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Abstract
Hyperspectral image classification has received more attention
from researchers in recent years. Hyperspectral imaging systems
utilize sensors, which acquire data mostly from the visible through
the near infrared wavelength ranges and capture tens up to hun-
dreds of spectral bands. Using the detailed spectral information,
the possibility of accurately classifying materials is increased.
Unfortunately conventional spectral cameras sensors use spatial
or spectral scanning during acquisition which is only suitable for
static scenes like earth observation. In dynamic scenarios, such
as in autonomous driving applications, the acquisition of the en-
tire hyperspectral cube in one step is mandatory. To allow hy-
perspectral classification and enhance terrain drivability analy-
sis for autonomous driving we investigate the eligibility of novel
mosaic-snapshot based hyperspectral cameras. These cameras
capture an entire hyperspectral cube without requiring moving
parts or line-scanning. The sensor is mounted on a vehicle in a
driving scenario in rough terrain with dynamic scenes. The cap-
tured hyperspectral data is used for terrain classification utilizing
machine learning techniques. A major problem, however, is the
presence of shadows in captured scenes, which degrades the clas-
sification results. We present and test methods to automatically
detect shadows by taking advantage of the near-infrared (NIR)
part of spectrum to build shadow maps. By utilizing these shadow
maps a classifier may be able to produce better results and avoid
misclassifications due to shadows. The approaches are tested on
our new hand-labeled hyperspectral dataset, acquired by driv-
ing through suburban areas, with several hyperspectral snapshot-
mosaic cameras.

Introduction
Environment perception and analysis is crucial for autonomous
driving, especially in off-road scenarios. Given sensor data, the
correct semantic interpretation of a scene is a key factor for suc-
cessful autonomous navigation. The use of hyperspectral sensors
brings an advantage, as it allows a more detailed view of the com-
position and surface of materials, plants and floor coverings than
conventional cameras.
We make use of novel sensors hyperspectral snapshot mosaic sen-
sors on unmanned land vehicles for drivability and scene analy-
sis. Therefore, we utilize machine learning techniques to classify
the captured spectral reflectances. As semantically segmenting
an environment is an important goal in computer vision, it’s also
very complex. Even though we have seen a lot of progress in
recent years by using advanced image descriptors and deep learn-
ing techniques, segmentation remains a challenge as it produces
a negative impact on the accuracy and efficiency of classification
results. While humans have no difficulty in performing seman-

(a) Raw VIS camera image.

(b) Raw NIR camera image.

(c) A schematic representation of a hypercube and an interpolated plot
of a single data point.

Figure 1: Raw images from VIS and NIR cameras. And a
schematic representation of a hypercube.

tic scene interpretation, computer vision systems are still strug-
gling because of the complex interactions between light, objects
and surface reflectances. Therefore, shadow detection has long
been considered a crucial component of scene interpretation, but
it still remains a challenging problem, particularly from a single
image. For example, a dark pixel can result from either a dark
surface under normal lighting conditions or a bright surface un-
der shadows. So unwanted shadow boundaries may be detected
together with true object boundaries, misleading classificators as
they assume intensity or color constancy inside objects and mate-
rial boundaries. Therefore, effective and robust shadow detection
techniques are crucial for computer vision applications such as
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Name Method Data

Levine (2005) [Levine and Bhattacharyya, 2005] SVM RGB
Lalone (2010) [Lalonde et al., 2010] Adaboost RGB
Tian (2009) [Tian et al., 2009] Image Formation Theory RGB
Mustafa (2011) [Teke et al., 2011] NIR-R-G Space RGB + NIR
Rfenacht (2014) [Rüfenacht et al., 2014] RGB-NIR Thresholding RGB + NIR

Table 1: Partial overview of state of the art in shadow detection
algorithms.

environment perception and scene segmentation. To determine
whether a region is in the shadows, we need to compare the re-
gion with others that have the same material and orientation. Ap-
proaches using user input or multiple images have yielded im-
pressive results, but robust and automatic shadow detectiob from
a single image remains unresolved. This is because the appear-
ance and shapes of shadows depend on several hidden factors,
such as color, direction and size of light sources, the geometry of
the objects throwing shadows, and the shape and material prop-
erties of the objects on which shadows are casted. In this paper
we study automatic shadow detection using hyperspectral infor-
mation enhancing scene segmentation results. We believe that es-
pecially data captured in the near-infrared (NIR) range is relevant
for shadow detection and semantic segmentation.

Related Work
The standard procedure for image-based scene-segmentation is
defined by capturing regular RGB images and trying to iden-
tify different classes, like Chetan et al. [Chetan et al., 2010] did.
They used color information and local binary patterns (LBP) in
combination with different supervised classifiers on RGB data.
But, in recent years, hyperspectral classification has gained in-
terest. Hyperspectral data allows for a more detailed insight into
the composition and nature of objects and materials like plants
and soil than standard RGB data. Given hyperspectral data, the
goal of classification is to assign a unique label to each pixel vec-
tor so that it is well-defined by a given class. Most supervised
classifiers suffer from the Hughes effect [Hughes, 1968], espe-
cially when dealing with high-dimensional hyperspectral data. To
deal with this issue, Melgani et al. [Melgani and Bruzzone, 2004]
and Camps-Valls et al. [Camps-Valls and Bruzzone, 2005] intro-
duced support vector machines with adequate kernels for hyper-
spectral classifications. Most image based shadow detection algo-
rithms can be divided into two categories, semi-automatic meth-
ods which require some kind of user-input and automatic meth-
ods, which make use of additional constraints. Finlayson et al.
[Finlayson et al., 2006] introduced three different shadow-free
image representations and discussed methods for shadow removal
utilizing the canny detector. This approach was extended by
Shiting et al. [Shiting and Hong, 2013] who used clustering meth-
ods for shadow detection. Sasi et al. [Sasi and Govindan, 2015]
presented a shadow detection method using a fuzzy split and
merge approach which follows a top down approach of recur-
sively splitting images into homogeneous blocks, followed by a
bottom up step which merges adjacent unique regions. Wang
et al. [Wang et al., 2007] combined two methods of shadow de-
tection using color based and model based methods. It detects
moving regions of provided image data and makes use of back-
ground subtraction methods which is then utilized in the proposed
shadow detection approach. The table 1 displays additional work
in the area of automatic shadow detection. These algorithms rely

almost exclusively on RGB data and often make assumptions and
have limitations. This indicates that shadow detection is still a
challenge which requires additional information. The last two al-
gorithms additionally use one band from the near infrared range
to enhance shadow detection accuracy. Which indicates that the
near-infrared spectrum possesses some important properties that
make shadow detection more accurate. As the reflectance of sur-
faces is greater there. So we can better distinguish dark objects
from shadowed surfaces, which makes it easier to distinguish be-
tween dark objects and real shadows.

SENSOR SETUP
In this work we used the MQ022HG-IM-SM4X4-VIS (VIS) and
the MQ022HG-IM-SM5X5-NIR (NIR) manufactured by Ximea
with an image chip from IMEC [Geelen et al., 2014] utilizing a
snapshot mosaic filter which has a per-pixel design. The filters
are arranged in a rectangular mosaic pattern of n rows and m
columns, which is repeated w times over the width and h times
over the height of the sensor. These sensors are designed to work
in a specific spectral range which is called the active range which
is 470–620 nm for the current sensor. The VIS camera has a mo-
saic pattern with nVIS = 4,mVIS = 4. Ideally every filter has
peaks centered around a defined wavelength spectrum with no
response outside. However contamination is introduced into the
response curve and the signal due to physical constraints. These
effects can be summarized as a spectral shift, spectral leaking,
and crosstalk and need to be compensated. Therefore the raw
data captured by the camera needs a special preprocessing, de-
scribed in [Winkens et al., 2017]. We need to construct a hyper-
cube with spectral reflectances from the raw data. This step con-
sists of cropping the raw-image to the valid sensor area, removing
the vignette and converting to a three dimensional image, which
we call a hypercube. Reflectance calculation is the process of ex-
tracting the reflectance signal from the captured data of an object.
The purpose is to remove the influence of the sensor character-
istics like quantum efficiency and the illumination source on the
hyperspectral representation of objects. We define a hypercube as
H : Lx×Ly×Lλ → IR where Lx, Ly are the spatial domain and
Lλ the spectral domain of the image. A visual interpretation of
such a hypercube is displayed in figure 1c. The hypercube is un-
derstood as a volume, where each point H(x,y,λ) corresponds to
a spectral reflectance. Derivated from the above definition a spec-
trum χ at (x,y) is defined as H(x,y) = χ, where χ ∈ IR|Lλ| and
|Lλ|= n ·m. The image with only one wavelength, called a spec-
tral band H(z) = Bλ=z, is defined as follows: Bλ : Lx×Ly→ IR.
This image contains p = (x,y) the wavelength sensitivity λ for
each coordinate.

Shadow Detection
Intuitive Approach
Shadows occur when an object is in a ray of light. Thus in an
image dark areas are more likely to be shadows than very bright
areas. If not only a RGB image is available as an impression
of a scene, but also different spectral bands, it seems intuitive to
compare these bands with each other in order to draw conclusions
about shadow regions. The cameras used in this work show a
variety of spectra, so the 25 spectral bands captured by the NIR
camera provide an insight into the shadow regions. One hyper-
pixel of the NIR camera thus contains 25 values for one pixel of
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Raw Hyperimage (NIR) Maximum intensity image Shadow map
Figure 2: Examples of shadow detection with our intuitive approach.

the scene. Our assumption is that if all values of this hyperpixel
have a low intensity, this pixel should be part of shadow region.
However, if in this hyperpixel there are also values that represent
a high intensity it’s not likely it’s a shadow region. This means
that dark objects with a higher reflectance in only a few wave-
length ranges are not recognized as shadows. For example, a dark
green tree, which would be recognized as a shadow in the visible
spectrum due to its low reflectance, has high reflectance values
in the near-infrared range and would therefore not recognized as
shadow. Thus, an image containing the highest value of the hyper-
pixel pλ

(x,y) for each pixel p(x,y) could act as a shadow candidate
map:

p(x,y) = max
λ

(pλ

(x,y)) (1)

A decision as to whether a shadow is involved can then be made
utilizing a threshold value.

pbin
(x,y) =

{
1, IF p(x,y) ≤ θ

0, ELSE
(2)

The threshold value θ is calculated using the Otsu [Otsu, 1979]
method. By applying the threshold a shadow mask is created, as
it is usual in literature.

Adaption of Established Method
An already existing method for shadow detection by Rüfenacht
et al. is presented in [Rüfenacht et al., 2014]. It operates on an
RGB image combined with a near-infrared image as input data.
The figure 3 shows the process of this algorithm. First a shadow
candidate map is calculated (formulas 3 to 6). Therefore the aver-
age of the three bands of the RGB image is calculated first. Then
a non-linear projection is applied to the average and to the near-
infrared image and then the result is inverted. The results are then
multiplied with each other to form the shadow candidate map.
This is shown in figure 3 as a green path. In order to refine the
shadow candidate map and thus achieve an improvement on the
method by Teke et al. [Teke et al., 2011], a relationship map 7 and
8) between the RGB image and the near-infrared image is created
next. This ensures that shadow candidates are real shadows and
not just dark objects. This is shown with the orange path in fig-
ure 3. Multiplying the shadow candidate map with the ratio map
yields a shadow map (formulas 9 and 10), which is finally bina-
rized by a threshold value. The purple path in figure 3 represents
this. Since this procedure is extended to hyperspectral data in this
work, some changes have to be considered. Hereinafter, the ap-
proach is adapted to suit our hyperspectral data.

Shadow Candidates As already mentioned, the first step is to
calculate a brightness image LV IS of the RGB image. This can
easily be extended to the 16 channels provided by the VIS cam.

LV IS
(x,y) =

∑
λ pλ

x,y

Nλ

(3)

The original method had only a near-infrared image with one
channel available. The NIR cam used in this work provides 25
channels, which must also combined to a brightness image LNIR.
This is done analogous to the VIS cam data. Afterwards the
brightness images LV IS and LNIR with the nonlinear projection
f are mapped and inverted.

f (L) =
1

1+ e−α(1−l
1
γ −β)

(4)

DV IS
(x,y) = f (LV IS); DNIR

(x,y) = f (LNIR) (5)

Where DV IS and DNIR define the dark maps. For the projection
f the value α = 14 was recommended. Furthermore, the turning
point β is placed at β = 0.5. A γ(> 1.0) allows to stretch the
histogram in dark areas with γ = 2.2 as a recommendation. Since
shadows are characterized by dark areas in both the VIS and NIR
data, the shadow candidate map D is now calculated as the product
of the two dark maps.

D(x,y) = DV IS
(x,y) ·D

NIR
(x,y) (6)

Ratio Map In the next step, the ratio between the VIS and NIR
data is calculated. To calculate the ratio map T , the brightness
image LNIR of the NIR cam and the individual channels B of the
VIS cam are required. Each of these channels BV IS is divided
pixel by pixel by the brightness image LNIR.

tλ

(x,y) =
Bλ

(x,y)

LV IS
(x,y)

(7)

After that the 16 calculated maps T λ are reduced to a ratio map
T containing only the highest values per pixel. However, sharing
the images can result in very high values. While most values are
between 0 and 1, outliers can disproportionately stretch the value
range and must therefore be limited. This is done by the following
function:

tx,y =
1
τ

min( max
λ

(tλ
x,y), τ) (8)

Where τ represents the upper limit of the values. In our work
τ = 4 has been shown to be suitable.
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Figure 3: Step-by-step procedure for shadow detection according to [Rüfenacht et al., 2014].

Shadow Map To create the final shadow map S, the shadow
candidate map D and the ratio map T are multiplied.

sx,y = (1−dx,y) · (1− tx,y) (9)

Subsequently, the gray value map can be reduced to a binary
shadow map by means of a threshold value method.

sbin
x,y =

{
1, IF sx,y ≤ θ

0, ELSE
(10)

Experiments
The VIS and NIR camera were mounted on a truck to collect a
data set for evaluation. Both cameras are aligned parallel, for-
ward and slightly downward to provide a good field of view over
the road ahead. LM5JC10M 2/3 lenses from Kowa were mounted
on the cameras to enlarge the field of view. These provide an angle
of view of 82.2◦ horizontally, 66.5◦ vertically, and 95.4◦ diago-
nally. The dataset selected for the experiments consists of a total
of 100 hypercubes of the VIS and 100 hypercubes of the NIR cam,
which were synchronized using a hardware trigger. The individ-
ual hypercubes were annotated by hand and in each hypercube
the shadow areas were annotated. Two methods for the detection
of shadows have previously been presented, which are now be-
ing compared. Each method is applied to the available dataset
and provides a binary shadow map that is compared to the ground
truth. The annotations from the dataset are also extracted as a bi-
nary shadow map. Some examples of shadow detection using our
method are displayed in figure 5. The results of both methods
are displayed in figure 4. Based on our dataset, we have achieved
a precision of 90% percent and an recall of about 86% with our
intuitive method. Compared to our approach, the method from
Ruefenacht et al. leads to varying results on our dataset, achiev-
ing a precision of 58% with a recall of 71%. However, we must
keep in mind that this method was developed based on other data.
Therefore one cannot generally say that our method is better than
the established methods as the database is very different. But our
method delivers good results based on the hyperspectral data gen-
erated by these new type cameras.

Conclusions
We investigate the use of hyperspectral data for autonomous driv-
ing and scene analysis. For this purpose we use new sensor tech-
nology which can record a complete hypercube with 16 or 25
channels in one image frame at one discrete point in time. In
this work we presented a simple algorithm for shadow detection.

(a) Results using our approach.
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(b) Results for [Rüfenacht et al., 2014].
Figure 4: Results of both methods on our own dataset.

It is a simple and intuitive approach that detects shadows in a
hypercube with maximum values of spectral channels per pixel
position. This approach provided suitable results on our dataset
and performed better than an established method, which we have
adapted in order to be used with our data. These are only the first
results and we will continue to work on this topic. In the future
we will further investigate the simultaneous use of camera data
from both cameras and try to make shadow detection more stable.
Furthermore we will try to integrate the shadow information into
the classification process.
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Ground truth Prediction
Figure 5: Some results of our shadow detection approach. The ground truth is displayed on the left an the prediction on the left.
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