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Abstract

Cosmologists are facing the problem of the analysis of a huge
quantity of data when observing the sky. The methods used in cos-
mology are, for the most of them, relying on astrophysical models,
and thus, for the classification, they usually use a machine learn-
ing approach in two-steps, which consists in, first, extracting fea-
tures, and second, using a classifier. In this paper, we are specifi-
cally studying the supernovae phenomenon and especially the bi-
nary classification “I.a supernovae versus not-I.a supernovae”.
We present two Convolutional Neural Networks (CNNs) defeat-
ing the current state-of-the-art. The first one is adapted to time
series and thus to the treatment of supernovae light-curves. The
second one is based on a Siamese CNN and is suited to the nature
of data, i.e. their sparsity and their weak quantity (small learning
database).

1.INTRODUCTION

Cosmologists are facing the problem of the analysis of a huge
quantity of data when observing the sky. As an example, in a
very close future (2022), the Large Synoptic Survey Telescope
(LSST)1 will produce terabytes of images of the sky per day. Cos-
mologists thus need automatic analysis algorithms to alert them
when a cosmological phenomenon occurs, such as the explosion
of a star (supernova). In order to exploit this huge amount of data,
cosmologists and computer-science scientists work in collabora-
tion on classification algorithms, and on benchmarking, for exam-
ple through international competitions such as the Astronomical
Classification Challenge form Kaggle2.

In this paper, we are specifically studying the supernovae
phenomenon and especially the binary classification ”I.a super-
novae versus not-I.a supernovae”. The type I.a supernovae pro-
duce an extremely bright explosion which can be seen at a very
far distance. The uniform intrinsic brightness of this kind of star
allows to calculate distances and to understand the universe and
the dark energy better. Roughly 103 supernovae have been dis-
covered in the history of astronomy. According to [1], the LSST
will allow discovering over ten million supernovae during its ten

1https://www.lsst.org/
2https://www.kaggle.com/c/PLAsTiCC-2018

years survey. We thus have to anticipate and find methods that
will ease both the processing and analysis of astronomical data.

From a practical point of view, when a zone of the sky is
observed by a telescope during the night, an image is produced.
The light flux from a region of interest in the image - where a
phenomenon is occurring - is computed. Cosmologists repeat this
calculation every night. Then they can build a time-series giving
the light flux in function of the date. In practice, they are mak-
ing time-series for specific bands: green, red, near-infrared and
infrared.

In this work, and having in mind what will be produced by
the LSST, we use these four times-series as input data. The set of
four times-series is named a light-curve, and its duration is about
100 to 200 days. The Figure 1 gives an example of a supernova I.a
light-curve. light-curves have irregular sampling and are sparse.
This sparsity is due to the weather conditions which do not allow
a regular observation, and also because the observed zone of the
sky is not always the same each night.

Figure 1. A light-curve example of type I.a supernova.

Until the end of 2017, cosmologist methods for classifying
a light-curve as a supernova type I.a or not type I.a, are mostly
relying on the use of astrophysical models. They usually use a
two-steps machine learning approach: feature extraction and clas-
sification. Feature extraction is thus a crucial step, but even if fea-
tures are chosen by experts, they can be incomplete or sub-optimal
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for the classification step. In this paper, we present two Convo-
lutional Neural Networks (CNNs) to replace the usual two-steps
machine learning approaches. The first CNN is adapted to time
series and thus to the treatment of supernovae light-curves. The
second one is based on a Siamese CNN [2] and is adapted to the
nature of data, i.e. their sparsity and their weak quantity (small
learning database). We benchmarked our CNNs to two well es-
tablished state-of-the-art methods, the first one by Lochner et al.
[3], and the second one using FATS features of Nun et al. [4].
Additionally, we also evaluated our best CNN to a recurrent neu-
ral network (RNN) proposed by Charnock and Moss [5], which
is also adapted to time series. Confronted by the strong sparsity
of the data, our CNN performs better. Note that we took care to
compare the algorithms in fair conditions, at low regime (small
learning database), and also with hard condition close to real con-
ditions, by having more than 70% of unavailable data in each time
series.

This paper is organized as follows. In Section 2 we present
the two state-of-the-art methods of supernovae classification.
These machine learning algorithms use different feature descrip-
tors; one relies on supernovae models and the other one on times
series. We also present a deep learning method using a recur-
rent neural network [6]. In Section 3.1 our CNN and Siamese
CNN architecture are presented. Then, in Section 4 we detail
the databases, the experiments setup, the parameters settings, and
analyze results. In Section 5 we conclude and give possible ex-
tensions of this work.

2.Existing methods

In this section, we present a small survey of recent machine
learning-based methods for supernovae classification. The first
method, proposed by Lochner et al. [3], uses SALT2 features [7],
and was considered as the state-of-the-art until the end of 2017.
The second method relies on the use of a library named “Feature
Analysis for Time Series” (FATS) whose features are dedicated
to light-curves analysis [4]. Finally, we also present the work of
Charnock and Moss [5] which uses a recurrent neural network.

2.1.Boosted decision trees using SALT2 features

In [3], the authors compare the results of different classifiers and
features. They found that the boosted decision trees (BDT) with
features of “Spectral Adaptive Light-curve Template features 2”
(SALT2) model provided the best performance. SALT2 is the
most commonly used model for type I.a supernovae. It relies on
the following equation for computation of the light-curve’s flux in
a given band:

F(t,λ ) = x0× [M0(t,λ )+ x1M1(t,λ )+ ...+Mk(t,λ )]

× exp[c×CL(λ )],
(1)

where t is the time since the maximum luminosity in B-band (the
phase), λ is the wavelength, M0(t,λ ) is the average spectral se-
quence, Mk(t,λ ) for k > 0 are higher order components that de-
scribe the variability of supernovae I.a. CL(λ ) represents the av-
erage color correction law. For each supernova, the redshift (vari-
ation of the wavelength due to the expansion of the universe) z is
also used. The machine learning algorithm uses five parameters to

describe the supernovae: z, t0 (the time of peak brightness in the
B-band), the normalization term x0, x1 that describes the shape of
the light-curve, and c the color at the maximum luminosity in the
B-band. Then, BDT are used to classify the supernovae. BDT
are machine learning classifiers using multiple decision trees to
construct a model. It associates input features to output classes.
Multiple decision trees are built on slightly different subsets of
data, and the resulting classifications are averaged to provide ro-
bustness. Instead of using bagging like in random forest (RF) [8],
which selects subsets of data with random replacement, a BDT
use boosting such that for each iteration the same data-set is used
but with an increase of the weights of incorrectly classified ex-
amples, which allows subsequent classifiers to focus on difficult
cases. Even if Lochner et al. [3] found that RF and BDT gave al-
most the same classification results, BDT were usually faster than
RF. Moreover, BDT are considered as robust classifiers because
of the averaging process [9].

2.2.Boosted decision trees using FATS library

In Lochner et al. [3], in addition to SALT2, several feature ex-
traction methods are compared. Among them, there is a method
that uses no prior knowledge on supernovae light-curves mod-
els, which makes it a generic approach. Nevertheless, similarly
to what was observed in [3], our experimental results show that
this wavelet-based method is less efficient than the approach of
Lochner et al.. We thus choose another generic approach based
on the FATS library 3 [4], which requires no previous supernovae
knowledge and allow to extract many more features than SALT2.
FATS (Feature Analysis for Time Series) is a python library which
includes a set of features dedicated to time series analysis. FATS
contains relevant information for the classification of astrophysi-
cal objects, such as the color which is the difference of the flux
between two separate bands, the skewness, the mean, ... We then
use BDT (presented in 2.1) to perform the classification.

2.3.Recurrent neural network for supernovae clas-
sification

Recurrent neural networks (RNN) are a class of deep learning
method which exhibit a temporal dynamic behavior for a time
sequence [6]. RNN are used for tasks such as speech recognition
[10] and language translation [11]. In [5], the authors present a
supernovae type I.a versus not-I.a classification algorithm using
RNN with Long Short-Term Memory (LSTM) cells [12]. They
used LSTM cells because more traditional RNN are unable to
manage long-term information. By using the gating process, the
LSTM architecture overcomes the vanishing gradient problem,
which means that it is more able to learn on long time series while
taking better into account the past values. Each LSTM cell is com-
posed of three gates. The first one represents the forget gate that
allows the network to remove the information transmitted by the
previous cell. The second corresponds to the input gate which
processes the input information at a given time. The last gate
merges the information from the input gate and the output gate to
feed the next cell of the LSTM network with a piece of new infor-
mation. In [5], the authors tested multiple RNN LSTM architec-

3FATS is a python library, and it can be found on GitHub
https://github.com/isadoranun/FATS
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tures with different numbers of LSTM cells per hidden layer. The
RNN architecture that gave the best results is unidirectional with
two hidden layer and sixteen LSTM cells per layer.

3.NETWORK ARCHITECTURE

In the section, we present the most important characteristics
of our convolutional neural network (CNN) and our Siamese
network.

3.1.Convolutional neural network

In this section, we present our convolutional neural network
(CNN). First, we explain its architecture, and then we detail some
of the most important elements.

3.1.1.Network architecture

Our CNN is shown in Figure 2. The source code can
be downloaded at https://github.com/Anzzy30/

SupernovaeClassification. Our CNN takes as input a
light-curve which is represented by a matrix of dimension 4×T ,
where 4 stands for the height and T for the width. There are 4
rows (one for the green, one the red, one the near-infrared, and
one for the infrared bands), i.e. 4 time-series, and the duration T
of the light-curve is variable. The CNN contains eleven layers,
and most of those layers are ”inception” modules (described
below), where the filters are modified to be 1D temporal filters
(performed along the rows of the input). Poolings are also mod-
ified to be 1D. A time series is indeed usually represented as a
1D array, and this ensures the extraction of temporal information
independently for each time series. 1D convolutions capture the
input signals evolution over the time [13]. Layers 2, 5, 9 and 10
are inception modules with 1D convolutions and a stride of two
pixels. This enables to divide the input width by two after each
inception block.

We also introduce a depth-wise convolution (a 1D convolu-
tion in the depth axis, i.e. a convolution in the color axis) in the 7th
layer to take into account the correlation between the bands. This
color-convolution is done without padding, over the four columns
in order to merge the time series and combine the information pro-
vided by each time-series. This fusion process is important for a
more efficient separability between the two classes supernovae I.a
and not-I.a [14]. We indeed observed an increase in the accuracy
of the classification by using this color-convolution.

Each convolution operation is followed by a ReLU (Rec-
tified Linear Units) activation function. At the end of last
convolution layer, we perform a global max pooling as described
in subsection 3.1.3. This ”global max pooling” allows treating
light-curves of any duration. Then, a fully connected network
with 1024 neurons is used for the classification part. The
network’s output is finally provided by a softmax prediction
between the two classes I.a supernovae and not-I.a supernovae.

3.1.2.Inception module

Our network is mainly built by a succession of inception modules
[15]. These modules have been adapted to work with time
series, i.e. 1D convolution. It is built with 1× 1, 1× 3 and
1× 5 convolution layers and max pooling. It allows extracting
information at multiple resolutions. 1×3 and 1×5 convolutions
are preceded by 1× 1 convolution to reduce the dimensionality
and add non-linearity. In our network, each convolution layer
is followed by a ReLU activation function [16]. The Figure 3
describes our inception module.

Figure 3. Our 1D inception module.

3.1.3.Global max pooling

The time series may have a variable duration, i.e. a variable num-
ber of columns for the input matrices. A classical CNN is gen-
erally built with a fully connected part, this means with a fixed
number of neurons, which impose a fixed dimension for the in-
puts. Thus, for a classical CNN, a variable length of time series
generate feature maps of variable lengths, which cannot be pro-
cessed by the fully connected layer. To overcome this limitation,
we incorporate a global max pooling layer (described in Figure 4)
after the last convolution and just before the fully connected layer.
This force the features to have a fixed dimension before entering
the fully connected layer. Our network can thus classify light-
curves of any duration. Another interesting effect of this measure
is that during the learning phase, we can now sometimes crop the
light-curves from 40% to 80% of their original duration. This al-
lows a data-augmentation, reduces the over-fitting, and increases
the generalization abilities.

3.2.Siamese network

The second method proposed in this paper is a Siamese network.
This type of neural network was introduced in the 1990s by Brom-
ley et al. [2] and contains at least two sub-networks with shared
weights. Each sub-network produces an n-dimensional feature
vector. Afterwards, we can compute different metrics like L2-
norm between vectors. The learning process for this method is
to bring closer, in the features space, elements that have the same
label and drive away elements with a different label.

With the Siamese network we search for a solution to the
sparsity problem which is extremely present in the data (See Fig.
1). We propose a loss function with the triplet loss presented in
[17], and we also propose an adaptation of the triplet loss. First,
each triplet is chosen online (online triplet mining) which means
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Figure 2. Our convolutional neural network. There is three parallel temporal convolution followed by a depth concatenation. Then, there are five inception

modules, whose two of them have strides of two for the width reduction. Next, there is the color convolution layer with a 1×1 filter, followed by a 4×1 filter. After,

there are four inception modules, whose two of them have strides of two. Finally, there is the global max pooling, a 1024 fully connected layer, and the softmax

layer which give the classification result.

Figure 4. Scheme of the global max pooling mechanism. Global max

pooling perform an operation that take the maximum per features map and

produce an 1D vector with known size (number of features map)

that the useful triplets are computed on the fly. Online triplet min-
ing was introduced in Facenet4. Online triplet mining is more ef-
ficient than offline regarding computation time and performance.

The loss function is described by Equations 2 and 3. First,
we compute the classic triplet loss that allows the network to bring
closer elements with the same label. The triplet loss is defined by
the Equation 2,

Ltriplet(a, p,n) = max(d(a, p)−d(a,n)+margin,0), (2)

with d the L2 norm function which takes two vectors as in-
put, a ∈ Rm a feature vector of dimension m, named the anchor,
p ∈ Rm a feature vector named the positive example (it has the
same label than the anchor), n ∈ Rm a feature vector associated
to the negative example (it has a different label as that of the an-
chor), and the margin ∈R. This triplet loss, when minimized, has
the effect of pushing the negative examples at a distance of the
anchor greater than the margin plus the distance of the anchor to
the positive.

During the optimization process, the triplet examples whose
loss is greater than zero are the only triplets useful for the mini-

4http://bamos.github.io/2016/01/19/openface-0.2.0/

mization. The minimization is thus done on the arithmetic mean
of the useful triplets; see Equation 3:

L f inal triplet =
1

N−1

N−1

∑
j=0

Ltriplet j , (3)

with N the number of useful triplet Ltriplet j .
In order to better take into account the sparsity of light-

curves, in addition to the triplet loss function, we propose an adap-
tation of the triplet loss described by Equation 4. The goal of this
additional loss function is to amalgamate (= force an identical
feature representation) the anchor features vector with the fea-
ture vector obtained by a sub-sampling of the anchor light-curve,
while keeping a minimum distance with negative examples.

Ltriplet ′(a,a
′,n) = d(a,a′)+max(0,margin′−d(a,n)), (4)

where a ∈ Rm is a feature vector associated to the anchor exam-
ple, a′ ∈ Rm is a feature vector of the sub-sampled anchor light-
curve, n ∈ Rm is a feature vector associated with the negative
example (which is an example different from the anchor), and the
margin′ ∈ R.

Once again, during the optimization process, the triplet ex-
amples whose loss is greater than zero are the only triplets useful
for the minimization. The minimization is thus done on the arith-
metic mean of the useful triplets; see Equation 5:

L f inal triplet ′ =
1

N−1

N−1

∑
j=0

Ltriplet ′ . (5)

The final loss (Equation 6) is the sum of the two previous
loss functions described by Equations 3 and 5. Figure 5 illustrates
the learning process of the Siamese network.

L f inal = L f inal triplet +L f inal triplet ′ . (6)

To compute the features vectors of each example, we use
two networks with shared weights and the same architecture as
the convolutional neural network defined in section 3.1 but with-
out the fully connected layer. Once the Siamese network con-
verges, we train a fully connected layer of 1024 neurons followed
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by a softmax layer. The input is the feature vector (output of the
Siamese network), and the outputs are the two classes to predict
(type I.a or not-I.a).

Figure 5. Scheme of the learning process of our adapted triplet loss func-

tion; See the Equation 6. It aims (i) to amalgamate the Anchor feature vector

with the Anchor feature vector issued from the sub-sampling of the same

light-curve, (ii) to bring closer, without amalgamation, the Anchor vector and

the Positive vector, and (iii) to keep distant the Anchor vector and the Neg-

ative vector. For example: Anchor is a supernova I.a, Anchor sub-sampled is

the version of the Anchor resultant of a sub-sampling of same the light-curve,

Positive is another supernova I.a, and Negative is a supernova not-I.a.

4.EXPERIMENTS

In this section, we present the database used for the experiments,
the parameter settings, the setup for the experiments, and finally,
our results.

4.1.Base

4.1.1.First base

We simulate with the software SNANA [18] light-curves of
different types of supernovae. SNANA is an analysis package for
supernovae light-curves that contains a simulation, a light-curve
fitter and a cosmology fitter. It takes into account actual survey
conditions and so generates realistic light-curves by using the
measured observing conditions at each survey epoch and sky
location. Each light-curve is composed of 4 time-series. Each
time series contains the light flux measure in specific bands taken
each day during a certain period of time (around 100 days).
The bands are obtained using color band-pass whose filters are
green, red, near-infrared, and infrared. In the first experiment,
we used 5000 light-curves with 2500 supernovae of type I.a and
2500 of type not-I.a. For the deep learning input, each data is
day-sampled and stored in a matrix. Each cell has a specific value
of flux. If a value is missing, then we fill it up by zero values.
As light-curves of supernovae are very sparse (due to missing
values), the matrix contains more than 70% of zero values. We
will note this database B1.

4.1.2.Second base

The second database is available on GitHub5 and contains
21319 light-curves with 5088 I.a supernovae and 16231 not-I.a

5https://github.com/adammoss/supernovae

supernovae. This database is from the Supernova Photometric
Classification Challenge [19]. We used this database to compare
our CNN (our first architecture; See Section 3.1) to the results
obtained by the RNN LSTM of [5] (See Section 2.3). We will
note this database B2.

4.1.3.Data augmentation

For the convolutional neural networks, we used artificial data aug-
mentation. This method allows the networks to get a better rep-
resentative set for the learning process. Each light-curve gets a
chance to be altered during each epoch. The alteration will crop
the light-curve and takes a random fraction between 0.4 and 0.8
of the light-curves. Then the network is fed with this new repre-
sentation. This strategy reduces over-fitting and slightly increases
the classification performances.

4.2.Parameter settings

For the machine learning methods, we used the algorithm avail-
able on Lochner’s GitHub6 with boosted decision trees, as pre-
sented in [3].

We set the number of iteration at 4500 for the convolutional
neural network and 9000 for the Siamese network. We set the
dropout to 0.4 for the fully connected layer to reduce over-fitting.
The learning rate for the 2 deep learning methods varies between
1×10−2 and 5×10−4 with exponential decay. For the two meth-
ods, we used Adam optimizer [20] on a cross entropy loss func-
tion. Network’s weights are initialized with Xavier uniform ini-
tializer algorithm [21] and the batch size is set to 128.

4.3.Experiments setup

We used tensorflow and python to develop our deep learning
methods. The training phase is performed with an NVIDIA GTX
1080.

To compare the two methods relying on a two-steps ma-
chine learning approach with our convolutional neural network
and our Siamese network, we used the Base B1 with k-folds cross-
validation with k=4 and 5000 light-curves. The database is thus
randomly partitioned into 4 equal sized sub-samples. A single
sub-sample is kept for testing the model, and the remaining 3
sub-samples are used as training data. We repeat the process 4
times, with each of the k sub-samples used exactly once as the
testing data. It means that each model is trained on only 3750
light-curves and tested on the 1250 other.

To confront our convolutional neural network against the re-
current neural network [5], we followed the same strategy as pre-
sented in [5] with the database B2. We thus trained our CNN
model (our first architecture; See Section 3.1) on a base com-
posed of 5330 supernovae light-curves took randomly from the
database B2. The remaining elements in B2 (15989) are used to
evaluate the network. We repeat this process five times to com-
pute the arithmetic mean and the standard deviation of the results.
Note that the number of training data is chosen to be close to the
training set size used with the database B1.

6https://github.com/MichelleLochner/supernova-machine
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4.4.Comparison metrics

We use two metrics to compare the different methods. The first is
the accuracy defined as the ratio of the number of correct predic-
tions over the total number of predictions. The second one is the
Area Under the ROC Curve (AUC). The ROC curve represents
the True Positives Rate (TPR) versus False Positives Rate (FPR)
when the probability threshold is moved from 0 to 1. TPR and
FPR are given by equations 7 and 8.

T PR =
T P

T P+FN
(7) FPR =

FP
FP+T N

, (8)

where TP are the true positives, FP the false positives, TN
the true negatives and FN the false negatives.

4.5.Results and discussion

4.5.1.Database B1: Comparisons of our CNNs and our
Siamese network, to SALT2, and FATS

In our first experiment with the database B1 we confront our CNN
and our Siamese network to BDT + SALT2 [3], and BDT + FATS
[4]. The Figure 6 shows the obtained ROC curves. The convo-
lutional neural network gets the best performances with an AUC
equal to 98.4% followed by the BDT with SALT2 features which
obtains 97.9%. The Siamese network and the BDT using FATS
obtain respectively an AUC equal to 96.3% and 96.4%.

Figure 6. ROC curves of the four methods: Siamese, BDT using FATS,

BDT using SALT2, and our CNN.

Another interesting metric is the accuracy. The CNN got the
best accuracy of all 4 methods with 94.6% (See Table 1). Siamese
network comes with 93.0% that outperforms BDT using SALT2
which obtains 92.3%. BDT using FATS get the lowest accuracy
with 90.1%.

The state-of-the-art in two-steps machine learning methods
used for supernovae classification [3], [4], perform well with a
small learning set (i.e. less than 1 000 learning example), but with
the above results, we can clearly say that CNNs are a promising

Model Training set AUC Accuracy
CNN 3750 0.984 94.6
SALT2 3750 0.979 92.3
FATS 3750 0.964 90.1
Siamese 3750 0.963 93.0

Table1. AUC and accuracy for the four methods (Siamese, BDT
using FATS, BDT using SALT2, and our CNN) on B1 database.

solution for the binary classification of super-novae type I.a ver-
sus not-I.a. Indeed, our CNN performs better than two-steps ma-
chine learning methods which are based on hand-crafted features,
and this with a small number of examples (3 750). A set of 3
750 examples is indeed considered as a very small database for a
learning of a binary classification by deep learning methods.

The Siamese network gets good results but is harder to train
because of the shared weights between its two networks. Even
if its results are not as good as our CNN, we think the results
can be improved with a better loss function. Adding some data
augmentation, as we do with our CNN, may also improve the per-
formances.

Additionally, we observed that with the increase in the size
of the learning set (i.e. with more time series) the performances
of our CNN are increasing. Another advantage of our method is
that it learns the filters value directly to extract the more relevant
features. There is thus no need of prior knowledge as in SALT2
[3] or FATS [4].

When working with a more complex architecture, we have
shown that in a more realistic and more complicated situation
from a cosmological point of view (extremely small database, a
mismatch between learning set and test set), that Deep Learning
approaches surpass all the previous known approaches [22].

4.5.2.Database B2: Comparisons of our CNN with an
RNN LSTM

In the second experiment with the database B2, we confront our
CNN against the recurrent neural network proposed in [5]. The
input vector given to the RNN contains the day, the light flux in
each band, and the redshift extra-information. The RNN thus uses
a little bit more information compared to our CNN. In this ex-
periment, 5330 supernovae light-curves are used for the learning,
whereas in the first experiment 3750 light-curves were used. We
choose 5330 light-curves (a fraction of 25% of the database) be-
cause it is close to the size used in our first experiment. In this
experiment, the proportion of I.a and not-I.a is around 1/4, 3/4
whereas in the first experiment with B1 it was 1/2, 1/2. For our
CNN the data-augmentation is done by cropping, and it artificially
increases the learning data-set by 2 or 3. For the RNN, there
is a random interpolation which artificially increases the learn-
ing data-set by 5. The data-augmentation for this experiment im-
proves the results for both of the approaches of roughly 1% (with
a smaller increase for our CNN). The comparison should then be
considered more or less fair, with nevertheless a small disadvan-
tage for our CNN.

The results (see Table 2) show that our CNN is superior to
the RNN LSTM of [5] with 98.3% of AUC against 97.5%, and
94.1% of accuracy against 92.9%. Also, note that the standard
deviation of the five runs is smaller for our CNNs. In [5] multi-
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Model Training set AUC Accuracy
CNN 5330 0.983±0.0004 94.1±0.09
RNN 5330 0.975±0.003 92.9±0.6

Table 2. AUC and accuracy for our CNN and RNN LSTM on B2
database.

ple experiments with a different fraction of the database are pre-
sented. Taking more data, for example, a fraction of 50% of the
database, provides better results for both our CNN and the RNN,
and the gap between our CNN and the RNN remains the same.

The recurrent neural networks are a great technique to treat
time series as it allows to extract dynamic temporal behavior for a
time sequence. However, in this work, we showed that our CNN
is better. This is maybe due to the trend of over-fitting that is more
present in the RNN. The various information of different nature,
given to the RNN (day, light flux in each band, redshift), can also
make information treatment harder.

Note that when taking less data, for example, a fraction of
5% (= 1065 light-curves) of the database, SALT2 method [3] gets
the best results. When the size of the learning set is too small (less
than 1000 light-curves), deep learning approaches are suffering
from an insufficient number of examples. Measures can neverthe-
less be taken such as data-augmentation by noise addition, use of
transfer learning or curriculum learning, use of cosmological pa-
rameters such as the red-shift, use of ensembles, use of multiple
classes, etc. (see for example our paper under revision [22]).

5.CONCLUSION

The field of Cosmology is facing great challenges in order to be
able to analyze a huge amount of data. One of those challenges is
to be able to automatically detect I.a supernovae from not-I.a su-
pernovae. In this paper, we propose a new CNN, adapted to time
series (light-curve), that can defeat the state-of-the-art. We also
compared our CNN to a Siamese approach and an RNN LSTM.
Our CNNs gives the better results, nevertheless, the main conclu-
sion is that all those deep learning approaches are very promising.

We observed strong efficiency improvement of our CNN
when the learning database increases in size. We are also aware
that using more clever data-enrichment could boost the efficiency
of the different deep learning approaches, and especially our
CNN, without substantial additional processing.

We believe that this publication will reinforce the use of
deep learning in the cosmology and astronomy fields. We
put all the necessary files for the deployment of our CNN
on an open-access GitHub (https://github.com/Anzzy30/
SupernovaeClassification), thus giving strong visibility of
our work to the cosmology community.
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