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Abstract
The safe navigation of large commercial vehicles implies

the extended need for the surveillance of the direct surroundings.

Nowadays surround view systems show heavy distortions and only

have a limited range around the vehicle which may not be far

enough to detect obstacles or persons early. We present a novel

method which fuses an advanced perspectively correct surround

view with an advanced obstacle detection. The method proposed

is based on stereo vision and uses geometric modelling of the en-

vironment using a grid map data structure. The grid map is pro-

cessed by a refinement algorithm to overcome limitations of the

grid map when approximating shapes of the obstacles which are

highlighted in the surround view.

Introduction
Monitoring the direct vehicle surroundings is a crucial task to

both human drivers and (semi-)autonomously operated vehicles.

In case of large commercial vehicles and combination-vehicles,

the task becomes more difficult. Especially in driving maneu-

vers which include direction changes, the problem raises. Sur-

round view systems are suitable to increase the operational safety

in these scenarios. Current state-of-the-art methods - especially

in commercial applications - only cover a short range (approx.

1.2 meters) around the vehicle and do not provide geometric cor-

rect views. Both limitations are not suitable for large commercial

vehicles, which need a higher range for the surround views and

perspectively correct views to gain appropriate support for navi-

gation. To accomplish a reliable surveillance of the vehicle sur-

roundings, the integration of advanced environment analysis in

combination with a visualization of hazardous areas and obsta-

cles is important. In addition, nowadays applications suffer from

heavy distortions caused by misleading assumptions incorporated

in a widely used homography-based method underneath. An au-

tomated analysis of the vehicle surroundings identifying obsta-

cles and highlighting them in the views depicts an added value for

these systems and aims towards safer navigation of these vehicles.

Recently, German authorities have started a legislative ini-

tiative on making dead space surveillance systems required for

commercial vehicles, which stresses the need for a technical solu-

tion.

The need for extended ranges and additional valuable envi-

ronmental information with surround view systems motivates fur-

ther investigation of these topics. In order to create a sophisticated

monitoring and surveillance system especially for large vehicles,

we extend a method previously developed at our lab. It incorpo-

rates an advanced environment modelling technique based upon

stereo data which shows a superior geometric precision. The more

precise the geometric modelling, the better the perspective map-

ping achieved with our method gets. To enhance the value of the

monitoring system, a stereo-based advanced obstacle detection al-

gorithm is used to fuse relevant detected objects into the view.

Related Work regarding our approach is presented in the

next section. The fundamentals of our work are then introduced.

The extension regarding the iterative grid refinement algorithm

and the stereo-obstacle detection is explained afterwards. We fi-

nally present resulting views computed using publicly available

datasets.

Related Work
The following paragraphs summarize relevant aspects of re-

search topics which must be considered in order to compute dense

surround views with integrated obstacle detection.

Camera Calibration and Modelling
The correct description of the imaging process within a cam-

era is a vital prerequisite when using a (digital) camera as a mea-

suring device. As cameras are prone to uncertainties in their pro-

duction process, adequate calibration techniques are mandatory to

estimate correct geometric parametrizations.

Fundamental work on this issue has been published by Tsai

and Lenz [18] and Tsai [38] including a refined method by

Zhang [41]. The underlying methods enable a robust camera

parameter estimation, which is widely used nowadays. How-

ever, camera lenses with a more complex geometric modelling

need adapted methods concerning the distortion models, e.g. fish-

eye, wide-angle or catadioptric lenses. Geyer and Daniilidis [10]

published an approach for catadioptric cameras, Scaramuzza [30]

proposes a method for both fish-eye and catadioptric cameras – to

mention two extended methods. Especially the method by Scara-

muzza [30] is commonly used in automotive applications.

Image-based Rendering
In the field of image-based rendering, the computation of

virtual views is a widely discussed topic. A survey of differ-

ent approaches is given by Shum and Kang [34]. The publica-

tion gives an overview of different techniques and their underly-

ing geometric modelling strategy. However, most approaches use

pre-computed or pre-modeled knowledge about the environment

and are therefore not applicable in the context of surround views

which are targeted towards real-time needs. Only implicit geom-

etry methods are reasonable in this context, e.g. [17, 44, 40].

Image-based rendering methods focus on the interpolation

resp. extrapolation with a camera pose close to the pose of the real

camera. Up to the best of the authors’ knowledge, no publication

from the field of image-based rendering addresses extensive pose

changes between real and virtual camera, which is needed for sur-

round view computations. Yet, fundamental work is presented in

these publications, although they do not include a solution for the
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issue investigated.

Perspective Transformations and Virtual Views
Surround views, also known as bird’s eye views, cannot be

captured directly as this would imply a camera position above the

vehicle. This is technically impossible as the cameras have to be

mounted on the vehicle itself. Therefore, computation algorithms

to compute a virtual camera’s view are mandatory.

An obvious approach towards view transformation is per-

spective geometry. Hartley and Zisserman [12] and Vincent and

Laganiere [39] describe the idea behind this approach:

Let all objects visible in the field of view of a camera be

located on a plane in 3-D space. Using at least four points in

the 2-D image space, the 3-D plane can be described (projective

plane). Given corresponding 2-D points in image coordinates of

the desired virtual field of view, the transformation of the projec-

tion of the plane from the captured view to the desired view can

be defined using a homography matrix H ∈ IP2×2. Assuming the

cameras to have a constant imaging process (fixed lenses) and un-

altered geometric relations between the real and virtual camera,

matrix H is considered constant.

The homography matrix describes the transforma-

tion/warping between the two views and can be applied to the

whole image thus transforming to the virtual view. Several

publications and state-of-the-art implementations utilize homo-

graphies with various optimizations regarding camera distortions

and computation cost, e.g. [20, 22, 37, 29].

However, approaches using homographies have several

drawbacks which we described in prior publication s [5, 6]. The

so called Homography Shadowing Effect explains the unnatural

distortions which occur as soon as the plane assumption regarding

the 3-D location of the objects visible is violated. Yet, homogra-

phies are still used in nowadays surround view systems. Depend-

ing on the application, a perspective correctness of the view is vi-

tal for the surround view system, e.g. in off-road or construction

site scenarios.

In a first step, we proposed a point-based approach towards

perspectively correct bird’s views which exploits depth informa-

tion from stereo images and works without homographies [5].

We advanced the idea with an underlying geometric model of the

ground combined with partially planar texturing algorithm in [7].

With this publication, we extend our algorithms with an iterative

cell refinement and advanced stereo-based obstacle detection in

order to more precisely model the ground and to include the visu-

alization of non-ground obstacles.

Stereo and Stereo Odometry
Stereo vision enables the extraction of depth information

by matching images captures from different views at the same

time. It is the key to extract 3-D information without the need

for knowledge about the objects in the scene or image sequences.

The basic principles behind the stereo imaging geometric – or in

more general multi-view geometry – is summarized by Hartley

and Zisserman [12]. Given camera intrinsics and geometric re-

lation between the cameras, a matching between the two images

enables the computation of disparities which represent the per-

spective mismatch and therefore the depth at a location resp. an

image area.

The matching approaches separate in two main types:

Keypoint-based and block-based matching. Keypoint-based algo-

rithms match single points described by feature descriptors, e.g.

[19, 21, 28], between the images and compute the corresponding

disparities, e.g. [11, 15]. These algorithms tend to have a high

precision in depth, but only result in sparse depth information in

relation to the overall pixels in the image.

Block-matching algorithms focus on dense disparity data

and try to match pixel blocks between the images. A popu-

lar method was proposed by Hirschmüller et al. [14]. They use

mutual information and pixel-wise matching in their semiglobal

matching (SGM) algorithm. The algorithm has been optimized to

different applications and is used in lots of automotive applica-

tions such as in [33, 13].

Stereo vision is used in lots of application in the automotive

field already (e. g. [26, 3, 16] and many more). The idea of us-

ing stereo vision in order to create perspectively correct surround

views has not yet been discusses, up to the best of our knowledge.

In a previous publication [5] we use stereo vision and transform

the resulting colored point clouds into virtual camera views to

create a perspectively correct surround view. The approach shows

good properties towards the correct geometric handling but has

sparse result images when heavy shifts in the camera rotations are

applied. In another recent approach [7] we created a grid map

based geometric environment model and approximate the ground

space with a closed surface mesh. The surface mesh’s uses trian-

gles as geometric primitives which itself are planar. The planar

patches are then properly texturized using the camera images.

A lot of different stereo datasets have been acquired and

published, e.g. [27, 31, 32]. Geiger, Lenz and Urtasun [9] pub-

lished the KITTI Stereo Benchmark, which has become very pop-

ular over the past years for automotive applications. The collec-

tion contains datasets for different purposes with different sen-

sor modalities. The KITTI odometry datasets contain both color

and gray-level stereo datasets and 3-D-LIDAR data. We use these

datasets in our work.

As the plan is to temporarily integrate the stereo data, a pre-

cise knowledge about the relative movement between two cam-

eras is mandatory. Visual odometry is a key technique to compute

the relative poses directly from stereo frames. We define a pose

as a combination of position orientation, which is represented by

a tuple of a 3-D-vertex and a rotation quaternion. We follow a

method proposed by Cvišić and Petrović [4] in this publication.

It is amongst the best-ranking algorithms on the KITTI odometry

benchmark [9] at the moment.

Closed Surface Representation
The representation of closed surfaces in the context of en-

vironment modelling follows two main techniques: Variants of

heightmaps and voxel-based truncated signed-distance function

(TSDF) [25].

Heightmaps are widely used in SLAM technologies. They

are optimized simultaneously to the pose of the sensor/camera:

Heightmaps are used as the underlying data structure in various

SLAM algorithms [35, 43, 42]. They solve the localization and

orientation (pose) problem at the same time the geometry is op-

timized. Yet, none of these publication focusses on the issue of

high-quality texturing.

Motooka et al. [23] show impressive quality in a photometri-

cally optimized texturing of a heightmap. They use a large num-
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ber of camera images. However, they state that their method is

not suitable for an online application.

Tanner et al. [36] address large area mapping and utilize TS-

DFs. They show a detailed colored mesh representation of the

environment. Yet, they focus on large area mapping rather than

texture details. They apply one color per voxel which results in a

texture resolution of one color per 10cm.

A 3-D reconstruction approach is presented by Gallup,

Frahm and Pollefeys [8]. They cluster depth images into a voxel

structure and combine them with a heightmap. Their focus is on

a continuous heightmap at the cost of texturing quality.

Geometric Grid Map Modelling
To create the perspectively correct surround view, depth data

from a multi-stereo setup is accumulated and integrated into a sur-

face model of the environment to represent the environments ge-

ometry. The approach is extended from a previous method we

published [7] and integrates refinements steps which match the

real geometry of the scene more precisely.

We use a grid map as the basic data structure. The grid map is

orthogonal and equidistant and has a fixed reference to the world

coordinate system. It is also aligned to the world coordinate sys-

tem which is defined on a corner of a grid cell. This implies that

two of the world coordinate system’s axes (xy-plane) define the

bases of the grid map.

Parameter g ∈ IR defines the side length of a single cell and

determines the area covered by each grid cell. The grid map sam-

ples the assumed ground plane of the world coordinate system. As

the vehicle moves over the grid map, it is important to maintain

the grid map local around the vehicle, as only the direct vehicle

surroundings are of particular interest:

As we plan to accumulate 3-D data in the grid, it is impor-

tant to maintain the world reference and adapt the vehicles current

pose to the fixed reference. For each vehicle pose with reference

to the world coordinate system and thus the origin of the overall

grid map, the current vehicle cell which corresponds to the vehi-

cles pose can be determined. This cell is denoted as the vehicle or

center cell cc. Over the system runtime, the vehicle is expected to

move large distances, so that an iterative update of the grid map

is needed to keep the amount of data manageable.

The grid map data structure is extended to a local shifting

grid map which always uses the center cell cc as the center of the

grid map while maintaining the world reference and the sampling

of the ground plane.

Therefore, the grid definition must be extended with the grid

extents: Parameter e ∈ IN defines the number of cells around the

center cell cc. The extents of the local shifting grid map are given

by the index range ([−e,e], [−e,e]) ∈ ZZ2 which yields (2 ·e+1)2

cells in the grid. As soon as the vehicle enters a center cell at

timestep τ which defers from the center cell at timestep τ − 1

(cc;τ 6= cc;τ−1), the grid map data structure must be updated as

shown in Figure 1.

The 3-D point cloud from the stereo system is added to the

grid map for each time step. In order to integrate the data cor-

rectly, a visual odometry approach [4] is utilized to compute the

corresponding delta poses of the vehicle. The relations of the co-

ordinate systems involved are shown in Figure 3. The 3-D points

get accumulated in their corresponding cell. Afterwards, each

grid cell is processed independently. Depending on the heights of

Figure 1: Local Shifting Grid Map: As soon as the vehicle’s 2-D

ground position leaves the old reference center cell (a), the center

cell is updated using the new position (b). The new center cell

causes the selection of the cells to add resp. to remove from the

grid (b). The grid’s extents are then updated according to the new

center cell (c). The contents of the grid cells remaining in the grid

are maintained while updating the extents.

the 3-D points and their original distance to the sensor as a quality

criterion, a heuristic algorithm [7, 24] is applied to determine if

the cell is an obstacle or a flat cell. The decision concerning an

obstacle classification is made upon a statistic measurement of the

height spread within the cell. In case of a flat cell, an appropriate

cell height is computed from the points’ heights and assigned to

the cell. As soon as the points of – for example – a vertical object

lies within a cell and the thresholds for the obstacle detection are

exceeded, the whole cell is regarded an obstacle cell.

The grid map with its topology and accumulated and post-

processed data is used to compute a closed surface approximation

of the ground. In order to create partially planar surface elements,

a triangle mesh is created upon the grid. The surface has its ver-

tices at the corners of the grid’s cells. The vertex β at the origin

of cell cu,v is computed as follows (with ξ (u,v) the height of cell

cu,v):

β (u,v) =

(

g ·u,g · v,
1

4
·

0

∑
i=−1

0

∑
j=−1

ξ (u+ i,v+ j)

)T

An example for the closed surface can be seen in Figure 2. In

order to create a surround view, a texture layer is added to the grid

map. The resolution of the texture layer is defined with parameter

r ∈ IN and yields a texture resolution of r · r pixels per cell.

Figure 2: Example for a closed surface over a grid map. The

single surface elements are partially planar.
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Figure 3: Grid map with world coordinate system (w), vehicle coordinate system (v), center cell cc (c) and sensor coordinate systems (s).

Pose v transforms from world the vehicle coordinate system. The sensor pose s defines the coordinate system of the sensor data within

the vehicle. The 3-D points are transformed from the coordinate system of the camera (s) for the grid’s cells.

Figure 4: Texture extraction from camera images using the closed

surface model.

As the relative position of the cameras to the closed surface

model is known, the camera images can now be used to texturize

it. As the partially planar elements approximate the real world,

they can be used as a reference geometry to project the camera

images onto.

Figure 4 illustrates the process: The projection of a triangle

to the camera at a known relative pose is described by the known

camera intrinsic. It is therefore possible to determine the area in

the image which covers the part of the world that is approximated

by the triangle. As the triangle is partially planar, a homography

can be used to formulate the warping process between the pro-

jected triangle excerpt in the image and the corresponding texture

patch. However, at least four points are needed to formulate a

homography matrix. A virtual fourth point can be added to the

triangle by computing a co-planar point on the triangle plane.

Iterative Surface Refinement
The method proposed decides on a cell basis, if the corre-

sponding space is regarded as an obstacle or not. This implies,

that an obstacle can only be narrowed down up to the precision

of the grid’s resolution g ∈ IR. However, it is important to ap-

proximate the obstacle representation more precisely. We there-

fore use a two-staged approach for the obstacle representation in

the method proposed. At first, the heuristic approach explained

above – which allows a simple and therefore fast processing –

towards the obstacle detection is used. In a second stage, we re-

fine promising candidate obstacle cells to enlarge the bottom area

which leads to a larger area which can be visualized in a surround

view.

In order to select candidate cells, the grid topology of the sin-

gle cells is used. It only makes sense to revisit previously as ob-

stacles classified cells, when the cell is neighboring non-obstacle

cells. The basic idea behind this is to be able to enlarge the nearby

ground approximation and the texturable area. In order to main-

tain reasonable splitting, we limit the texture resolution r ∈ IN to

r = 2n with n ∈ IN.

Let ψ : ZZ2→{0;1} be a Boolean function which describes

if a cell c in the local shifting grid map G is classified as an ob-

stacle in the first stage. Using this function, a neighbor relation

is defined, which describes cells that share an edge with the ref-

erence cell in the grid. In case of the orthonormal equidistant

grid structure, the neighbor relation equals to a 4-neighborhood

as known from image processing. The neighbor relation ρ(u,v)
for a cell cu,v at position (u,v) ∈ ZZ2 in the grid is defined as:

ρ(u,v) =
{

cu−1,v,cu,v+1,cu+1,v,cu,v−1

}

The set of obstacle cells, which are considered as candidates

for the grid refinement, is denoted as Ψ:

Ψ =







ci, j

∣

∣

∣

∣

∣

∣

ψ(ci, j)∧¬





∧

a∈ρ(i, j)

ψ(a)











Given an obstacle cell cu,v ∈Ψ, the corresponding cell point

cloud Cu,v is transformed so that the components of the point

which refer to the grid plane (xy-plane, see Figure 3) are normal-

ized to locally normalized relative cell coordinates, leaving the

z-component (height) unaltered. This yields for the normalized

point cloud Ou,v:

Ou,v =

{(

(

pc
x ·g
−1

, pc
y ·g
−1

, pz

)T
,d

)∣

∣

∣

∣

(p,d) ∈Cu,v

}
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Algorithm 1 Recursive cell splitting

1: procedure SUBDIVIDECELL(O, r)

2: if r < 1 or |O|< t then ⊲ t ∈ IN a threshold

3: return {}

4: S←{}
5: for i := 0 to 1 do

6: for j := 0 to 1 do

7: B← Di, j(O) ⊲ Compute sub-cell

8: if ¬ψ(B) then ⊲ Non-obstacle cell?

9: S← S∪{B}
10: else

11: S← S∪SUBDIVIDECELL(B, 0.5 · r)

return S

Now let the obstacle cell cu,v ∈Ψ be a candidate for the grid

refinement. The corresponding normalized point cloud Ou,v is

subdivided iteratively to approximate possible ground space in the

cell area. The area of cell cu,v is split into four equally sized sub-

cells Di, j which are combined in the set Su,v:

Su,v =
{

D0,0,D1,0,D0,1,D1,1

}

The computation of the sub-cells in the fist stage is computed

as follows:

Di, j(Ou,v) = {(A · p,d) | (p,d) ∈ Ou,v,

px ∈ [i ·0.5, i ·0.5+0.5],

py ∈ [ j ·0.5, j ·0.5+0.5]
}

Matrix A ∈ IR3×3 is a is a scaling matrix which normalizes

the points p ∈ IR3 within the sub-cells in an analogue way:

A =





2 0 0

0 2 0

0 0 1





The subdivision of the cells can be applied iteratively as

shown in Algorithm 1. In case a sub-cell is classified as ground,

it can be used to extend the closed surface mesh. Otherwise the

iterative refinement recurses until at least one of the termination

criteria is met: Too few points left for the sub-cell (threshold) or

the potentially left texture gain drops below the area of one pixel.

The principle behind the iterative grid refinement is depicted

in Figure 6.

Advanced Stereo Obstacle Detection
The obstacle detection based on a heuristic approach with the

iterative grid refinement is capable of approximation the ground

geometry in an advanced way. However, it is desirable to provide

more precise information concerning the nearest obstacles to the

vehicle and its shape. The goal is to fuse this information with the

perspectively surround view in order to provide accurate informa-

tion about nearby obstacles to the driver/algorithms.

Based on the work by Badino, Franke and Pfeiffer [1], we in-

tegrate an adapted stereo obstacle detection approach which gen-

eralizes their method while tailoring it to the surround view sce-

nario.

(a) Obstacles detected by the heuristic cell algorithm (red)

(b) Refined sub-cells (blue)

Figure 5: Example for the grid refinement: The obstacle cells as

red solids (a) are refined by the blue sub-cells (b)

The authors directly work on the disparity maps of the stereo

camera in their “Stixel World” approach and use a camera pose

which looks in direction of the horizon parallel to the ground as a

prerequisite. Given the disparity image, they search for the near-

est obstacle to the camera per disparity image column. Due to the

camera pose constraint, each column of the disparity image rep-

resents a sampling when rotating in yaw direction in means of the

camera/the vehicle.

Using columns wise histograms of the disparities (and a

spline-based approximation of the ground to cut out ground ar-

eas) which are represented in a joint occupancy grid, they start a

local maxima search in order to find the nearest obstacle to the

camera. Obstacle candidates are then combined over the single

image columns to find connected obstacle instances. In further

steps, the heights of the objects found are determined.

Their approach shows impressive results when the camera

pose prerequisite is fulfilled. However, the approach is not di-

rectly adaptable to the scenario discussed here, as the (stereo)

cameras used for surround view generation usually are not aligned

towards the horizon yet facing downwards towards the ground.

We propose and use a generalization of the approach by

Badino, Franke and Pfeiffer [2] in order to adapt their method to

the surround view scenario. Given the initial stereo point cloud,

a coordinate system equal to a camera facing the horizon is gen-

erated. This coordinate system has its origin in the camera’s co-

ordinate system but is rotated adequately. Let pose a describe the

transformation between the camera’s coordinate system c and the

coordinate system h of the virtual camera facing the horizon. With

Ta ∈ IP3×3 the transformation matrix resulting from pose a, the

point cloud can be transformed to the desired coordinate system

from the initial point cloud Pc in the virtual camera’s coordinate

system:

Ph = {Ta · p̃ | p ∈ Pc}

The original pixel topology of disparity image is of course

not available anymore in the transformed point cloud Ph. How-
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ground cell
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real world obstacle

ground sub-cells
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Figure 6: Principle of the iterative grid refinement

ever, an alternative to the disparity image column can be set up by

clustering the point cloud using a discretized yaw angle (relative

to the camera’s orientation).

Given a sample step ∆α – which can easily be derived from

the camera intrinsic to match the opening angle of image column

in the original disparity image – the candidates for the column-

based histogram can be extracted. At this point, the disparities

itself have already been transformed to 3-D points. It is reason-

able to focus on the distances of the points to the virtual view

for the histogram, as the semantic is appropriate compared to the

disparities.

With this generalization of the method, we can apply it to

the stereo data from cameras violating the prerequisite in the pub-

lication by Badino, Franke and Pfeiffer [2]. As the height of the

obstacle is not of importance in means of surround view computa-

tion as we view the obstacle from a bird’s view, no sophisticated

solution is needed here. An overview of the steps involved in

the stereo obstacle detection is given in Figure 7. The obstacles

extracted from the stereo images using the method described are

fused into the surround view algorithm as described above and

enable the clear presentation of obstacle boundaries.

Stereo Data 3-D-Re-Projection

Virtual View TransformView Angle Clustering

Depth Occupancy Grid Obstacle Extraction

Height EstimationObstacle Clustering

3-D Obstacle Representation

Figure 7: Components overview for the Advanced Stereo Obsta-

cle Detection

3-D Point Cloud Vehicle Pose v Image Frames

Stereo Data Visual Odometry

Grid Map Clustering Cell Height Estimation

Grid RefinementObstacle Detection

Closed SurfacePlanar Cell Projection

Homography Estimation Partial Texture Warping

Perspectively Correct Dense Surround View

Figure 8: Overview of the system’s components and the dataflow

between the components. Red boxes indicate input data, the green

box indicates the output. The blue boxes mark the topics dis-

cussed in deep in this publication.

Test Results and Conclusion
We propose an approach towards perspectively correct sur-

round views, which conducts a geometric modelling based on a

local shifting grid map. The environment model is used to create

a closed surface representation of the vehicle surroundings which

provides partially planar surface elements. These elements are

used to achieve a high quality texturing of the vehicle surround-

ings and thus a high quality surround view.

We use the stereo data from the same sensors in three differ-

ent ways: We first compute 3-D point data from the data and then

use it for both geometric modelling and obstacle detection. The

stereo frames are also used to solve the visual odometry problem

in order to compute relative poses between the timesteps. These

poses are needed for the temporal integration of the 3-D data in

the grid map. The accumulated 3-D points are then used to cre-

ate a heightmap which is the basis for our closed surface model.

The grid map is then refined to further enlarge the ground surface

approximation in order to increase the viewable area in the sur-

round view. The original camera images are used to texture the

3-D model of the environment.

The advanced stereo obstacle detection enables the precise

integration and visualization of non-ground objects within the sur-

round view which clearly marks an advantage. Figure 8 shows the

components of the system developed and explains the data flow

within.

To enable the reproduction and comparison of our method,

we rely on a publicly available dataset as input to compute the

result images presented (KITTI Odometry Datasets [9]). The re-

sults range up to ≈ 9m around the vehicle and were computed

using the following parameters:

e = 30, g = 3.5−1 m r = 15px

Figures 9, 10 and 11 show results computed by our method.

The shape of the obstacles (e.g. cars, lantern, house, distribution

boxes) in Figure 9 is clearly visible in the surround view/ground

texture. Even the small lantern was detected correctly. The two

cyclists – which are very important to be detected – in Figure 10
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(a) Ground Texture (orthographic).

Green lines mark obstacles detected by the advanced algorithm.

(b) 3-D View with Car Pose.

The green walls mark obstacle boundaries found.

(c) Scene image (KITTI odometry dataset #1, frame 102 [9]))

Figure 9: Perspectively correct dense surround view result using

KITTI odometry dataset #1.

are detected and marked correctly. The car in the shadow in Fig-

ure 11 is highlighted in the ground texture and therefore visible

despite of the dark areas in the original images.

The approach proposed shows sophisticated image quality.

The geometric modelling enables a perspective correct view, al-

though roughness is present on the ground. The grid refinement

enables to enlarge the visible ground space so that the area cov-

ered by the surround view is increased. The obstacles by the

advanced stereo based algorithm highlight potentially dangerous

borders around the vehicle and pose a gain in safety for the oper-

ator/driver.

For further work it is planned to enhance the texture resolu-

tion and the geometric modelling to gain an even better represen-

tation of the environment.
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