocity vd of each vehicle was uniformly distributed be-

tween 90 km/h and 140 km/h, and the initial speed was uniformly

distributed between 90 km/h and vd km/h. Each vehicle starts at

position 0 m on the highway and drives until it exceeds the 3 km

limit, then it is deleted.

Results

Exemplary results of the two test scenarios described in the

previous section are provided here.

Single controlled vehicle in VISSIM environment

In the first test scenario, the controlled vehicle drives on the

4 km highway section with 4 lanes in the VISSIM environment.

It is placed initially on a starting position of 400 m on lane 2, with

an initial velocity of 110 km/h and a desired velocity of 120 km/h.

Fig. 3 shows an exemplary result of this test scenario. The

upper subplot shows the local environment of the ego vehicle at

the end of the highway, the driving direction is from left to right.

The rectangles represent the vehicles (ego vehicle in red). The

second subplot shows the velocity of the ego vehicle throughout

the whole test run, while the third and fourth subplots show the

distance to the preceding vehicle and the ego vehicle’s lane re-

spectively.

In the beginning, the ego vehicle accelerates to its desired

velocity and is significantly faster than the (changing) preceding

vehicles far in front. When the ego vehicle approaches the preced-

ing vehicles, it assimilates the velocity to keep the distance. After

a short change to lane 3 (between 1280 m and 1420 m) the vehi-

cle stays on lane 2 again and keeps the distance to its preceding

vehicle by assimilating the velocity. As another vehicle pulls into

the ego vehicles lane at 1900 m, the ego vehicle has to decelerate

quickly. After changing to lane 3 at 1970 m and lane 4 at 2300

m, the ego vehicle accelerates again towards its desired velocity,

only adjusting the velocity to keep the distance to the preceding

vehicle at about 40 m to 50 m.

Although it is not possible to show all relevant driving infor-

mation here (for instance the distances and velocities of all sur-

rounding vehicles), the driving behavior appears quite reasonable.

Some desirable lane changes were prevented by other vehicles in

the target lane. Furthermore, after approaching the preceding ve-

hicles the ego vehicle was not able to reach its desired velocity

any more due to the traffic, even by changing to the far left lane.

Figure 3. Exemplary result of a single controlled driver embedded in a

VISSIM environment.

All controlled vehicles in Matlab environment

An exemplary driving maneuver is shown in Fig. 4. The

vertical rectangles represent the vehicles on the highway, while

the horizontal lines represent their trace in the last 5 seconds of the

simulation. We simulated a 3 km highway section with 4 lanes,

the driving direction is from left to right.

The left hand side shows the scenario at simulation time 106

seconds. The blue vehicle on lane 4 had an initial velocity of 102

km/h, a desired velocity of 115 km/h and is currently driving on

position 1663 m with a velocity of 112 km/h. The white vehicle

on lane 3 had an initial velocity of 101 km/h, a desired velocity

of 102 km/h and is currently driving on position 1683 m with a

velocity of 102 km/h. The blue vehicle just changed from lane 3

to lane 4 to overtake the white vehicle.

The right hand side shows the scenario at simulation time

130.5 seconds. The white vehicle changed from lane 3 to lane

2 and is driving now at position 2385 m with a velocity of 103

km/h. The blue vehicle changed back to lane 3 and is driving now

at position 2436 m with a velocity of 115 km/h. Hence the blue

vehicle performed an overtaking maneuver and went back to its

original lane when the lane was clear again.

Another indicator for the performance of the model is the av-

erage number of cars and the average velocity on each lane. With

the obligation to drive right, it is assumed that there are more ve-

hicles in the right lanes than in the left lanes. Furthermore, the

faster vehicles will be more likely to drive in the left lanes than

in the right lanes. Even though the vehicles are created with the

same probability and the same distribution of initial and desired

speed on each lane, the model yields exactly the expected behav-

ior. For the 3 km highway section, the average number of vehicles

on each lane and their average velocity after a 12 hour test run can

be seen in Table 1. It shows that the average number of vehicles

on a lane decreases from right to left, while the average veloc-

ity is increasing from right to left. Furthermore, three rear end

collisions occurred in this test run. This was the case when two

vehicles changed to the same lane from two sides in the same time

step and the distance between them was not big enough to avoid
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Statistics of the simulation scenario

Lane Average number of

vehicles on lane

Average velocity of

the vehicles on lane

[km/h]

1 24.44 103.06

2 17.74 112.94

3 11.65 115.91

4 6.10 117.29

the collision. Since the model has no information what other ve-

hicles plan (especially vehicles 2 lanes away), this situation could

not be avoided by the proposed model.

Conclusions

We proposed a simple model to predict the driving events ac-

celeration/deceleration and lane change for autonomous driving.

Having in mind the simplicity of the model, it performs well in

doing reasonable driving maneuvers.

However, there are still some improvements to be done. The

autonomous vehicle rarely keeps a constant velocity, there are

many minor acceleration and deceleration events. The acceler-

ation model and the lane change model work independent of each

other. A collaboration of the two models might result in more

smooth driving actions like overtaking. Another task that might

be improved is including the velocity information in the target

lane in the lane change model. Even though the feature selection

did not select it as a significant feature, it seems to be intuitively

important, also from human driving experience. Furthermore, the

model has to be tested in more details including pre designed crit-

ical driving scenarios.

Acknowledgments

This work has been partially conducted within the ENABLE-

S3 project that has received funding from the Ecsel Joint Under-

taking under grant agreement no 692455. This joint undertaking

receives support from the European Unions Horizon 2020 Re-

search and Innovation Programme and Austria, Denmark, Ger-

many, Finland, Czech Republic, Italy, Spain, Portugal, Poland,

Ireland, Belgium, France, Netherlands, United Kingdom, Slo-

vakia, and Norway.

References
[1] S. H. Chen, J. S. Pan, and K. Lu, “Driving behavior analysis based on

vehicle OBD information and AdaBoost algorithms,” Proceedings of

the International MultiConference of Engineers and Computer Scien-

tists, Hong Kong, 2015

[2] D. L. Hendricks, J. C. Fell, and M. Freeman, “The relative frequency

of unsafe driving acts in serious traffic crashes,” Report no. DOT-HS-

809-206, 2001

[3] Statistisches Bundesamt, “Verkehr - Vekehrsunfälle,” Fachserie 8,

Reihe 7, Wiesbaden, Germany, 2017

[4] J. A. Michon, “Human behavior and traffic safety,” Plenum Press,

New York, 1985

[5] M. K. Kumar, and V. K. Prasad, “Driver behavior analysis and pre-

diction models: a survey,” International Journal of Computer Science

and Information Technology, vol. 6, no. 4, pp. 3328–3333, 2015

[6] W. Wang, J. Xi, and H. Chen, “Modeling and recognizing driver be-

havior based on driving data: a survey,” Hindawi Publishing Corpo-

ration, Mathematical Problems in Engineering, 2014

[7] R. Fuller, “Towards a general theory of driver behavior,” Elsevier Ac-

cident Analysis & Prevention, vol. 37, no. 3, pp. 461–472, 2005

[8] H. Berndt, J. Emmert, and K. Dietmayer, “Continuous driver inten-

tion recognition with hidden Markov models,” Proceedings of the

11th IEEE Conference on Intelligent Transportation Systems, pp.

1189–1194, 2008

[9] L. He, C. F. Zong, and C. Wang, “Driving intention recognition and

behavior prediction based on a double-layer hidden markov model,”

Journal of Zhejiang University-SCIENCE C (Computers & Electron-

ics), vol. 13, no. 3, pp. 208–217, 2012

[10] D. Mitrovic, “Reliable method for driving events recognition,” IEEE

Transactions in Intelligent Transportation Systems, vol. 6, no. 2, pp.

198–205, 2005

[11] K. Torkkola, S. Venkatesan, and H. Liu, “Sensor sequence model-

ing for driving,” Proceedings of the 18th International Florida Artifi-

cial Intelligence Research Society Conference - Recent Advances in

Artifical Intelligence, pp. 721–726, 2005

[12] A. Liu, and D. Salvucci, “Modeling and prediction of human

driver behavior,” Proceedings of the 9th International Conference on

Human-Computer Interaction, 2001

[13] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,

“MPDM: multipolicy decision making in dynamic, uncertain envi-

ronments for autonomous driving,” IEEE International Conference

on Robotics and Automation, 2015

[14] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Mul-

tipolicy decision-making for autonomous driving via changepoint-

based behavior prediction: Theory and experiment,” Autonomous

Robots, vol. 41, no. 6, pp. 1367–1382, 2017

[15] T. Suzuki, S. Sekizawa, S. Inagaki, S. Hayakawa, N. Tsuchida, T.

Tsuda, and H. Fujinami, “Modeling and recognition of human driv-

ing behavior based on stochastic switched ARX model,” Proceedings

of Joint IEEE Internation Conference on Decision and Control and

European Control Conference, pp. 5095–5100, 2005

[16] D. Sadigh, K. Driggs-Campbell, A. Prugelli, W. Li, V. Shia, R. Ba-

jcsy, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia,

“Data-driven probabilistic modeling and verification of human driver

behavior,” Formal Verification and Modeling in Human-Machine

Systems: Papers from the AAAI Spring Symposium, pp. 56–61, 2013

[17] T. Kumagai, Y. Sakaguschi, M. Okuwa, M. Akamatsu, “Prediction

of driving behavior through probabilistic inference,” Proceedings of

the 8th International Conference of Engineering Applications of Neu-

ral Networks, pp. 117–123, 2003

[18] J. Forbes, T. Huang, K. Kanazawa, and S. Russell, “The BATmo-

bile: towards a bayesian automated taxi,” Proceedings of the 14th

International joint Conference on Artificial Intelligence, vol. 2, pp.

1878–1885, 1995

[19] T. Gindele, S. Brechtel, and R. Dillmann, “A probabilistic model

for estimating driver behaviors and vehicle trajectories in traffic envi-

ronments,” 13th International IEEE Annual Conference on Intelligent

Transportation Systems, pp. 16225–1631, 2010

[20] J. Maye, R. Triebel, L. Spinello, and R. Siegwart, “Bayesian on-

line learning of driving behavior,” IEEE International Conference on

Robotics and Automation, 2011

[21] P. Angkititrakul, C. Miyajima, and K. Takeda, “Analysis and predic-

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 041-5



1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Position [m]

1

2

3

4

L
a

n
e

(a) Scenario at time 106 seconds

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Position [m]

1

2

3

4

L
a

n
e

(b) Scenario at time 130.5 seconds

Figure 4. Exemplary driving event when all drivers are controlled by the proposed model.
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