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Abstract 
 Achieving color constancy is an important step to support 

visual tasks. In general, a linear transformation using a 3× 3 

illuminant modeling matrix is applied in the RGB color space of a 

camera to achieve color balance. Most of the studies for color 

constancy adopt this linear model, but the relationship of 

illumination and the camera spectral sensitivity (CSS) is only 

partially understood. Therefore, in this paper, we analyze linear 

combination of the illumination spectrum and the CSS using 

hyperspectral data that have much more information than RGB. 

After estimating the illumination correction matrix we elucidate 

the accuracy dependence on illumination spectrum and the camera 

sensor response, which can be applied to CSS. 

Index Terms — Color constancy, illuminant estimation, 

camera spectral sensitivity 

1. INTRODUCTION AND RELEATED WORK 
 The human visual system can compensate for the effect of 

illumination, so that color of an object can be perceived 

consistently even though illumination changes. However, the 

image acquired through a camera, which captures physical signal 

intensity of the receiving light, is influenced by the illumination 

spectrum. Finding the actual reflectance of an object by 

compensating for the color of such illumination has been studied in 

the field of computational color constancy [1]. Implementation of 

color constancy can be divided into two stages: first, spectrum of 

the illumination is estimated, and then, color of the image is 

corrected based on the estimated lighting. For image correction, 

white balancing is generally applied using a 3×3 diagonal matrix 

[2]-[4]. White balance aims at recovering achromatic color from an 

image taken under unknown illumination. Since the method of 

correcting illumination using the diagonal matrix does not correct 

colors other than achromatic colors, there is a limitation in that it is 

not possible to achieve color correction for the entire color gamut 

presented in the image. 

 In order to improve the color correction performance of the 

diagonal matrix transformation model, narrowing the wavelength 

width of the sensitivity function of each RGB filter of the camera 

by a linear transformation is proposed [5]. In addition, there is a 

color correction method that realizes color consistency by 

estimating 9 elements of a 3×3 full matrix considering the 

correlation between RGB color channels, and is generally more 

effective than diagonal white balancing method [6][12]. 

 However, despite the widespread use of this linear 

transformation model, most studies focus on how to implement the 

color constancy in the RGB color space; the underlying principles 

for color correction is not fully investigated yet. In contrast, Chong 

[7] proved that if the rank of the tensor of illumination, reflectance, 

and camera sensitivity function can be approximated to 3, the 

actual illumination can be expressed as a 3×3 illumination 

correction matrix without error. In another study, Cheng et al. [8] 

found that the accuracy of illumination estimation varies with 

illumination, and the diagonal matrix transformation under certain 

illumination conditions can estimate RGB illumination with small 

error. Cheng et al. also reported that this issue is related to intricate 

relationship between the illumination spectrum and CSS. 

 In this paper, hyperspectral data under actual illumination is 

analyzed, which enables an investigation beyond the limitations of 

3D RGB color space. Through this work, we identify the reason for 

the observation in the Cheng’s work [8], why diagonal model is as 

effective as the full matrix for some illumination spectrum. Unlike 

the Chong’s mathematical analysis [7], which evaluates the 

illumination correction matrix on the assumption that the camera 

sensitivity function can have low rank, this paper assumes a 

general situation where a camera sensitivity function is given, and 

identify the reasons for the varying accuracy of RGB illumination 

estimates. 

The structure of this paper is as follows. In Section 2, we 

describe existing models for estimating the illumination correction 

matrix in RGB color space using hyperspectral data. In Section 3, 

we analyze errors of a 3x3 RGB illumination estimation matrix. 

Finally, the conclusions and discussions of this study follow in 

Section 4. 

2. ESTIMATION OF RGB ILLUMINATION 

2.1 Hyperspectral to RGB illumination modeling 
 We analyze existing methods of estimating the illumination 

correction matrix in the RGB color space with hyperspectral data, 

which enables an accurate description of color correction error. 

Under Lambertian reflectance image spectrum can be modeled as a 

multiplication of the spectral components of the illumination and 

the reflectance of the object. Let D represent a hyperspectral image 

with an m×n matrix, where m is the number of spectral bands and 

n is the number of pixels in the image. D can be expressed as a 

product of the reflectance R whose dimension is m×n and the 

illumination L which is an m× m diagonal matrix. 

𝐃𝐦×𝐧 = 𝐋𝐦×𝐦𝐑𝐦×𝐧                             (1) 

 RGB image is a projection of the hyperspectral data to the 

three-dimensional color space using the CSS  S = [sr
T sg

T sb
T]

T
. The 

RGB image  D3 is 3×n matrix and the RGB reflectance R3 is a 3×n 

matrix.  
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Figure 1. Residual error ‖𝐌𝐒𝐑 − 𝐒𝐋𝐑‖𝑭

𝟐 of 𝐌𝐝 and 𝐌+ for SFU illuminants  

Then we have 

𝐃𝟑 = 𝐒𝐃 = 𝐒𝐋𝐑 

`𝐑𝟑 = 𝐒𝐑                                                (2) 

 Here, D3  denotes the RGB image acquired by the camera, 

while R3 represents the RGB image under ideal white illumination. 

Typical linear white balance algorithm approximates the lighting 

by a linear transformation using a 3×3 illumination matrix M in the 

RGB color space.  

𝐃𝟑 = 𝐒𝐋𝐑 ≅ 𝐌𝐑𝟑 = 𝐌𝐒𝐑                          (3)   

 Since the degree of freedom of M is 9 and the number of 

constraint is 3n, there is no illumination spectrum satisfying this 

over-determined problem [9]. Therefore, SLR and MSR do not 

match because there is no unique solution to project the 

illumination perfectly onto the three dimensional space. 

2.2 Estimation of the illumination matrix 
 White balancing, which is commonly used in color constancy, 

calibrates color usually by a diagonal matrix. This method aims at 

adjusting the illumination vector on the white reference in the RGB 

color space of the camera to be aligned to the direction of R = G = 

B, which is an achromatic vector. Mathematically, this means that 

the scale of each color channel is independently adjusted by 

multiplying the diagonal element having the weights for each RGB 

illumination, while the correlation among RGB colors of 

illumination is ignored. Diagonal element mdi  for each channel  

i= r, g, b of RGB illumination matrix Md can be calculated using 

camera sensitivity function and illumination spectrum. Where 

wm×1 = [1, ⋯ ,1]T is the m-dimensional ideal white illumination, 

and lm×1 = diag(L) = [l1, ⋯ , lm]T  is an m × 1  column vector 

consisting of the diagonal components of the illumination matrix. 

Then the diagonal element is:  

𝒎𝐝𝒊 =
𝒔𝒊

𝑻𝒍

𝒔𝒊
𝑻𝒘

  

𝐌𝐝 = [

𝒎𝐝𝒓 𝟎 𝟎
𝟎 𝒎𝐝𝒈 𝟎

𝟎 𝟎 𝒎𝐝𝒃

]                            (4) 

 
Figure 2. Residual error ‖𝑴𝑺𝑹 − 𝑺𝑳𝑹‖𝑭

𝟐  of 𝑴𝒅  and 𝑴+  for black-body 
radiation 

 We can also estimate the full matrix M+ which minimizes the 

error between SLR and MSR. The least squares method using the 

Moore-Penrose pseudo inverse can estimate M+ which minimizes 

the Frobenius norm of the difference between two matrices: 

𝐚𝐫𝐠 𝐦𝐢𝐧
𝐌+

‖𝐌+𝐒𝐑 − 𝐒𝐋𝐑‖𝐅
𝟐                      (5) 

𝐌+ = 𝐒𝐋𝐑𝐑𝐓 
𝐒𝐓(𝐒𝐑𝐑𝐓𝐒𝐓)−𝟏                    (6) 

 Please note that the illumination matrix M+ is influenced by 

the correlation of the reflectance RRT. 

 In this paper, hyperspectral data of 400 nm to 720 nm 

corresponding to the visible light range is sampled with 10 nm 

interval, therefore experiment is conducted using spectrum 

information of 33 bands. Since the image is expressed as a product 

of the reflectance and the illumination spectrum, all the 

hyperspectral data are normalized to the maximum value of 1 to 

facilitate the experiment and the result analysis. We use the 

reflectance of a 24-patch Macbeth chart, which is often used as 

reference measurements in color calibration. The camera 

sensitivity function for projecting hyperspectral data into the RGB 

color space uses the dataset measured by Jiang et al. [10]. The 

experiment of this work is based on Cheng et al. [8], which has 

101 illuminant spectra measured in a variety of weather conditions 

[11], the illumination correction matrix M of the RGB color space 

is estimated for this hyperspectral data, and the RMSE between 

MSR and SLR is calculated to analyze the accuracy of illumination 

estimation. 

The performance of the diagonal and full matrix model for 

illumination is compared as in [8]. Figure 1 is a graph comparing 

the accuracy of Md and M+ estimated using SFU illuminants and 

two different camera sensitivity functions. Illumination spectrum is 

sorted according to the CCT (correlated color temperature) and 

CSS of Canon1D Mark III and Sony Nex5N was used. The 

horizontal axis of the graph shows the CCT of the SFU illuminants 

in the descending order of CCT as in [8], and the vertical axis 

represents the RMSE for each illumination. The result shows that 

the modeling RGB illumination using full matrix is better than the 

diagonal method for all the illuminants. This is because the 

diagonal matrix does not include correlation information between 

color channels. However, even in the case of M+ , a perfect 

illumination modeling in the RGB space is not possible. The same 

phenomenon can be noticed again in Figure 2, which is the 

experimental result using black-body radiation spectrum instead of 

the actual illuminants. Mathematical interpretation is that the 

illumination spectrum has more degrees of freedom than 3
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 dimension. Experimental results show that the accuracy of 

illumination estimation is different depending on the illumination 

as confirmed by Cheng et al. [8]. They also report that diagonal 

matrix is close to full matrix near 6000K, and it is also evident in 

Figure 2: error for the diagonal compensation is close to that of the 

full matrix near 5800K. Yet the cause of this observation has not 

been elucidated in the previous research. In the next section, 

therefore, we examine the relationship between illumination 

spectrum and CSS that affect the accuracy of the illumination 

estimation in RGB space. 

3. ANALYSIS ERROR IN ESTIMATION RGB 
ILLUMINATION 
 In this section, we analyze the cause of the accuracy 
variation of illumination estimation according to the 
illumination spectrum. The reason can be explained by 
reinterpreting the linear combination of the camera sensitivity 
function. The following equation (7) is an ideal condition that 
the 3x3 illumination correction matrix perfectly represents the 
actual illumination regardless of reflectance, where ⊙ denotes 
an element by element multiplication of two vectors of the 
same size.         

‖𝐒𝐋 − 𝐌𝐒‖𝑭
𝟐 = 𝟎 

[

𝒔𝒓
𝑻 ⊙ 𝒍

𝒔𝒈
𝑻 ⊙ 𝒍

𝒔𝒃
𝑻 ⊙ 𝒍

] = [

𝒎𝟏𝟏𝒔𝒓
𝑻 + 𝒎𝟏𝟐𝒔𝒈

𝑻 + 𝒎𝟏𝟑𝒔𝒃
𝑻

𝒎𝟐𝟏𝒔𝒓
𝑻 + 𝒎𝟐𝟐𝒔𝒈

𝑻 + 𝒎𝟐𝟑𝒔𝒃
𝑻

𝒎𝟑𝟏𝒔𝒓
𝑻 + 𝒎𝟑𝟐𝒔𝒈

𝑻 + 𝒎𝟑𝟑𝒔𝒃
𝑻

]            (7)  

 The equation shows that there might exist an RGB 

illumination correction matrix without error when the illumination 

spectrum weighted by a basis vector si
T of the camera sensitivity 

function can be represented by a linear combination of camera 

spectral sensitivity vectors. The discrepancy is proportional to the 

error of RGB illumination estimation. In order to analyze the cause 

of the difference in accuracy of illumination correction using the 

above equation, we use M estimated in the previous section. In 

addition, the camera sensitivity function of Canon1D Mark III is 

used. Figure 3 shows the Frobenius norm of the difference between 

SL and MS for SFU illuminations and black-body radiation, 

respectively. The curves in Figure 3 is similar to those of Figures 1 

and 2: Figures 1 and 2 show the color correction RMSE of color 

patches while Figure 3 represents the error for illumination 

modeling in camera RGB color space. 

 In order to analyze the difference between SL and MS in more 

detail, we compare two illuminants with similar CCT but with a 

large difference in RGB illumination estimation error. The 

illumination spectra selected for the experiment are the 68 and 69 

illumination spectra indexed in descending order of CCT in the 

SFU dataset, with the CCT 4279K and 4216K, respectively. The 

illumination spectrum 68 shows higher accuracy of RGB 

illumination estimation than the illumination 69. 

 
Figure 3. ‖𝑺𝑳 − 𝑴𝑺‖𝑭

𝟐  of SFU illuminants (top) and Blackbody radiation 
spectrum (bottom) 

 
Figure 4. Two illumination spectra of similar CCT but with large 
difference in RGB modeling error 

Table 1. Illumination estimation error using SFU illumination 
spectrum 68 and 69 

Illuminant number 68 69 

‖𝐒𝐋 − 𝐌𝐒‖𝑭
𝟐 0.0124 0.0638 

  

 Figure 5(a) and (b) shows the SL and MS values for 

illumination spectrum 68 and 69, and their values are shown for 

each RGB components. The graph shows that the illumination 68 

spectrum is better represented by the linear combination of camera 

Figure 5. RGB components of SL and MS using SFU illumination spectrum (a) illumination 68, (b) illumination 69, (c) illumination 69 after optimizing the 
camera spectral sensitivity
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Figure 6.  (a) The CSS of Canon 1D Mark III and (b) optimized CSS for 
illumination 69 

sensitivity functions and the illumination than the illumination 69 

and that the difference between SL and MS affects the accuracy of 

the illumination estimation. This example shows that the accuracy 

of a 3x3 illumination matrix depends on equation (7) rather than 

the CCT as implied in [8]. CSS should be designed to model 

human color perception after linear transformation [13], however, 

we can observe the effect of the CSS in color correction by finding 

an optimal solution for (7) for a given illumination. An optimized 

CSS which minimizes color correction error can be found, i.e., 

𝐒∗ = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝐒

‖𝐒𝐋 − 𝐌𝐒‖𝐅
𝟐 + 𝛌‖𝐒 − 𝐒𝟎‖                (8) 

where 𝐒𝟎  is the original camera CSS. A reasonable solution is 

obtained for illumination 69 when = 0.1. Then the color 

correction error is reduced from 0.0638 to 0.0098. The updated 

plot of S*L and MS* is shown in Fig 5(c), which shows a 

remarkable match of MS and SL for the given illumination after 

optimization. The optimized CSS is shown in Fig. 6(b). This 

experiment demonstrates that CSS can be optimized to facilitate 

color correction under a given illumination. But it is more 

important for a CSS to model human color perception than 

achieving accurate color correction. 

4. CONCLUSION 
 The contribution of this work is an understanding of the error 

for illumination correction matrix in the RGB color space using 

hyperspectral illumination. It has been reported that the accuracy 

of RGB illumination estimation varies depending on the CCT of 

the illumination, the reflectance, and the camera sensitivity 

function. We estimated the full and diagonal matrices for 

illumination correction that minimized the Frobenius norm 

between the camera image projecting the hyperspectral image into 

the camera RGB color space and the illumination compensated 

image obtained by multiplying the RGB reflectance by the three-

dimensional projection of the hyperspectral illumination. 

Experimental results reconfirms that the full matrix is a better 

representation of the hyperspectral illumination for RGB 

illumination modeling.  

 In addition, we present a new interpretation of the 

illumination spectrum in camera sensor color space. For an ideal 

color correction in RGB space, illumination spectrum weighted by 

the CSS should be represented as a linear combination of camera 

sensitivity functions. By designing CSS that satisfy this linear 

relationship for a highly probable illumination spectrum, we can 

improve the color constancy performance in the RGB color space. 

This study is meaningful as a fundamental study to improve the 

accuracy of illumination correction in RGB color space. 
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