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Abstract

Autonomous robots and self-driving vehicles require agents
to learn and maintain accurate maps for safe and reliable oper-
ation. We use a variant of pose-graph Simultaneous Localiza-
tion and Mapping (SLAM) to integrate multiple sensors for au-
tonomous navigation in an urban environment. Our methods ef-
ficiently and accurately localize the agent across a stack of maps
generated from different sensors across different periods of time.
To incorporate a priori localization data, we account for the dis-
crepancies between LiDAR observations and publicly available
building geometry. We fuse data derived from heterogeneous sen-
sor modalities to increase invariance to dynamic environmental
factors, such as weather, luminance, and occlusions. To discrimi-
nate traversable terrain, we employ a deep segmentation network
whose predictions increase the confidence of a LIDAR-generated
cost map. Path planning is accomplished using the Timed-Elastic-
Band algorithm on the persistent map created through SLAM. We
evaluate our method in varying environmental conditions on a
large university campus and show the efficacy of the sensor and
map fusion.

Keywords: sensor fusion, terrain classification, probabilistic
mapping, laser odometry, autonomous navigation

Introduction

Only a few decades ago the intelligent systems of today
would have been considered far-fetched. For example, au-
tonomous navigation necessitates a means of distilling semantic
information from the outside world, making informed decisions
of the next course of action, and maintaining a robust and con-
tinuous estimate of external states. The safety-critical challenge
can tolerate only a marginal amount of error and must overcome
trade-offs between feasibility, safety, and efficiency.

Autonomous vehicles utilize a combination of high-
precision GPS and multiple sensors alongside various algorithms
to produce highly accurate maps. The usage of simultaneous lo-
calization and mapping (SLAM) methodologies along with map
priors can further improve upon the quality of generated maps and
reduce localization error. Frequently, SLAM-based self-driving
systems are evaluated under restricted operating conditions with
limited variance in weather, luminance, and sensor occlusion.
However, as autonomous navigation is becoming more attainable,
the importance of robust performance across disparate real-world
conditions must be emphasized.

Our work focuses on enhancing the robustness of au-
tonomous transportation on a robotic golf cart (Figure[T). The fu-
sion of multiple sensors of various modalities, as well as a priori
topographic data, aid in this increase in resiliency. Furthermore,
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Figure 1. The RIT autonomous people mover, the “Tiger Taxi.”

a segmentation network augments the path planning capability of
our autonomous system. We perform experiments over a vari-
ety of seasons, weather conditions, and times of the day within a
large-scale university environment, which contains a diverse set
of roadways, sidewalks, and dynamic obstacles.

Background

Autonomous driving has received increasing attention for
several decades. Interest is driven largely by the vision of safer
and further unified transportation. The high-level goals of au-
tonomous driving can be decomposed into several smaller tasks,
i.e. mapping, localization, path planning, and path execution [1].
Deployable autonomous systems must operate in real-time, a con-
straint which adds further complexity by demanding efficient yet
accurate solutions to these various tasks.

The 2007 DARPA Urban Challenge indicated that au-
tonomous vehicle technology was a realizable concept. Several
novel challenges were prompted as many common scenarios were
excluded from the event, but the influx in interest in the area ac-
celerated progress nonetheless. Today, autonomous vehicles are
on the forefront, as automobile manufacturers begin to incorpo-
rate new self-driving technology into their products and further
invest in research [2 3]

Various new research paths show promise towards fully re-
alizing autonomous driving. Firstly, the inclusion of localization
priors in a navigation framework can improve greatly the global
estimate of an agent. These methods are especially appealing in
SLAM systems as they mitigate directly the requisite for a loop-
closure method. There have been several approaches proposed
to incorporate such a priori data. Egocentric matching with an
aerial image has been proposed by several others. Aerial im-
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agery contains rich features (e.g. buildings, roads, vegetation)
that can be represented similarly by either camera or laser scanner
data. In [4], walls are extracted from robot-centric imagery and
matched with lines extracted from aerial imagery, whereas [S]] ex-
tracts and compares road-level salient features from both afore-
mentioned visual sources. Another line-matching algorithm is
proposed in [6] but utilizes walls accumulated by and segmented
from LiDAR scans. A laser scanner is used to create grayscale
re-emission maps in [7] which are in turn compared with aerial
imagery by normalized mutual information. While these methods
have proven themselves to improve global localization accuracy,
they fail when sensors are unable to recognize the features of the
aerial map, whether it is due to occlusion, noise, or luminance
differences.

Topographical geometric data is richer and less noisy than
aerial imagery data, thus it should be favored when available.
In [8]], georeferenced and publicly available road data is taken
from OpenStreetMap. A classifier determines whether robot sen-
sors observe a given road network. However, this approach re-
lies heavily on road networks, which prevents the extension to
off-road (e.g. pedestrian or non-vehicular pathways) and ignores
other useful world features provided by OpenStreetMap. [9,[10]
take another approach which instead makes use of building ge-
ometry provided by OpenStreetMap and directly uses the data as
edge constraints for the optimization of the SLAM pose graph.
‘We extend [10]] to this work.

All autonomous systems must sense their environment for
the purpose of either creating a map or localizing within one.
Typically, sensor configurations with more redundancy allow a
system to make more refined predictions over time, especially
when one or more sensors begin to fail. An example of localiza-
tion is detailed in [[L1] where localization accuracy with respect
to GPS-only systems is improved significantly by combining the
data from various sensors. The data is used to generate infrared
reflectivity maps for comparison to real-time LiDAR measure-
ments. This work was subsequently improved upon by modeling
the maps as a grid-like collection of Gaussian distributions repre-
senting the infrared reflectivity [[12]].

State-of-the-art methods for visual scene understanding uti-
lize convolutional neural networks (CNNs) for feature extraction
and class prediction. Initial methods employed models adapted
from object recognition problems that use the CNN hierarchy to
extract rich features [13]. These features can be upsampled back
to the initial resolution, resulting in a mask where each pixel rep-
resents a class prediction. Furthermore, it was shown in [[14] that
the upsampling process could be improved by using a symmetric
decoder to fine-tune predictions. To achieve real-time predictions
from the fully-convolutional model, speed is taken into consid-
eration by reducing the number of parameters in the model and
downsampling the input early. This act lowers the computational
requirements of the model and allows it to be deployed on a sin-
gle GPU. The model adapted to this work is the Efficient Network
(ENet) [15] since it is capable of making scene predictions at a
rate of at least 30 frames per second.

Prior works have focused on accuracy and consistency as
an agent navigates within constrained conditions. Our research
focuses on the non-ideal environmental states which are present
in everyday scenarios. By developing an algorithm to traverse a
large university campus across several seasons, we demonstrate

040-2

standard SLAM algorithms require additional mechanisms and
data in order to handle significantly more variation. Multimodal
sensory input, a priori topological information, and a segmenta-
tion network all contribute towards such generalization. Our eval-
uation environment contains heavy pedestrian traffic and severe
weather patterns which make it an ideal location to demonstrate
the robustness of our SLAM augmented navigation system.

Methodology
Sensor Fusion

LIDAR Odometry and Mapping (LOAM)
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Figure 2. Block diagram of the sensor fusion model.

The basis of our localization relies on laser odometry to de-
duce cart motion from time-varying LiDAR sensor data. LIDAR
SLAM is popular among localization methods as the LiDAR sen-
sors yield accurate and robust depth information of an environ-
ment. The sensors provide reflectivity of surfaces as well as dis-
tance from them, which can be used to construct dense 3D graphs
of an environment over time. We build off of the laser odometry
method, LiDAR Odometry and Mapping (LOAM) [16], which
has scored first on the KITTI odometry benchmark suite [17] for
LiDAR-only methods, in this work. In order to produce high-
precision and real-time state estimation, LOAM uses multiple
nodes which operate in parallel. The laser odometry phase pro-
duces a rough motion estimation based on two sequential high-
frequency LiDAR scans. To further tune this estimate, LOAM
maintains a localized LiDAR map of the current drive and aligns
LiDAR scans with this map at a lower frequency.

To further augment the LIDAR odometry model, we fuse the
pose estimates from all available sensors via an extended Kalman
filter (EKF) and produce a full 6-DOF pose. We elect to exploit
the multi-nodal structure of LOAM by inserting the EKF between
the LiDAR odometry and LiDAR mapping nodes, as illustrated
by Figure Fusing our additional sensors between LOAM’s
two state estimation nodes further ensures smooth and continu-
ous states throughout a drive.

To mitigate the need for loop-closure detection and closing,
we fuse a GPS sensor into our localization pipeline, minimizing
long-term drifts with globally referenced poses. However, the
GPS poses a drawback that hurts odometry estimation: the fre-
quent discontinuity between consecutive measurements. These
inconsistencies are present especially in urban canyons where
GPS receivers become susceptible to shadowing and multipath
effects [18]]. The Rochester Institute of Technology (RIT) cam-
pus bears many tall buildings and underpasses which causes oc-
casional GPS performance degradation or even complete failure.

For additional heading and acceleration information, an in-
ertial measurement unit (IMU) is fused into our system. IMU per-
formance is degraded significantly by sub-freezing temperatures
and magnetic interference, both of which are present in our test-
ing environment. To mitigate these issues, the Haversine formula
is employed to aid in corrections of heading information using
EKF-filtered GPS data.
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Exploiting Building Geometry

We extend the ideas presented in [[10] to this work — build-
ing geometry of the local and surrounding areas are pulled from
OpenStreetMap to augment the localization process. The primary
goal is to account for the error estimated between LiDAR obser-
vations and known buildings, which can be distinguished easily
by the sensor. The error can thus be used to produce a homo-
geneous transformation to correct the heading and position of an
agent. We integrate this pose estimate within an EFK as described

in the[Sensor Fusion|Section. The following outlines this method.

1. Convert the publicly available building geometry to 2D geo-
referenced point clouds.

2. Apply the Ramer-Douglas-Peucker (RDP) algorithm to re-
duce the raw LiDAR scan into a polyline. For 3D LiDAR
(e.g. the Velodyne VLP-16), a virtual 2D scan can be con-
structed using the method proposed in and used in [10].
A higher RDP ¢ is acceptable as the majority of salient
points belong to buildings with flat surfaces.

3. Segment the polyline into individual lines (buildings) based
on potential line length and number of laser points. The
linearity of the points can also be used as a threshold for
consideration.

This method can be extended easily to 3D geometry, however,
height information of buildings is fairly sparse within the Open-
StreetMap database, which necessitates another data source or
manual annotation. Building altitude can also be estimated given
a number of floors. This work did not use 3D geometry.

Navigation & Obstacle Avoidance

Our system’s framework for autonomous navigation uses the
ROS navigation stack [20} 21]]. The navigation stack maintains
local and global cost maps, which are used for the construction
and temporal execution of valid paths. The sensor data is used to
update the cost maps and detect anything that might obstruct the
golf cart. Obstacles are placed onto the cost maps, and the cost of
their surroundings is inflated to maintain a comfortable distance
while driving.

Our localization system is utilized by the ROS navigation
stack for odometry information. The output of our localization
system is a transform from a pre-specified GPS coordinate to the
current location. The transformation is utilized by OctoMap [22]]
to generate a 3D map of the available terrain as illustrated in Fig-
ureEl OctoMap makes use of octrees, an efficient recursive struc-
ture for 3D data, for probabilistic mapping which aid in provid-
ing knowledge of the static obstacles that the golf cart needs to
avoid. Once projected into two dimensions, this static informa-
tion is handed off to the global planner, which determines the
best path between the cart’s current location and a chosen goal
location. This path is found using Dijkstra’s algorithm to search
through the grid-like structure of a cost map, each voxel repre-
senting a node in the graph. Ultimately, if a valid path is found,
no other path will lead to the target destination without incurring
additional cost.

A local planner determines the optimal trajectory to follow
that allows for the completion of the next set of sub-goals from the
global plan. The trajectory is found using the Timed-Elastic-Band
algorithm [23] 24} [25]], which takes into account velocity and ac-
celeration constraints and the Ackermann steering configuration
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Figure 3. OctoMap 3D point cloud representation of the beginning of our
odometry data set.

Figure 4.
the Rochester Institute of Technology campus. The cyan and pink indicate
regions of high cost, and a green line indicates the path taken by the golf cart
as produced by the local planner.

Representative local cost map of the corresponding region of

of the golf cart. The resulting path is optimized additionally for
distance and the avoidance of objects which are present in the lo-
cal cost map but not the global cost map. An example cost map
and path are shown in Figure d]

When a feasible trajectory is available, the local planner gen-
erates actuator commands which are fed to an on-cart Arduino mi-
crocontroller. The original commands from the navigation stack
are modified such that they comply with the control of vehicles
which use Ackermann steering, i.e. our golf cart. The commands
are then converted into PWM signals which are passed to the brak-
ing, steering, and throttle mechanisms to control the golf cart.

Terrain Classification

LiDAR is capable of detecting most objects encountered, but
due to its placement, it is unable to sense objects very close to the
ground, such as curbs. The LiDAR is also incapable of differ-
entiating between common ground surfaces, e.g. between roads
and grass. To supplement the LiDAR, a roof-mounted RGB cam-
era is used to classify the terrain directly in front of the golf cart.
Figure[3]illustrates the terrain classification pipeline in which we
employ a CNN to classify traversable regions. Before classifica-
tion, video frames are sampled from the RGB camera at up to
30 Hz and are downsampled to a resolution of 3 x 360 x 600.
Each frame is then passed through a pixel-wise semantic segmen-
tation model — the fully-convolutional ENet CNN [13] is used to
perform such segmentation. Each pixel of the classification indi-
cates a safe or unsafe area to drive. This prediction is nonlinearly
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Figure 5.  The terrain classification pipeline. Top right: the input frame
from the monocular RGB camera. Middle right: the output prediction from
the CNN (grey=sidewalk,white=road,black=unsafe). Bottom right: perspec-
tive warped prediction (white=safe,black=unsafe). Left: 3D occupancy grid
computed from the warped prediction.

remapped to remove lens distortion and the prediction is warped
to convert the perspective from a single point to a four-point birds-
eye view based on the camera intrinsics. The warped prediction is
then resized using the method described in to convert the pre-
diction into a distance map. Multiple classes, e.g. sidewalks and
roads, are combined into a single “safe” probabilities and com-
pared against the “unsafe” probabilities to determine final pixel-
wise predictions. Finally, the prediction is converted into safe and
unsafe 3D point clouds using the distance information, and are
overlaid on the local cost map.

Terrain Classification Data Set

There are many pixel-wise semantic segmentation data
sets which are publicly available, including MS-COCO and
Cityscapes, but they fail to generalize to the varying conditions
present in our evaluation environment. To mitigate this shortcom-
ing, a custom data set was produced from several video captures
taken around the campus across varying traffic densities, both
traversable and impassable terrain textures, seasons, and times
of the day. Frames from the video were annotated manually for
the classes: road, sidewalk, and unsafe/unlabeled. The data set
consists of a total of 1,500 training samples and 350 validation
samples.

Experimental Results

We implement our autonomous solution using the ROS
framework [20] primarily using the Robot Localization [27]], Nav-
igation Stack [21], and LOAM packages with modification to
source as necessary.

Localization Results

We evaluate the proposed localization method on a 3,700-
meter path around the RIT campus, as shown in Figure [} The
georeferenced ground truth is corrected manually based on raw
GPS readings and visual references from both cart-centric and
aerial viewpoints. The raw GPS values drift significantly in sev-
eral areas, such as through the urban canyons formed by the east-
ern dormitories or the western academic buildings.
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Figure 6.

The ground truth of the odometry data set on the Rochester
Institute of Technology campus.

Results are quantified by two different methods. The first
method was based on the methodology proposed alongside the
KITTI odometry data set [17]. This error metric involves dividing
the run into sections of varying lengths. For our run we chose
section lengths 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1500, 2000, 2500, and 3000 meters. We compute the translational
error between the beginning and the end of the run with a rotation-
invariant method. The second method finds the nearest-neighbor
between the ground truth and the evaluated poses and determines
the Euclidean distance between the two points, ensuring a one-to-
one and ordered mapping constraint is fulfilled. Table I shows the
increase in performance across all metrics between LOAM and
our proposed fusion method.
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Figure 7. Plot of Localization methods vs GPS. Red - Ground Truth. Blue -
NavSatTransform. Cyan - Sensor Fusion. Yellow - LOAM.

Figure 8.

Close up plot of Localization methods vs GPS. Red - Ground
Truth. Blue - NavSatTransform. Cyan - Sensor Fusion. Yellow - LOAM.

Figure [7]shows the estimated trajectory followed by the cart
across all compared methods. On our data set, LOAM struggled
to correctly estimate the trajectory around the halfway point of
the drive. Since there is no loop-closure built-in to LOAM, the
error grew continuously until the end of the drive. When fused
with additional sensory and topographic information, our trajec-
tory becomes much closer to the ground truth. Our fused method
struggled around the tall building on the east side of campus;
however, as shown in Figure[8] the cyan path indicating our pro-
posed method mitigates the discontinuities present in raw GPS
data without sacrificing global precision.
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Table I: Localization results on the proposed data set.
Distance-labeled headers indicate mean relative error over se-
quences of the specified length.

Mean Relative Mean Squared

Method 100m 1000 m 2000 m 3000 m

Error Error
LOAM  .528%  .227%  .183%  .158% .288% 104.0 m
Fusion  .438%  .095% .050% .024% .166% 7.190 m

Terrain Classification Results

Figure 9. Terrain classification predictions in various conditions. From left
to right: various terrains occluded by shadows, terrain in snowy conditions,
and reflective terrain saturated in rain with pedestrian traffic.

Figure ]illustrates ENet performance across multiple places
on campus and in various environmental conditions. The variance
within the data set and segmentation capability of the proposed
CNN allowed for the robust differentiation of terrain in such con-
ditions of the RIT campus. The segmentation network achieved
an 86.37% mean intersection-over-union (IoU) on the validation
set. The network is able to perform predictions in 16 milliseconds
on average using an NVIDIA GTX 1080 Ti.

Conclusion

The inclusion of supplementary data derived from multi-
ple sensors and known topographic sources improves upon the
robustness and stability of localization systems. Furthermore,
neural classification of diverse terrain and dynamic obstacles en-
hances the vitality of path planning. Through sensor fusion, laser
alignment with known buildings, and a visual segmentation net-
work, we realize these elements and validate their efficacy. The
future success of autonomous systems, and thus widespread adop-
tion, will depend on the productive amalgamation of complemen-
tary sensors, the exploitation of a priori data sources, and inte-
gration of robust machine learning algorithms. In future work,
we will additionally use road networks to increase localization
confidence in featureless areas, and improve upon navigation via
amended semantic segmentation, considering further specific dy-
namic classes.
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