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Abstract

In this work, we present a computer vision and machine
learning backed autonomous drone surveillance system, in or-
der to protect critical locations. The system is composed of a
wide angle, high resolution daylight camera and a relatively nar-
row angle thermal camera mounted on a rotating turret. The
wide angle daylight camera allows the detection of flying intrud-
ers, as small as 20 pixels with a very low false alarm rate. The
primary detection is based on YOLO convolutional neural net-
work (CNN) rather than conventional background subtraction al-
gorithms due its low false alarm rate performance. At the same
time, the tracked flying objects are tracked by the rotating tur-
ret and classified by the narrow angle, zoomed thermal camera,
where classification algorithm is also based on CNNs. The train-
ing of the algorithms is performed by artificial and augmented
datasets due to scarcity of infrared videos of drones.

Introduction

Due to rapidly increasing accessibility of commercial UAVs,
-publically known as drones-, great security and privacy viola-
tion risks appeared. These threats include risking aviation se-
curity by drones flying near airports, possible terrorist attacks
with explosive payloads, illegal trafficking etc. We can give sev-
eral examples around globe in recent years, such as the drone
crash near White House [1], the protest during German chancel-
lor’s speech [2], multiple drones appearing around several French
nuclear power plants alerting officials [3], a close collision risk
avoided between a drone and a commercial airplane on LAX air-
port [4], unearthed illegal drug smuggling scheme by employing
drones between Mexico and USA [5] and many more.

Several counter-measures in the market and academia of-
fer autonomous detection, tracking and identification of drones,
which is a primordial feature for continuous and efficient opera-
tion. The proposed systems use either RF signal detection (used
for the communication between device and the ground operator)
[6], acoustics [7], RADAR [8], LIDAR [9] or common passive
optics (cameras) backed by computer vision algorithms [10].

One of the popular approaches for drone detection is to cap-
ture and intercept RF signals, where it is used for communica-
tion between the drone and the ground operator [11]. However,
it misses the point that drones may be pre-programmed to fly to
target without needing communication. Acoustics has been used
also to detect drones by employing microphone arrays [12]. The
aim is to classify specific sound of rotors of drones, however they
fail to achieve high accuracy and operational range. Maximum
range of audio assisted systems stay below 200-250 meters. An-
other disadvantage is the non-feasible nature of the system in ur-
ban or noisy environments such as airports.
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Optics has been regarded as the most robust, reliable and
efficient counter-measure in the community, with backing from
state-of-the-art computer vision algorithms [13]. The tendency
to include at least one optical element (RGB/infrared cameras)
with computer vision algorithms can be observed in the market
[14][15][16]. The recent breakthrough in object detection and
recognition thanks to the deep learning algorithms has transfig-
ured the perception of computer vision. Convolutional Neural
Networks (CNNs) has already become the de facto approach for
detection and recognition tasks [17][18]. In addition to develop-
ments in the field, decreasing cost per memory of GPU resources
and increasing open source visual datasets via images and videos
on internet has fueled this phenomenon. There are already various
articles published in recent few years, proposing to use computer
vision for autonomous drone surveillance task uses deep learning
[19][20][21].

Due to reasons listed above, we have based our autonomous
system on visual and thermal cameras backed with deep learning
computer vision algorithms. The system is composed of a wide
angle RGB camera which serves as a primary detector of possible
aerial threats and a narrow angle thermal camera mounted on a
rotating turret, which is used for further identification. Both for
detection and classification purposes, we use YOLO deep learn-
ing architectures [22]. Due to limited GPU memory, we have
investigated the performance of a lightweight detection architec-
ture, where classification is handled by a separate architecture.
These two architectures are trained to be used both for visual and
infrared imagery, in an attempt to save resources. After the intro-
duction of the system and the associated algorithms, we present
experimental results obtained from various field tests and simula-
tions.

System Overview

The system can be divided in to three instrumental parts as;
a wide angle (16 mm focal length) high performance industrial
RGB camera (2000x1700 pixels at approximately 25 FPS) placed
on an adjustable static platform, a high performance, rapid rotat-
ing turret, where a narrow angle (41 mm focal length) infrared
camera is mounted and lastly a Linux PC with a 2 GB Nvidia
GPU which can run deep learning algorithms. The rotating turret
and cameras can be seen in Figure 1.

Based on a modified lightweight YOLOvV3 architecture, we
detect the small intruders on the wide angle RGB camera’s image
plane (we refer it as main image plane further in the document).
At this first stage, false alarms up to a degree is acceptable, where
they are tracked and based on their movements and visual signa-
tures they may be inspected by rotating the turret towards it and
analyzed with the narrow angle thermal camera. Note that, even
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Figure 1. The static wide angle (f = 16 mm) RGB camera with its adjustable
platform and the rapid, versatile rotating turret with narrow angle (f = 41 mm)
thermal camera.

false alarms are acceptable it is crucial for system to minimize
them for a proper and reliable operation. In addition to zoomed
view, thermal camera has the advantage of higher background
contrast, richer discriminatory visual features and operability un-
der harsher weather conditions compared to RGB camera. As
infrared cameras are lower in resolution, using them with a nar-
row angle lens in collaboration with a wide angle RGB camera is
straightforward.

Detection on Main Image Plane

First purpose of our system is to be able to detect very small
drones with substantially low false alarm rates on the main image
plane. In order to achieve this we use a lightweight YOLOV3 ar-
chitecture which requires a low GPU memory (approximately 1
GB) and operates with high FPS. YOLO algorithm operates in a
different manner, more similar to Single Shot Detectors (SSDs),
where a regression approach is followed. YOLO allows for com-
bined detection and classification of the objects. However, we
have observed that following a divide-and-conquer approach is
more effective; where the detector and classifier architectures are
separate. Especially, in the case of small object detection this ef-
fect is more pronounced. Based on our observations, discriminat-
ing objects require more wider and deeper, complex architectures;
while detecting small objects with an acceptable false alarm rates
does not. Note also that, detection is performed on a larger in-
put image size (832x832 pixels), whilst we perform classification
with 64x64 pixels of size. This is because, classification can be
done only on the region of interest. Therefore, separating two
processes in to two distinct architectures is profitable.

In this work, primarily we have investigated the performance
of small aerial object detection with lighter convolutional neural
networks, especially in width (e.g. less number of filters). The re-
sults are surprisingly good enough proving even drones as small
as 8x8 pixels on 832x832 pixels image plane can be detected,
with very low false alarm rates (virtually none in most of the
cases) compared to conventional methods. As mentioned previ-
ously, the classification is separated, thus the lightweight detec-
tor captures not only drones, but birds, airplanes and other aerial
vehicles/objects; however false alarms triggered by background
clutters/objects are drastically reduced.
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YOLO architectures third version, YOLOv3 has introduced
the concept of upsampling, where in deeper layers, tensors are up-
sampled (interpolation) by two and feature maps are routed from
the previous layers [23]. Different than other convolutional neu-
ral network detection methods, YOLO uses regression with pre-
defined anchor boxes to estimate the position of objects. We have
observed that, this allows it to capture semantic context better,
especially in case of small drone detection.

The proposed lightweight architecture is derived directly
from the YOLOV3 architecture, where number of layers is kept
same. In other words, the depth of the architecture is same with
the YOLOv3. However, as it can be seen from Figure 2, number
of filters for all layers except the third upsampling layer, which
is specifically responsible of small object detection are set to 16.
By reducing number of filters drastically, we have saved a size-
able GPU memory. We have used this memory to use a two
times larger input size (832x832). This can be seen as a trade-
off between larger input size which permits much better detection
of small object and the width of the architecture. Even with in-
creased input size, the GPU memory of this detector is lower than
800 MBytes. This configuration is found to be the optimal based
on our tests.

Tracking and Possible Threat Object (PTO)
Concept

The objects detected by this lightweight architecture are im-
mediately assigned as tracks. Each track is followed by a distinct
Kalman Filter, which is derived from [24]. This framework also
uses a Hungarian algorithm based detection to track assignment
algorithm, where cost is the Euclidean distance between centroids
of detection bounding boxes and tracks as in Figure 3. There
are various reasons for the choice of this scheme. First, it fa-
vors linear movement, which we consider as an interesting flight
path for a context (an object deliberately targeted towards a loca-
tion), where small aerial objects are expected from the horizon.
Of course drones may make non-linear movements, however an
approaching target of interest shall have the priority. Note that,
if the object is closer, its displacement between frames would be
higher, as it appear larger. Thus, even a closer object is not doing
a linear movement, it would be favored. Second, as only last T,
frames are considered, this allows the tracking of new detections
every time. Even a track is lost, it can be redetected. Even false
alarm rates (counter background clutter and non-aerial objects)
of our detector is very low, the presented scheme eliminates the
favoring of false alarms in tracking.

We introduce a concept which is called Possible Threat Ob-
ject (PTO). It is a track, that the algorithm decides to inspect with
lower angle thermal camera by rotating the turret towards it. The
calibration process, which refers to the task of determining the
direction (pan and tilt) of the turret as a function of the position
on the main image plane. Due to the limited space, this is out of
scope of this paper. At an instance, there can be only one PTO.
The tracks are chosen as PTO, inspected with the zoomed thermal
camera for a while and designated to be a threatening drone or
not, in the order with respect to prioritization method explained
above. If a track is decided to be not a drone, it shall not be des-
ignated as PTO again, even it is still being tracked on main image
plane.

A PTO is evaluated in periodic windows temporally, where
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Figure 2.  Our lightweight, narrow version of the YOLOv3 architecture with 3 scale detection layer. Different than the default architecture, we prefer to use
832x832x3 input size to better detect the small drones. The circles with R denotes the route layer and the U denotes the upsampling layer. Note that, the
previous layer filters, where the upsampled feature matrix is routed is underlined. Also, note that the layers where the positional dimensions of the feature matrix

is divided in to two by proper strided max pooling are shown.

. . . PTO .
each time unit is 7,); - = frames long. The frames coming

from the thermal camera is processed in parallel with a sec-
ond lightweight YOLO detector, which is especially trained
for infrared drone images. Note that, as the architectures are
lightweight two of them can be loaded to the GPU (in addition
to one classifier). Then these detected regions of interest are clas-
sified by the YOLO classifier. The classifier which has an input
size of 64x64 pixels gives a confidence score (a scalar between 0
and 1) for each designated category for each detected bounding
box in a thermal image. Then for all frames in a Tvﬁ%z)w frames
long window, the maximum drone score among all detected and
classified bounding boxes is taken s¥7€. The motivation behind
this approach is the fact that, due to rapid motion of the zoomed
thermal camera and the object, the object may not be present in
the image plane. Also, degrading effects due to blurry frames
caused by motion is also compensated. Another advantage of this

Cﬂﬁ 5

AD* = Cumulative Euclidean
Displacement in last T, _ frames;
the total length of the green lines

Static Camera (Main) Image Plane
(1600x1600 pixels)

Figure 3. Tracks are evaluated according to their movements in last T,,,,
frames. The total Euclidean distances between the last frame centroid and
each of the last T,,, frames (total Euclidean displacement) is a measure
of priority between existing tracks. This scheme favors the linear movement,
while allowing the introduction of new tracks and checking for following tracks.
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scheme is the chance of evaluating different poses of the same
object, where the maximum score among them shall give a more
accurate result.

The maximum scores of each time windows are averaged by
a regular moving average filter as follows :

PTO PTO ( 1

670 = e + (1 — a)sPT0 (1)

where « is a scalar determining the effect of the history. If the age
of a PTO is larger than TWIEO frames and its 67 © is smaller than
G,‘Z&O; the object is considered not to be a drone and it is unas-
signed as a PTO. Note that this object shall continue to be tracked
on the main image plane, however it would not be assigned as
PTO another time as it has been checked before. Then, if there
are other candidate tracks, which has the highest maximum in-
stantaneous euclidean distance based displacement is assigned as

PTO, immediately.

Table 1. Parameters of the PTO based approach determined to
be optimal based on our experiments.

Parameter Value
Tmov 8 frames
PTO
window 5 frames
o 0.95
PTO :
"%0 50 windows
G in 0.8

Classification and Artificial Thermal Image

Dataset

As mentioned previously, classification is done by a separate
YOLO architecture, which has an input shape of 64x64x1 pixels.
The optimal configuration with respect to limited GPU memory
budget is decided as in Figure 4. A novelty of our work is the uti-
lization of RGB image datasets of drones, birds and commercial
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aeroplanes for the CNN based detection and classification with
infrared imagery. As it is not feasible to shoot thermal videos
of all types of drones, birds etc. to generate a dataset and it is
not possible to find open source datasets for thermal images, the
idea to use RGB images efficiently is plausible. Figure 5.a shows
the image of a drone taken by a thermal camera. As it can be
observed, the thermal signature of a drone is quite uniform from
mid-to-long distance. We have acquired 6000 images of various
types of drones available in the market (also 6000 aeroplanes and
birds), where their color is apparently darker than the sky back-
ground. Following this, the negatives of gray-scale of the images
is taken, which mimics the thermal signature, where the back-
ground is highly dark and the object appears whitish. The main
idea in this approach is that, as large number of variant samples
are taken, even the exact values of thermal pixel intensities are de-
viant from the actual infrared images, the complex neural network
can grasp the overall information required to classify objects.

Experimental Results

We have tested the performance of our system both in field
operationally and with several videos. 6 shows the detections gen-
erated by our approach and several conventional detection algo-
rithms, which produce high amount of false alarms due to back-
ground. In this document, we present the results for detection per-
formance compared to cascaded HAAR detector and Mixture of

64x64x1 64x64x16

32x32x16
16x16x32
8x8x32
|:| I:l
out out
05 05

163x3/2 323x3/2 16 1x1 321x1
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128 3x3/2 256 3x3
64

128 1x1/2

Figure 4. YOLO classifier architecture for thermal image classification with
4 different categories.
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1. SWIR Thermal images
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Il Inverted Gray-scale images
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a.  Drone

Figure 5. The real thermal footages of drones, planes and birds (top) and
inverted gray-scale images of drones, planes and birds where their color is
darker than the sky background. With proper choice and image augmenta-
tion techniques, RGB datasets can be used to train deep learning algorithms
to classify airborne targets.
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Table 2. Overall approximate true positive and false alarm
rates of three different detectors, for different settings and en-

vironments
Method True Positive False Alarm
lightweight 0.91 0
YOLO
cascaded Haar 0.95 0.42
GMM back. sub. | 0.98 0.31

Gaussian background subtraction algorithm, for the case where
the target drone is of size between 8x8 and 64x64 pixels. As it
can be seen from 2, even though the hit rate of our YOLO based
detector is slightly less, the false alarm issue is completely elimi-
nated. Even though, detector fails to detect in certain frames, the
Hungarian algorithm with distance as a parameter and Kalman fil-
tering achieves the proper tracking of the target. By their intrinsic
nature, cascaded detectors can only detect objects with predefined
sizes, thus fail to produce precise bounding boxes in addition to
their high false alarm rate. On the other hand, background sub-
traction algorithms completely fail in case of sudden illumina-
tion variations or jittering due to wind etc. In addition to these
advantages, this approach only needs one hyper-parameter, the
minimum confidence score, while the others require several ones,
making optimal tuning harder.

Figure 7 shows the tracking of a successfully detected drone
hovering on a marine environment, showing its preceding trail
on previous frames. Note that any of the background objects

Figure 6. True Positive and False Alarm Rates for small aerial object de-
tection with a lightweight YOLO based detector and conventional methods.
There exists 1 drone (green box at the bottom) and two birds (green boxes
at top) in the scene. Detections by lightweight YOLO, cascaded HAAR and
background subtraction are depicted with green, red and blue boxes, respec-
tively. Note that, cascaded detector produces a lot of false alarms, whereas
waves on sea causes false alarms for background subtraction. Footage
taken from experiments by [25]
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cause false alarms despite containing complex shapes. This plau-
sible outcome shall be rooted from the regression based nature
of YOLO, which can capture intrinsic semantic information, even
with employment of much fewer number of filters. Similar result
can be observed in Figure 8.

Figure 7.  The aerial object detection and tracking with Kalman filtering.
Based on the movements of the target, the system is activated, turret is ro-
tated towards it and the object is classified as drone or not with a zoomed
daylight and thermal camera.

".\

Figure 8.
Based on the movements of the target, the system is activated, turret is ro-
tated towards it and the object is classified as drone or not with a zoomed
daylight and thermal camera.

The aerial object detection and tracking with Kalman filtering.
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On the other hand, classification of thermal region of inter-
ests with four given object category has resulted with a true drone
classification rate larger than 80% overall. Note that, as explained
above our framework does not use categorical classification re-
sult directly, but process the drone confidence score. The reason
behind the choice of four categories, rather than a drone versus
others is due to the better performance. The aerial objects are
highly similar, thus this approach gives a finer classification.

Conclusion

The outcomes of the work explained in this paper can be di-
vided in to three as introduction of an integrated RGB and infrared
camera based autonomous drone detection system incorporating
an effective detection-tracking-identification policy, the study of
lightweight YOLOvV3 detectors’ performance-memory trade-off
and proposal of utilizing RGB images with image augmentation
techniques for classifying thermal images. We have observed that
with narrowing YOLO deep learning detector architectures, one
can attain substantial performance, while keeping memory and
computation time comparable to conventional methods, if classi-
fication and detection is separated. In the context of a sky back-
ground, even with high background clutter, YOLO’s regression
based approach allows detection of very small drones, with dras-
tically lower false alarm rates.
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