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Abstract 

Road traffic signs provide vital information about the traffic 

rules, road conditions, and route directions to assist drivers in safe 

driving. Recognition of traffic signs is one of the key features of 

Advanced Driver Assistance Systems (ADAS). In this paper, we 

present a Convolutional Neural Network (CNN) based approach 

for robust Traffic Sign Recognition (TSR) that can run real-time on 

low power embedded systems. To achieve this, we propose a two-

stage network: In the first stage, a generic traffic sign detection 

network localizes the position of traffic signs in the video footage, 

and in the second stage a country-specific classification network 

classifies the detected signs. The network sub-blocks were 

retrained to generate an optimal network that runs real-time on the 

Nvidia Tegra platform. The network’s computational complexity 

and the model size are further reduced to make it deployable on 

low power embedded platforms. Methods like network 

customization, weight pruning, and quantization schemes were 

used to achieve an 8X reduction in computation complexity. The 

pruned and optimized network is further ported and benchmarked 

on embedded platforms like Texas Instruments Jacinto TDA2x SoC 

and Qualcomm’s Snapdragon 820Automotive platform. 
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Introduction 
Traffic signs along the roads are commissioned to inform, 

guide, and warn the automobile drivers. Typically, many of them 

will not be noticed because of the inattention of the drivers, vehicle 

speed, and poor visibility due to bad weather and by the headlights 

of oncoming vehicles in the night. Vision-based ADAS 

technologies can inform the automobile drivers about the road 

conditions, and support them inaccurately inferring about the 

environment around the ego vehicle. A robust traffic sign 

recognition system can help the drivers by informing and warning 

them appropriately to avoid accidents. Factors like lighting 

variations, occlusion of signs due to obstacles, and deformation of 

signs pose a challenge for a typical traffic sign recognition system. 

The need for executing this recognition system at real-time on low 

power embedded platforms without losing high recognition 

accuracy makes it more difficult to achieve. In this work, we 

propose embedded friendly CNN based Traffic sign recognition 

system to handle this problem.  

Background 
Recent years has seen a lot of progress in object detection 

methods by usage of convolution neural networks (CNNs). Recent 

object detection networks - such as Faster RCNN [1], R-FCN [2], 

Multibox [3], YOLO [5] and SSD [4] have shown promising 

results good enough to be deployed in end products and some of 

them are fast enough to be run on edge devices with small memory 

footprint. Typically, applications like traffic sign recognition 

requires real-time performance on edge devices. Many state-of-the-

art methods that showed promising results on ImageNet and 

COCO object detection challenges [6], are optimized for higher 

accuracies, but are too slow for practical real-time use cases. 

A subset of methods like R-FCN [2], SSD [4], and YOLO [5] 

offer a good tradeoff between decent accuracy and computational 

performance. Despite being relatively lightweight models, they are 

still not deployable on embedded platforms. In recent years SSD 

with Mobilenet [13] as feature extractor is one of the near real-time 

object detection method that can be deployed in edge devices. But, 

tasks like traffic sign recognition needs real-time performance, 

which these methods still fall short of. 

As mentioned by A. Howard et al. [13], a different approach 

for obtaining small networks is shrinking, factoring or compressing 

pre-trained networks. Compression based on product quantization 

[7], hashing [8], pruning, Huffman coding [9] and etc. has been 

proposed in the literature. Additionally, various factorizations have 

been proposed to speed up the pre-trained network [10, 11]. 

Another method for obtaining a small network is distillation [12] 

which uses a large network to teach a smaller network. Some of 

these approaches are used in our method with modifications; and 

will be discussed in section Implementation Details. 

Another interesting approach proposed by Denil et al. [21], is 

to exploit redundancy across filters and channels. He predicted 

95% parameters in a DNN by exploiting the redundancy across 

filters and channels. Inspired by it, Denton et al. [22] achieved 2x 

speedups for the first two layers in a larger network. Both of these 

approaches used Low-Rank Approximation (LRA) with minimal 

accuracy drop. However, the network structure compressed by 

LRA is fixed; reiterations of decomposing, training/fine-tuning, 

and cross-validating are still needed to find an optimal structure for 

accuracy and speed trade-off. As the number of hyper-parameters 

in LRA method increases linearly with the layer depth. 

Comparing to LRA, Sparse convolution algorithms proposed 

by Wie et al. [23] dynamically optimizes the compactness of 

networks. This approach is quite interesting because it doesn’t 

change the overall network structure. A network is sparsified by 

training in iterations with high weight decay, and whenever the 

absolute value of weight falls below a predefined threshold, it is 

thresholded to zero. It also presented a method to recover the lost 

accuracy by fixing the zeroed-out coefficients as zeros and fine-

tuning the non-zero coefficients. The sparsity induced is 
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structurally constrained to get speed up on GPUs that use matrix 

multiplication to implement convolutions. In devices that do not 

use matrix multiplications for implementing convolution, a 

structural constraint may not be beneficial. Also, the sparsification 

approach used in the paper is extremely slow and time-consuming, 

making it difficult to use for large datasets. Manu et al. [16] 

proposed a quick method for sparsification and subsequent fine-

tuning steps which converges in a reasonable number of iterations. 

This provides significant improvement in speed of thresholding 

compared to Wie et al. method. 

Running inference on low-power embedded systems using 8-

bit quantization can be much faster than floating point 

implementations. Quantization, as one of the key approaches, can 

effectively offload GPU, and make it possible to deploy on the 

fixed-point pipeline. Unfortunately, not all existing networks 

design are friendly to quantization. Quantized models have large 

accuracy gap against its float point models. Sheng et al. 

experimented with separable convolutions and analyzed the root 

cause of quantization loss. Where they proposed quantization 

friendly separable convolution architecture [24] with 8-bit 

inference with accuracy almost close to float pipeline. We use 

some of his customizations in our work. 

It’s now widely accepted that eight bits are enough for 

running inference on convolutional neural networks. But there’s 

also a lot of evidence that it’s possible to go lower than eight bits. 

These low bit networks are gaining a lot of traction.  

In this paper, we propose a light-weight two stage traffic sign 

model which gives the real-time performance on embedded 

systems with good accuracy. 

Implementation Details  
In recent years, there have been several contributions towards 

improving traffic sign recognition using deep learning 

methodologies. However, these deep networks are large and 

computationally intense to deploy on embedded systems. We have 

designed a lightweight traffic sign recognition network that is able 

to achieve real-time performance on embedded platforms with 

good accuracy.  

 

 

Figure 1. The above image illustrates the block diagram of the two phases of 
the network: a) a generic traffic sign detector (localizer) network and b) a 
country-specific classifier network. 

Typically, traffic sign recognition involves detecting the 

position of traffic sign boards in road images and classifying them 

as a particular road sign. Though many state-of-the-art deep 

network architectures try to achieve both detection and 

classification together, we have chosen to split the network into 

two different phases: a) A generic traffic sign detector (localizer) 

network that can detect the position of any traffic signboard, and b) 

A country-specific classifier network that can classify the detected 

signs. This cascading arrangement eliminates the need for 

retraining the detector network for different countries. Only the 

classifier network needs to be retrained for various country-

specific signs. The network structure is shown in Figure 1. 

 

Two Stage Model 
There are three main advantages of using a two-stage model 

(Figure 2). First, a generic detector for all types of traffic signs will 

be trained along with country-specific classifiers. We need to train 

the detector only once as the same can be reused for different 

countries. Also, the detector model being the computational heavy 

one, it saves retraining time in customizing the solution for 

different countries. 

Second, it gives a computational advantage by running the 

classifier network for only those boxes that have a good probability 

score given by the detector. In architectures like SSD, the detector 

proposes more than 8K boxes in the default configuration. Running 

a class prediction for these boxes is computationally expensive, as 

in a given frame, we have 3 to 4 traffic signs at an average. So, by 

using a two-stage model, there is a significant saving in 

computation by running a separate lighter weight classifier (Lenet-

5 in this case) to classify the traffic signs. 

Third, by separating the classifier out the complexity of 

detector comes down, as the SSD feature computation is done for 

binary classification (Table 1). 

 

 

Figure 2. One detector with multiple classifiers 

SSD feature computation: Table 1 

Network Computation of extra feature layers 

Integrated SSD 

Network 
K x K x (Number of Boxes x (Classes + 4 )) 

Binary SSD 

Network 
K x K x (Number of Boxes x (2 + 4 )) 

*K - convolution filter size 

Network Distillation and Customization 
Embedded systems have the less computational power and 

less memory to execute analytics. Both of these limitations are not 

in favor of running deep neural networks which require high 

computation power. An obvious option to make deep networks less 

computationally expensive is to reduce the number of layers. But 
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this affects the accuracy of the network significantly, as each layer 

contributes differently to the features. 

To reduce the network size without affecting much accuracy, 

we propose a method of local retraining (local distillation). In this 

method, the sub-blocks between two consecutive pooling layers in 

the frozen model will be trained against a smaller sub-network 

with the same input and output feature dimensions. The rms loss 

function is used between the outputs of the frozen sub-block and 

the new custom defined sub-network. These sub-networks are 

trained locally with random noise as input. The new sub-networks 

are selected if they compute the same feature map outputs as that 

of the frozen model. Multiple sub-networks are trained and the one 

with the best performance is selected to replace the corresponding 

sub-block in the original network (Figure 3). We used random 

noise while training to prevent the sub-network from overfitting to 

particular input data. 

The above process is repeated for all the sub-blocks and at the 

end, we have a smaller model which gives the same accuracy as 

the original one. 

 

 

Figure 3. Sub-net level localized retraining 

Detector Training 
As a common practice, most of the deep learning methods 

reshape the input image to the square template before feeding it to 

model. But, in case of road scenarios objects like traffic signs 

cover a small portion of the image compared to other objects in the 

scene (approximately 5% of the image size). By resizing the input 

image to the square template, these small objects lose their 

structural features reducing the overall detection rate. To preserve 

the features of the small objects in the image, we maintained the 

aspect ratio of the template same as that of an input image. This 

helped in making the model more accurate. 

The detector model was pretrained on Pascal VOC dataset 

[29], as pretraining on large generic datasets proved to help in 

better generalization. 

The detector is trained on German Traffic Sign Detection 

Benchmark (GTSDB), and German Traffic Sign Recognition 

Benchmark (GTSRB) datasets [30]. GTSDB consists of 600 

training and 300 testing sample images. GTSRB consists of 40,000 

training and 10,000 testing image patches of traffic signs. Apart 

from using training samples provided by GTSDB, we have 

generated more sample images by pasting GTSRB patches on 

random noise canvas and used them for training the detector. This 

additional data helped in better localization and faster 

convergence. 

While training we used data augmentation techniques like 

horizontal flip, color variation, brightness and contrast variations 

along with zoom-in and zoom-out operations. Data augmentation 

helped in making the detector model more accurate and robust to 

new environments. (same can be seen in the results section) 

The detector network was trained with six scales (ranging 

from 0.05 to 0.5) and three aspect ratios (0.5, 1.0, 2.0) using Single 

Shot Multi-box Detector (SSD) method. The separable filter 

concept was utilized in detection network for faster feature 

generation. 

Classifier Training 
For the task of classification, we used 5 layered Le-Net [28] 

with two fully connected layers and a softmax layer. The network 

was trained on GTSRB dataset with augmentations like zoom-in 

and transparency variations, to make the model more accurate and 

robust. To decrease the class error, one extra class of “Not a Sign” 

is added, which helped in precision gain. 

Embedded Optimization 
The final frozen TSR network is still heavy and 

computationally intense to deploy on embedded processors with 

small memory footprint and processing capability. Thus, 

quantization becomes crucial for inference on low-power 

embedded platforms, which have a very limited budget for power 

and memory consumption. Such platforms often rely on fixed-

point computational hardware blocks, such as Digital Signal 

Processor (DSP), to achieve higher power efficiency over float 

point processor, such as Graphics Processing Unit (GPU). The 

downside is that the quantizing core layers in the network causes 

large loss, and thus results in significant feature representation 

degradation in the 8-bit inference pipeline. 

We used the Ristretto framework [20] developed by Gysel et 

al. to understand the impact on quantization loss. Ristretto 

framework internally analyses each layer for fixed-point (8-bit) 

implementation and gives an accuracy of the model for fixed-point 

implementation. During analysis, we observed a considerable drop 

in accuracy. Non-linear activation function (ReLU6) used in our 

network was the major root cause for quantization loss. ReLU6 

encourages a model to learn sparse feature earlier. Clipping the 

signal at early layers will lead to quantization-unfriendly signal 

distribution, and thus largely decreases the SQNR of the layer 

output. 

All the ReLU6 functions in our network are replaced with 

ReLU. Sub-net level localized retraining was performed to update 

convolution filter weights. 

Hardware Specific Optimization and customization 
We ported Traffic Sign Recognition (TSR) network to 

automotive grade embedded platforms from Texas Instruments 
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(TI) and Qualcomm. Network architecture is further customized to 

exploit underlying processor hardware acceleration, and to 

overcome implementation limitations.  

Texas Instruments Platform  
The setup consists of an evaluation platform made of TI’s 

Jacinto TDA2x System-on-Chip (SoC). The TDA2x SoC 

incorporates a heterogeneous, scalable architecture that includes a 

mix of TI’s TMS320C66x digital signal processor (DSP) 

generation cores, Vision AccelerationPac, ARM Cortex-A15 

MPCore™, and dual-Cortex-M4 processors. TI’s ecosystem offers, 

• Caffe-Jacinto framework is a custom fork of Caffe that 

provides tools to train models with sparsity, resulting in 

low complexity models that can be used in embedded 

platforms.  

• TI Device translation tool converts network models into 

an internal format best suited for use inside the TIDL 

library. Translation tool also converts model parameters 

(filter coefficients, bias) from floating-point to fixed-

point values. 

• Libraries for vision kernels on Vision AccelerationPac 

and DSP. One such library is the TI Deep learning 

Library (TIDL). TIDL is a suite of components that 

enables deep learning on TI embedded devices. TIDL 

has a highly optimized set of deep learning primitives 

that provide the best accuracy, speed, and memory usage 

trade-offs. TIDL is designed efficiently to take advantage 

of sparsity can run significantly faster by using such a 

model. 

TSR network architecture is customized to overcome TIDL 

inference implementation limitations. For example, the TIDL 

Fully-Connected (FC) layer has limitations with respect to the 

number of input nodes supported. To overcome this limitation, the 

inputs to FC layers are sliced and processed by two smaller FC 

layers. The outputs of two FC layers were added element-wise to 

get the desired result. It’s captured in Figure 4. 

 

 

Figure 4. The above image illustrates how the fully connected (FC) layers 
were sliced and processed due to restrictions on the number of input nodes to 

the FC layer in embedded platforms. 

Once the network architecture is frozen (customized 

network), network weights are further pruned by Using TI’s Caffe-

Jacinto framework. It is done using sparse re-training that consists 

of two steps: a) retraining the model with L1 regularization to 

reduce the standard deviation of the weights around zero mean and 

b) filtering the weights near to zero.  

Post customizations and optimizations, we have a smaller 

model which gives a similar accuracy as the original model. The 

weights, activation and layer outputs of this sparsely trained model 

are quantized to 8-bit using TI Device translation tool. 

Quantization scheme used here is dynamic fixed point 

representation which further accelerates the processing. During 

inference execution,  

• Feature extraction layers and SSD convolutional layers 

are executed from Vision AccelerationPac cores.  

• Remaining SSD layers and classification layers are 

executed from DSPs. 

Qualcomm Platform  
The setup consists of an evaluation platform made of 

Qualcomm® Snapdragon™ 820A (automotive) processor [27]. 

The 820A SoC incorporates a heterogeneous, scalable architecture 

that includes a mix of CPU (Kryo Quad core), DSP (Hexagon™ 

680 DSP) and GPU (Adreno™ 530 GPU). We used Snapdragon 

Neural Processing Engine (SNPE) [26] for running TSR inference 

on 820A platform. Snapdragon Neural Processing Engine (SNPE) 

is a Qualcomm Snapdragon software accelerated runtime for the 

execution of deep neural networks on CPU, DSP, and GPU. 

Platform-specific network customizations not needed here, 

but TSR network has a layer which is not supported by SNPE 

inference. We added the layer implementation by using User 

Defined Layer (UDL) hooks provided by SNPE. SNPE workflow 

is captured in Figure 5.  

For this porting activity, we used CPU and GPU cores of 

820A processor. TSR network (With Embedded optimizations) is 

sliced in two parts. Part-1 network consists of Feature extraction 

layers from TSR network. Part-2 network consists of SSD and 

classification specific layers from TSR network. Part-1 network 

instance is executed from GPU and Part-2 instance is executed 

from CPU. 

  

 

 
Figure 5. Illustrates SNPE workflow.  
Ref. Snapdragon Neural Processing Engine SDK Reference Guide [26]   

Experimental Results  
A DNN based traffic sign recognition system that gives 

accuracy comparable to the state-of-the-art methods on standard 

datasets. It runs at real-time on Nvidia Tegra X2 and Qualcomm 

Snapdragon 820A processors. 

Based on the embedded optimizations (weight pruning, 

quantization, and network customization) on top of the network 

pruning, the model size was reduced by a factor of 8x. The 

optimized model runs at real-time speed on low power SoC like 

Texas Instruments TDA2x utilizing DSP and vision accelerator. 

Refer to Table 2 for performance numbers. Performance numbers 

documented in Table 2 for Qualcomm Snapdragon 820A and 

TDA2x platforms are for 4 detections (Traffic Signs) in the given 

frame. The run-time numbers are subjected to vary with the 

number of detections. Figure 6 shows the precision-recall curves of 

the model trained with different combinations datasets and Figure 

7 shows the precision-recall curves for the final optimized models 
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on different hardware platforms. Results are generated on GTSDB 

test dataset.  

Model complexity and performance: Table 2 

 

 

Figure 6. Precision recall curve for model trained with different datasets tested 
on GTSDB test dataset (Table-3)  

Model results with different training datasets (tested on GTSDB 

test dataset with 0.5 IoU): Table 3 

Color 
GTSDB 
Dataset 

Augmentation 
GTSRB 
patches 

GTSRB 
patches 
stacked 

 ✔    

 ✔ ✔   

 ✔ ✔ ✔  

 ✔ ✔  ✔ 

 

 

 

 

 

Figure 7. Precision recall curves for model before and after hardware specific 
optimizations tested on GTSDB test dataset (Table-4) 

Model results on hardware platforms (tested on GTSDB test 

dataset with 0.5 IoU): Table 4 

Color Platform Inference speed 

 Texas Instruments TDA2x 20 fps 

 Qualcomm SDM 820 20 fps 

 NVIDIA Tegra X2 24 fps 

Discussion and Conclusion  
In the current Traffic Sign Recognition system explained, the 

two-stage model followed by local distillation of network reduce 

Platform Platform Computation power Network 
Network 

Model complexity 

Run-Time Speed 

(milliseconds) 

Tegra X2 ~ 750 GFlops (GPU) Network pruned Model 
2.0 Giga Floating point operations 

per frame 
42 

Snapdragon 

820A 
~ 500 GFlops (GPU +CPU) 

Network pruned 

+ Embedded specific 

optimized Model 

2.0 Giga Floating point operations 

per frame 
48.5 

TDA2x 
~ 65 GMACs (2 DSP + 4 

Vision Accelera-tionPac ) 

Network pruned + 

Embedded optimized 

model 

0.25 Giga 

Multiply and accumulates per 

frame 

49.5 
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the computational complexity by maintaining the detection and 

classification accuracies. 

Cascading arrangement of detection and classification 

networks eliminated the need for retraining of detection network 

that is relatively larger and computationally intensive. The smaller 

classification network can be quickly and efficiently retrained for 

any country-specific traffic sign set. This network arrangement 

also reduces the training cycles by large, compared to a composite 

network that trains on a combined loss function for both detection 

and classification.  

While network pruning, locally retraining the network sub-

blocks generated a very optimal network that had reduced 

computational complexity while maintaining the effectiveness of 

the same features. 

Sparse re-training of the model further reduced the 

computational complexity, making it feasible to execute on 

embedded platforms like Texas Instruments TDA2x and 

Qualcomm 820A.  
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