

Real-Time Traffic Sign Recognition using Deep Network for

Embedded Platforms

Raghav Nagpal, Chaitanya Krishna Paturu, Vijaya Ragavan, Navinprashath R R, Radhesh Bhat, and Dipanjan Ghosh; PathPartner

Technology Pvt Ltd (India)

Abstract

Road traffic signs provide vital information about the traffic

rules, road conditions, and route directions to assist drivers in safe

driving. Recognition of traffic signs is one of the key features of

Advanced Driver Assistance Systems (ADAS). In this paper, we

present a Convolutional Neural Network (CNN) based approach

for robust Traffic Sign Recognition (TSR) that can run real-time on

low power embedded systems. To achieve this, we propose a two-

stage network: In the first stage, a generic traffic sign detection

network localizes the position of traffic signs in the video footage,

and in the second stage a country-specific classification network

classifies the detected signs. The network sub-blocks were

retrained to generate an optimal network that runs real-time on the

Nvidia Tegra platform. The network’s computational complexity

and the model size are further reduced to make it deployable on

low power embedded platforms. Methods like network

customization, weight pruning, and quantization schemes were

used to achieve an 8X reduction in computation complexity. The

pruned and optimized network is further ported and benchmarked

on embedded platforms like Texas Instruments Jacinto TDA2x SoC

and Qualcomm’s Snapdragon 820Automotive platform.

Keywords
ADAS (Advanced Driver Assistance Systems), TSR (Traffic

Sign Recognition), CNN (Convolutional Neural Network), SSD

(Single Shot multi-box Detector), Sparse, Distill, DSP (Digital

Signal Processor), GPU (Graphics Processing Unit), CPU (Central

Processing Unit), GFLOPS (Giga Floating-point Operations per

Second), GMACS (Giga Multiply Accumulate operations per

Second)

Introduction
Traffic signs along the roads are commissioned to inform,

guide, and warn the automobile drivers. Typically, many of them

will not be noticed because of the inattention of the drivers, vehicle

speed, and poor visibility due to bad weather and by the headlights

of oncoming vehicles in the night. Vision-based ADAS

technologies can inform the automobile drivers about the road

conditions, and support them inaccurately inferring about the

environment around the ego vehicle. A robust traffic sign

recognition system can help the drivers by informing and warning

them appropriately to avoid accidents. Factors like lighting

variations, occlusion of signs due to obstacles, and deformation of

signs pose a challenge for a typical traffic sign recognition system.

The need for executing this recognition system at real-time on low

power embedded platforms without losing high recognition

accuracy makes it more difficult to achieve. In this work, we

propose embedded friendly CNN based Traffic sign recognition

system to handle this problem.

Background
Recent years has seen a lot of progress in object detection

methods by usage of convolution neural networks (CNNs). Recent

object detection networks - such as Faster RCNN [1], R-FCN [2],

Multibox [3], YOLO [5] and SSD [4] have shown promising

results good enough to be deployed in end products and some of

them are fast enough to be run on edge devices with small memory

footprint. Typically, applications like traffic sign recognition

requires real-time performance on edge devices. Many state-of-the-

art methods that showed promising results on ImageNet and

COCO object detection challenges [6], are optimized for higher

accuracies, but are too slow for practical real-time use cases.

A subset of methods like R-FCN [2], SSD [4], and YOLO [5]

offer a good tradeoff between decent accuracy and computational

performance. Despite being relatively lightweight models, they are

still not deployable on embedded platforms. In recent years SSD

with Mobilenet [13] as feature extractor is one of the near real-time

object detection method that can be deployed in edge devices. But,

tasks like traffic sign recognition needs real-time performance,

which these methods still fall short of.

As mentioned by A. Howard et al. [13], a different approach

for obtaining small networks is shrinking, factoring or compressing

pre-trained networks. Compression based on product quantization

[7], hashing [8], pruning, Huffman coding [9] and etc. has been

proposed in the literature. Additionally, various factorizations have

been proposed to speed up the pre-trained network [10, 11].

Another method for obtaining a small network is distillation [12]

which uses a large network to teach a smaller network. Some of

these approaches are used in our method with modifications; and

will be discussed in section Implementation Details.

Another interesting approach proposed by Denil et al. [21], is

to exploit redundancy across filters and channels. He predicted

95% parameters in a DNN by exploiting the redundancy across

filters and channels. Inspired by it, Denton et al. [22] achieved 2x

speedups for the first two layers in a larger network. Both of these

approaches used Low-Rank Approximation (LRA) with minimal

accuracy drop. However, the network structure compressed by

LRA is fixed; reiterations of decomposing, training/fine-tuning,

and cross-validating are still needed to find an optimal structure for

accuracy and speed trade-off. As the number of hyper-parameters

in LRA method increases linearly with the layer depth.

Comparing to LRA, Sparse convolution algorithms proposed

by Wie et al. [23] dynamically optimizes the compactness of

networks. This approach is quite interesting because it doesn’t

change the overall network structure. A network is sparsified by

training in iterations with high weight decay, and whenever the

absolute value of weight falls below a predefined threshold, it is

thresholded to zero. It also presented a method to recover the lost

accuracy by fixing the zeroed-out coefficients as zeros and fine-

tuning the non-zero coefficients. The sparsity induced is

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 033-1

https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-033
© 2019, Society for Imaging Science and Technology

structurally constrained to get speed up on GPUs that use matrix

multiplication to implement convolutions. In devices that do not

use matrix multiplications for implementing convolution, a

structural constraint may not be beneficial. Also, the sparsification

approach used in the paper is extremely slow and time-consuming,

making it difficult to use for large datasets. Manu et al. [16]

proposed a quick method for sparsification and subsequent fine-

tuning steps which converges in a reasonable number of iterations.

This provides significant improvement in speed of thresholding

compared to Wie et al. method.

Running inference on low-power embedded systems using 8-

bit quantization can be much faster than floating point

implementations. Quantization, as one of the key approaches, can

effectively offload GPU, and make it possible to deploy on the

fixed-point pipeline. Unfortunately, not all existing networks

design are friendly to quantization. Quantized models have large

accuracy gap against its float point models. Sheng et al.

experimented with separable convolutions and analyzed the root

cause of quantization loss. Where they proposed quantization

friendly separable convolution architecture [24] with 8-bit

inference with accuracy almost close to float pipeline. We use

some of his customizations in our work.

It’s now widely accepted that eight bits are enough for

running inference on convolutional neural networks. But there’s

also a lot of evidence that it’s possible to go lower than eight bits.

These low bit networks are gaining a lot of traction.

In this paper, we propose a light-weight two stage traffic sign

model which gives the real-time performance on embedded

systems with good accuracy.

Implementation Details
In recent years, there have been several contributions towards

improving traffic sign recognition using deep learning

methodologies. However, these deep networks are large and

computationally intense to deploy on embedded systems. We have

designed a lightweight traffic sign recognition network that is able

to achieve real-time performance on embedded platforms with

good accuracy.

Figure 1. The above image illustrates the block diagram of the two phases of
the network: a) a generic traffic sign detector (localizer) network and b) a
country-specific classifier network.

Typically, traffic sign recognition involves detecting the

position of traffic sign boards in road images and classifying them

as a particular road sign. Though many state-of-the-art deep

network architectures try to achieve both detection and

classification together, we have chosen to split the network into

two different phases: a) A generic traffic sign detector (localizer)

network that can detect the position of any traffic signboard, and b)

A country-specific classifier network that can classify the detected

signs. This cascading arrangement eliminates the need for

retraining the detector network for different countries. Only the

classifier network needs to be retrained for various country-

specific signs. The network structure is shown in Figure 1.

Two Stage Model
There are three main advantages of using a two-stage model

(Figure 2). First, a generic detector for all types of traffic signs will

be trained along with country-specific classifiers. We need to train

the detector only once as the same can be reused for different

countries. Also, the detector model being the computational heavy

one, it saves retraining time in customizing the solution for

different countries.

Second, it gives a computational advantage by running the

classifier network for only those boxes that have a good probability

score given by the detector. In architectures like SSD, the detector

proposes more than 8K boxes in the default configuration. Running

a class prediction for these boxes is computationally expensive, as

in a given frame, we have 3 to 4 traffic signs at an average. So, by

using a two-stage model, there is a significant saving in

computation by running a separate lighter weight classifier (Lenet-

5 in this case) to classify the traffic signs.

Third, by separating the classifier out the complexity of

detector comes down, as the SSD feature computation is done for

binary classification (Table 1).

Figure 2. One detector with multiple classifiers

SSD feature computation: Table 1

Network Computation of extra feature layers

Integrated SSD

Network
K x K x (Number of Boxes x (Classes + 4))

Binary SSD

Network
K x K x (Number of Boxes x (2 + 4))

*K - convolution filter size

Network Distillation and Customization
Embedded systems have the less computational power and

less memory to execute analytics. Both of these limitations are not

in favor of running deep neural networks which require high

computation power. An obvious option to make deep networks less

computationally expensive is to reduce the number of layers. But

033-2
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

this affects the accuracy of the network significantly, as each layer

contributes differently to the features.

To reduce the network size without affecting much accuracy,

we propose a method of local retraining (local distillation). In this

method, the sub-blocks between two consecutive pooling layers in

the frozen model will be trained against a smaller sub-network

with the same input and output feature dimensions. The rms loss

function is used between the outputs of the frozen sub-block and

the new custom defined sub-network. These sub-networks are

trained locally with random noise as input. The new sub-networks

are selected if they compute the same feature map outputs as that

of the frozen model. Multiple sub-networks are trained and the one

with the best performance is selected to replace the corresponding

sub-block in the original network (Figure 3). We used random

noise while training to prevent the sub-network from overfitting to

particular input data.

The above process is repeated for all the sub-blocks and at the

end, we have a smaller model which gives the same accuracy as

the original one.

Figure 3. Sub-net level localized retraining

Detector Training
As a common practice, most of the deep learning methods

reshape the input image to the square template before feeding it to

model. But, in case of road scenarios objects like traffic signs

cover a small portion of the image compared to other objects in the

scene (approximately 5% of the image size). By resizing the input

image to the square template, these small objects lose their

structural features reducing the overall detection rate. To preserve

the features of the small objects in the image, we maintained the

aspect ratio of the template same as that of an input image. This

helped in making the model more accurate.

The detector model was pretrained on Pascal VOC dataset

[29], as pretraining on large generic datasets proved to help in

better generalization.

The detector is trained on German Traffic Sign Detection

Benchmark (GTSDB), and German Traffic Sign Recognition

Benchmark (GTSRB) datasets [30]. GTSDB consists of 600

training and 300 testing sample images. GTSRB consists of 40,000

training and 10,000 testing image patches of traffic signs. Apart

from using training samples provided by GTSDB, we have

generated more sample images by pasting GTSRB patches on

random noise canvas and used them for training the detector. This

additional data helped in better localization and faster

convergence.

While training we used data augmentation techniques like

horizontal flip, color variation, brightness and contrast variations

along with zoom-in and zoom-out operations. Data augmentation

helped in making the detector model more accurate and robust to

new environments. (same can be seen in the results section)

The detector network was trained with six scales (ranging

from 0.05 to 0.5) and three aspect ratios (0.5, 1.0, 2.0) using Single

Shot Multi-box Detector (SSD) method. The separable filter

concept was utilized in detection network for faster feature

generation.

Classifier Training
For the task of classification, we used 5 layered Le-Net [28]

with two fully connected layers and a softmax layer. The network

was trained on GTSRB dataset with augmentations like zoom-in

and transparency variations, to make the model more accurate and

robust. To decrease the class error, one extra class of “Not a Sign”

is added, which helped in precision gain.

Embedded Optimization
The final frozen TSR network is still heavy and

computationally intense to deploy on embedded processors with

small memory footprint and processing capability. Thus,

quantization becomes crucial for inference on low-power

embedded platforms, which have a very limited budget for power

and memory consumption. Such platforms often rely on fixed-

point computational hardware blocks, such as Digital Signal

Processor (DSP), to achieve higher power efficiency over float

point processor, such as Graphics Processing Unit (GPU). The

downside is that the quantizing core layers in the network causes

large loss, and thus results in significant feature representation

degradation in the 8-bit inference pipeline.

We used the Ristretto framework [20] developed by Gysel et

al. to understand the impact on quantization loss. Ristretto

framework internally analyses each layer for fixed-point (8-bit)

implementation and gives an accuracy of the model for fixed-point

implementation. During analysis, we observed a considerable drop

in accuracy. Non-linear activation function (ReLU6) used in our

network was the major root cause for quantization loss. ReLU6

encourages a model to learn sparse feature earlier. Clipping the

signal at early layers will lead to quantization-unfriendly signal

distribution, and thus largely decreases the SQNR of the layer

output.

All the ReLU6 functions in our network are replaced with

ReLU. Sub-net level localized retraining was performed to update

convolution filter weights.

Hardware Specific Optimization and customization
We ported Traffic Sign Recognition (TSR) network to

automotive grade embedded platforms from Texas Instruments

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 033-3

(TI) and Qualcomm. Network architecture is further customized to

exploit underlying processor hardware acceleration, and to

overcome implementation limitations.

Texas Instruments Platform
The setup consists of an evaluation platform made of TI’s

Jacinto TDA2x System-on-Chip (SoC). The TDA2x SoC

incorporates a heterogeneous, scalable architecture that includes a

mix of TI’s TMS320C66x digital signal processor (DSP)

generation cores, Vision AccelerationPac, ARM Cortex-A15

MPCore™, and dual-Cortex-M4 processors. TI’s ecosystem offers,

• Caffe-Jacinto framework is a custom fork of Caffe that

provides tools to train models with sparsity, resulting in

low complexity models that can be used in embedded

platforms.

• TI Device translation tool converts network models into

an internal format best suited for use inside the TIDL

library. Translation tool also converts model parameters

(filter coefficients, bias) from floating-point to fixed-

point values.

• Libraries for vision kernels on Vision AccelerationPac

and DSP. One such library is the TI Deep learning

Library (TIDL). TIDL is a suite of components that

enables deep learning on TI embedded devices. TIDL

has a highly optimized set of deep learning primitives

that provide the best accuracy, speed, and memory usage

trade-offs. TIDL is designed efficiently to take advantage

of sparsity can run significantly faster by using such a

model.

TSR network architecture is customized to overcome TIDL

inference implementation limitations. For example, the TIDL

Fully-Connected (FC) layer has limitations with respect to the

number of input nodes supported. To overcome this limitation, the

inputs to FC layers are sliced and processed by two smaller FC

layers. The outputs of two FC layers were added element-wise to

get the desired result. It’s captured in Figure 4.

Figure 4. The above image illustrates how the fully connected (FC) layers
were sliced and processed due to restrictions on the number of input nodes to

the FC layer in embedded platforms.

Once the network architecture is frozen (customized

network), network weights are further pruned by Using TI’s Caffe-

Jacinto framework. It is done using sparse re-training that consists

of two steps: a) retraining the model with L1 regularization to

reduce the standard deviation of the weights around zero mean and

b) filtering the weights near to zero.

Post customizations and optimizations, we have a smaller

model which gives a similar accuracy as the original model. The

weights, activation and layer outputs of this sparsely trained model

are quantized to 8-bit using TI Device translation tool.

Quantization scheme used here is dynamic fixed point

representation which further accelerates the processing. During

inference execution,

• Feature extraction layers and SSD convolutional layers

are executed from Vision AccelerationPac cores.

• Remaining SSD layers and classification layers are

executed from DSPs.

Qualcomm Platform
The setup consists of an evaluation platform made of

Qualcomm® Snapdragon™ 820A (automotive) processor [27].

The 820A SoC incorporates a heterogeneous, scalable architecture

that includes a mix of CPU (Kryo Quad core), DSP (Hexagon™

680 DSP) and GPU (Adreno™ 530 GPU). We used Snapdragon

Neural Processing Engine (SNPE) [26] for running TSR inference

on 820A platform. Snapdragon Neural Processing Engine (SNPE)

is a Qualcomm Snapdragon software accelerated runtime for the

execution of deep neural networks on CPU, DSP, and GPU.

Platform-specific network customizations not needed here,

but TSR network has a layer which is not supported by SNPE

inference. We added the layer implementation by using User

Defined Layer (UDL) hooks provided by SNPE. SNPE workflow

is captured in Figure 5.

For this porting activity, we used CPU and GPU cores of

820A processor. TSR network (With Embedded optimizations) is

sliced in two parts. Part-1 network consists of Feature extraction

layers from TSR network. Part-2 network consists of SSD and

classification specific layers from TSR network. Part-1 network

instance is executed from GPU and Part-2 instance is executed

from CPU.

Figure 5. Illustrates SNPE workflow.
Ref. Snapdragon Neural Processing Engine SDK Reference Guide [26]

Experimental Results
A DNN based traffic sign recognition system that gives

accuracy comparable to the state-of-the-art methods on standard

datasets. It runs at real-time on Nvidia Tegra X2 and Qualcomm

Snapdragon 820A processors.

Based on the embedded optimizations (weight pruning,

quantization, and network customization) on top of the network

pruning, the model size was reduced by a factor of 8x. The

optimized model runs at real-time speed on low power SoC like

Texas Instruments TDA2x utilizing DSP and vision accelerator.

Refer to Table 2 for performance numbers. Performance numbers

documented in Table 2 for Qualcomm Snapdragon 820A and

TDA2x platforms are for 4 detections (Traffic Signs) in the given

frame. The run-time numbers are subjected to vary with the

number of detections. Figure 6 shows the precision-recall curves of

the model trained with different combinations datasets and Figure

7 shows the precision-recall curves for the final optimized models

033-4
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

on different hardware platforms. Results are generated on GTSDB

test dataset.

Model complexity and performance: Table 2

Figure 6. Precision recall curve for model trained with different datasets tested
on GTSDB test dataset (Table-3)

Model results with different training datasets (tested on GTSDB

test dataset with 0.5 IoU): Table 3

Color
GTSDB
Dataset

Augmentation
GTSRB
patches

GTSRB
patches
stacked

 ✔

 ✔ ✔

 ✔ ✔ ✔

 ✔ ✔ ✔

Figure 7. Precision recall curves for model before and after hardware specific
optimizations tested on GTSDB test dataset (Table-4)

Model results on hardware platforms (tested on GTSDB test

dataset with 0.5 IoU): Table 4

Color Platform Inference speed

 Texas Instruments TDA2x 20 fps

 Qualcomm SDM 820 20 fps

 NVIDIA Tegra X2 24 fps

Discussion and Conclusion
In the current Traffic Sign Recognition system explained, the

two-stage model followed by local distillation of network reduce

Platform Platform Computation power Network
Network

Model complexity

Run-Time Speed

(milliseconds)

Tegra X2 ~ 750 GFlops (GPU) Network pruned Model
2.0 Giga Floating point operations

per frame
42

Snapdragon

820A
~ 500 GFlops (GPU +CPU)

Network pruned

+ Embedded specific

optimized Model

2.0 Giga Floating point operations

per frame
48.5

TDA2x
~ 65 GMACs (2 DSP + 4

Vision Accelera-tionPac)

Network pruned +

Embedded optimized

model

0.25 Giga

Multiply and accumulates per

frame

49.5

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 033-5

the computational complexity by maintaining the detection and

classification accuracies.

Cascading arrangement of detection and classification

networks eliminated the need for retraining of detection network

that is relatively larger and computationally intensive. The smaller

classification network can be quickly and efficiently retrained for

any country-specific traffic sign set. This network arrangement

also reduces the training cycles by large, compared to a composite

network that trains on a combined loss function for both detection

and classification.

While network pruning, locally retraining the network sub-

blocks generated a very optimal network that had reduced

computational complexity while maintaining the effectiveness of

the same features.

Sparse re-training of the model further reduced the

computational complexity, making it feasible to execute on

embedded platforms like Texas Instruments TDA2x and

Qualcomm 820A.

References
[1] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-

time object detection with region proposal networks. In NIPS, 2015.

[2] J. Dai, Y. Li, K. He, J. Sun, "R-FCN: Object detection via region-

based fully convolutional networks", 2016.

[3] Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object

detection using deep neural networks. In: CVPR. 2014

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, and

A. C. Berg. Ssd: Single shot multibox detector. In European

Conference on Computer Vision, pages 21–37. Springer, 2016.

[5] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look

once: unified, real-time object detection. In: CVPR 2016

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.

Dollar, and C. L. Zitnick. Microsoft COCO: Common objects in ´

context. In ECCV. 2014

[7] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. arXiv preprint

arXiv:1512.06473, 2015

[8] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen.

Compressing neural networks with the hashing trick. CoRR,

abs/1504.04788, 2015

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing

deep neural network with pruning, trained quantization and huffman

coding. CoRR, abs/1510.00149, 2, 2015.

[10] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. arXiv

preprint arXiv:1405.3866, 2014.

[11] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky.

Speeding-up convolutional neural networks using fine-tuned cp-

decomposition. arXiv preprint arXiv:1412.6553, 2014.

[12] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531, 2015.

[13] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.

Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[15] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu. “Traffic-sign

detection and classification in the wild”. In CVPR, pages 2110–2118,

2016.

[16] M.Mathew, K.Desappan, P.K.Swami, S.Nagori, "Sparse, Quantized,

Full Frame CNN for Low Power Embedded Devices" IEEE

Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), pp. 328-336, 2017.

[17] M.Mathew, K.Desappan, P.K.Swami, S.Nagori, B.M.Gopinath,

"Embedded low-power deep learning with TIDL".

[18] P. Peng, Y. Mingyu and X. Weisheng, "Running 8-bit dynamic fixed-

point convolutional neural network on low-cost ARM platforms,"

2017 Chinese Automation Congress (CAC), Jinan, 2017, pp. 4564-

4568.

[19] D. Williamson, "Dynamically scaled fixed point arithmetic," [1991]

IEEE Pacific Rim Conference on Communications, Computers and

Signal Processing Conference Proceedings, Victoria, BC, 1991, pp.

315-318 vol.1.

[20] P. Gysel, J. Pimentel, M. Motamedi and S. Ghiasi, "Ristretto: A

Framework for Empirical Study of Resource-Efficient Inference in

Convolutional Neural Networks," in IEEE Transactions on Neural

Networks and Learning Systems, vol. 29, no. 11, pp. 5784-5789, Nov.

2018.

[21] Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato,

and Nando de Freitas. Predicting parameters in deep learning. In

Advances in Neural Information Processing Systems, pages 2148–

2156. 2013.

[22] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and

Rob Fergus. Exploiting linear structure within convolutional networks

for efficient evaluation. In Advances in Neural Information

Processing Systems, pages 1269–1277. 2014.

[23] Wei Wen, Chunpeng Wu, Yandan Wang, Learning Structured

Sparsity in Deep Neural Networks, NIPS 2016.

[24] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen,

Mickey Aleksic: A Quantization-Friendly Separable Convolution for

MobileNets. CoRR abs/1803.08607 (2018).

[25] TDAx ADAS

SoCs,http://www.ti.com/lsds/ti/processors/dsp/automotive_processors

/tdax_adas_socs/overview.page.

[26] Snapdragon Neural Processing Engine SDK Reference Guide,

https://developer.qualcomm.com/docs/snpe/index.html.

[27] Snapdragon 820 Automotive platform,

https://www.qualcomm.com/products/snapdragon-820-automotive-

platform

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[29] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A.

Zisserman. The Pascal Visual Object Classes (VOC) Challenge.

IJCV, pages 303–338, 2010.

[30] J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel, "The German traffic

sign recognition benchmark: a multi-class classification competition",

Proc. IEEE IJCNN, pp. 1453-1460, 2011.

033-6
IS&T International Symposium on Electronic Imaging 2019

Autonomous Vehicles and Machines Conference 2019

https://www.qualcomm.com/products/snapdragon-820-automotive-platform
https://www.qualcomm.com/products/snapdragon-820-automotive-platform

Author Biography
Raghav Nagpal received his B.Tech degree in Instrumentation and Control

Engineering from NIT Jalandhar, India. In his 5 years of work experience,

Raghav has designed and developed algorithms for industrial automation,

control, and perception. His research interest includes machine learning,

deep learning, and Perception. Currently, Raghav is working as a

Technical Lead at PathPartner Technology Pvt. Ltd.

Chaitanya Krishna Paturu received his Master of Technology degree in

Communication Engineering from Vellore Institute of Technology, and

Bachelor of Technology degree in Electronics & Communication from

Jawaharlal Nehru Technological University, India. Currently he is a

Technical Architect in PathPartner Technology Pvt. Ltd, working on

machine learning, computer vision and deep learning.

Vijaya Ragavan received his BE degree in Electronics and Communication

from University of Madras; and Masters in Electronics engineering from

the Anna University, Chennai (2006). Since then he has worked in the

Multimedia and ADAS Division at PathPartner Technology Pvt. Ltd. in,

Bengaluru. His work was focused on the development of algorithms for

ADAS, on low power heterogeneous systems.

Navinprashath R R holds a Bachelors from College of Engineering,

Guindy, Chennai (2015). His interest lies in image signal processing

pipelines and computational photography. He is currently with the camera

team of Google. Previously Navinprashath was with digital imaging

division at PathPartner Technology Pvt Ltd working on image signal

pipelines and image enhancement (2015 - 2019)

Radhesh Bhat received his BE degree in Electronics and Communication

from Visvesvaraya Technological University in 2004. Currently he is

heading digital imaging division at PathPartner Technology Pvt. Ltd. His

research interests include camera image signal processing pipeline, image

quality, computer vision and deep learning.

Dipanjan Ghosh holds a Masters of Technology in Electronics &

Communication from IIT Kharagpur, India and Bachelor of Technology in

Electronics & Communication in North Eastern Regional Institute of

Science and Technology India. He is co-founder and CTO of PathPartner

Technology Pvt. Ltd.

IS&T International Symposium on Electronic Imaging 2019
Autonomous Vehicles and Machines Conference 2019 033-7

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

