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Abstract
With the increasing demand to scan text documents and old

books, having a scanner that could automatically detect the ori-
entations of the scanned pages would be greatly beneficial. This
paper proposes a fast method to detect orientations based on a
support vector machine (SVM), using features developed for each
connected component on the scanned page. Results show that the
algorithm can achieve an accuracy of 99.2% in orientation de-
tection and 98.2% in script detection for pages scanned at 200
dpi.

Introduction
Recently, with the trend of the paperless office, lots of docu-

ments are being scanned every day. Also, the need to preserve old
ancient books or other materials requires a lot of scanning. More-
over, correct orientation is very important before further process-
ing such as optical character recognition (OCR). When scanning,
the page could be in one of the 4 orientations: 0, 90, 180, and 270
degrees. Sometimes it is difficult or even impossible to know the
orientations of all pages while scanning. Manually aligning them
would be tedious and very time-consuming. As a result, it would
be great if the scanner could automatically detect the orientations
and align them accordingly during the scanning process. Since the
page could be in portrait or landscape mode, the scanner should
be able to work in both cases. Further, since this demand is world-
wide, it would be best if the scanner could detect the orientation
of pages in various language scripts, such as Roman, Chinese,
Devanagari, Japanese, and Korean. Furthermore, for some docu-
ments like annual reports which contain a lot of numbers, we also
need the scanner to detect their orientations correctly.

To accurately detect one page’s orientation, we developed
an algorithm to find features of text characters, and to predict its
script and orientation using support vector machine (SVM). The
algorithm starts by turning the scanned image into a grayscale im-
age, and then partitioned it into 16 sub-images with equal width
and height. Then, Otsu’s method [1] is applied to each sub-image
to get a binary image. After getting the binary image, connected
components labeling and analysis are applied to the whole page
to get connected components of text characters and reject non-text
connected components. Once all text connected components are
identified, text features are calculated for each of them, and their
normalization is the page’s feature vector. Finally, the feature vec-
tor is then fed into a support vector machine (SVM) to do training
and prediction.

*Research supported by HP Inc., Boise ID 83714

13 scripts are taken into consideration in this work, namely,
Chinese, Devanagari, Japanese, Korean, Numeral, English,
French, German, Greek, Italian, Portuguese, Russian, and Span-
ish. Based on their similarities and differences, a script hierarchy
is developed to better decide the script of a page via SVM. To re-
duce the number of script classes, we consider English, French,
German, Greek, Italian, Portuguese, Russian, and Spanish as one
script: Roman, since they look very similar to each other. After
the script of a page is identified, its orientation will be identified
afterwards.

Several methods have been proposed to detect orientations
of document pages. Guo et al. [2] used three vertical component
runs to get a 96-dimensional feature vector, which was then fed
into an SVM to determine the Up/Down orientations of text pages.
van Beusekom et al. [3] proposed a model to find the text line, the
number of ascenders and descenders to determine one page’s ori-
entation. They tested their model on Batin script and achieved an
overall accuracy of 98.8% on all orientations. They also tested
the method on Japanese script but only got an accuracy of 85.7%.
Roy et al. [4] proposed an algorithm to detect one page’s up/down
orientation based on text-asymmetry ratios computed from strip-
based projection files. The algorithm also needs to find the ascen-
ders and descenders based on text lines. But for some pages writ-
ten in traditional Chinese, where text characters are written verti-
cally, these text line based methods might not work well. And also
for some Asian scripts like Chinese and Japanese, there are no ob-
vious ascenders or descenders. Fan et al. [5] invented a method
that utilized the OCR method to find characters of ’i’ or ’T’ to de-
termine the pages orientation. Ghosh et al. [6] proposed a method
to identify the script and orientation of 11 official scripts in India.
Their feature vector is composed of a reservoir area, a white hole
area, and horizontal and vertical white-black transitions. They
also designed a complex hierarchy to detect scripts. Their method
achieved fairly high accuracies; but it is specially designed for In-
dian languages. Rashid et al. [7] proposed to use a convolutional
neural network (CNN) to identify scripts. They achieved above
95% recognition accuracy at the connected component level on
datasets of Greek-Latin, Arabic-Latin, and Antiqua-Fraktur doc-
uments. Their CNN contains 2 convolutional layers with 4 and 8
feature maps, followed by 2 sub-sampling layers. For the 3 script
pairs, they achieved an accuracy of 98.40%, 95.61%, and 96.61%,
respectively. But they did not try detecting the orientation.

Lu et al. [8] proposed an algorithm to detect document im-
ages’ up/down orientation through document vectorization. They
also used the same feature vector to detect page script. The idea
is to find a feature vector vertically on a text character, and then
convert it into a vector. Orientation and script detection of a doc-
ument image are determined based on distances between the de-
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tected document vector and the pre-constructed vector templates.
The algorithm was tested on Chinese, Roman, Arabic, and Chi-
nese scripts and achieved good results. Based on their work, Jain
et al. [9, 10] developed an algorithm that can detect the 4 orien-
tations mentioned above and multiple scripts using an artificial
neural network. In their algorithm, they constructed features from
the horizontal direction as well as the vertical direction. They
also introduced foreground pixel densities as part of the feature
vector. Their method achieved fairly good accuracies on Chi-
nese, Japanese, and Korean, but performed rather badly on De-
vanagari, Numeral and some Roman scripts. Our work is mainly
based on Jain’s algorithm. While keeping their features, we also
introduce features from the side background areas in a text char-
acter’s bounding box. Moreover, we develop new methods to rule
out non-text connected components that might affect detection ac-
curacy.

Methodology
Overall Algorithm

Figure 1. Overall algorithm workflow.

The algorithm workflow is shown in Fig. 1. Document pages
are first scanned into color images, and then transformed into
grayscale. Then Otsu’s binarization is applied to get binary im-
ages. After connected components labeling, we apply methods to
remove non-text connected components. Finally, feature vectors
are extracted and fed into SVM to do training and prediction. Af-
ter training, we save all the parameters into a self-defined header
file. In prediction, the algorithm determines an image’s script first,
and then the orientation based on these header files.

Image Binarization
The image is binarized based on Otsu’s method [1]. We

choose this method because it is fast and effective regarding docu-
ment images. The algorithm assumes that an image contains two
classes of pixels (foreground pixels and background pixels) that
follow a bi-modal histogram. It computes the histogram and prob-
abilities of each intensity level, steps through all possible thresh-
olds from the lowest to highest gray level, and calculates each
threshold’s intra-class variance. The optimum threshold separat-
ing the two classes is the one with minimal intra-class variance.
In this case, because the sum of pairwise squared distances is con-
stant, their inter-class variance is maximal.

In order to get better local details, the image is equally sep-
arated into 16 (4×4) sub-images and Otsu’s method is applied to
each sub-image independently. The foreground and background
areas are determined based on the assumption that the background
area always constitutes a larger portion than the foreground area.

Fig. 2 shows an example binarization result. From the two
enlarged areas on the right, we can see that it has a good per-
formance on text areas. But non-text areas can result in a lot of
non-text connected components, which will have an unpredictable
effect on the image’s feature vector. So we need to get rid of them

in the connected component analysis part.

Figure 2. Examples of binarization result.

Connected Components Analysis
Since our feature vector is extracted from text characters, in

this part we’ll remove non-text connected components and keep
text connected components.

A document page may contain pictures, tables, or other non-
text areas [11]. Normally, some of them will stay as foreground
pixels after Otsu’s algorithm. In this work, several constraints are
introduced to remove non-text areas, based on their characteristics
that are distinct from texts.

Size Limit
Since sizes of text characters are usually in a small range, we

can utilize it to remove very large or small connected components
by setting limits on their width and height. Explicitly, the size
limits are (all parameters are chosen empirically):

(a) Lower limits. Among width and height, one must be
larger than 0.01 × resolution and the other must be larger than
0.03 × resolution. We set two thresholds because some text con-
nected components have different lengths and widths.

(b) Upper limits. We set hard and dynamic limits on the
maximum size of connected components. For hard limits, one
connected components width should not be larger than 0.45555
× image width. Similarly, its height should not be larger than
0.45555 × image height. For dynamic limits, a connected com-
ponent’s size must not exceed 2.775 × average of the connected
components’ (width + height).

Transition Limit
Normally, a text character in any script should contain both

foreground and background pixels. Usually, the number of
foreground-background transitions is below a certain threshold.
So we can employ this to rule out non-text connected components.
This could also be used to eliminate text connected components
which have multiple characters bonded together when the scan-
ning resolution is low or the page itself has low quality.

For a connected component, imagine there is a line passing
through it vertically or horizontally. We call it a transition if the
line encounters a foreground pixel from background pixels.

In this work, we count the number of transitions through the
center of a connected component both horizontally and vertically.
Empirically, the limit is set to be 8 in both directions. And a
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connected component is to be removed if the transition number in
either direction exceeds the limit.

Besides, in document images where text characters are writ-
ten on a large picture, like a magazine cover, the picture is of-
ten rendered with halftone patterns. As a result, when we apply
Otsu’s method, we can often find connected components with a
halftone pattern; and these connected components often meet the
size limits, as shown in Fig. 3. Although applying a low-pass fil-
ter to the whole image might be the easiest to remove them, this
can also blur the edges [12], making some text characters bond
together when the scanning resolution is low. So a new method is
required to remove these connected components.

Figure 3. Examples of connected components rendered with a halftone pat-

tern. We can see a lot of interleaved pixels in these connected components

after binarization, and they cannot be identified by the size limits.

Considering the fact that in connected components rendered
with a halftone pattern, foreground and background pixels are al-
ways interleaved, the notion of horizontal or vertical transition
density is advocated. The way to calculate horizontal transition
density is: first horizontally count the total number transitions
along all rows in the bounding box, then divide this number by
the bounding box height. The vertical transition density is cal-
culated similarly, except that the transitions are counted along the
vertical direction, and the denominator is the bounding box width.

Empirically, the thresholds are set to both be 1.5 in both di-
rections. Any connected components with either transition den-
sity larger than 1.5 will be removed.

Also, considering the fact that some halftone-rendered con-
nected components have only one pixel at each bounding box
edge, while text characters have multiple foreground pixels on
at least one edge, we can also eliminate these connected compo-
nents.

Aspect Ratio

Since text characters’ aspect ratios are within a certain range,
we set the ratio to be within the range of 1

6 to 6 to rule out non-text
connected components.

Connected Component Analysis Result

Fig. 4 shows the connected component analysis result for
Fig. 2. We can see that connected component analysis removes
most of the non-text connected components while keeping most
of the text characters; and these would be enough to do feature
vector extraction.

Figure 4. Example of connected components analysis result.

Feature Vector Extraction
After text connected components are found, our next step is

to extract a feature vector that represents the document image.
The feature vector is formed by concatenating by 4 vectors: the
vertical document vector (VDV), the horizontal document vector
(HDV), the zonal document vector (ZDV), and the profile docu-
ment vector (PDV). These four vectors are computed by normal-
izing 4 features of every text connected component: the vertical
component run (VCR), the horizontal component run (HCR), the
zonal document run (ZDR), and the profile component run (PCR),
respectively [10]. In this section, we’ll talk about how to get these
features.

Vertical Document Vector
The method to calculate vertical component run (VCR) was

first brought up by Lu et al. [8] to detect scripts like Arabic, Chi-
nese, Korean and Roman. The idea is to vertically separate the
bounding box into three equal areas, called the top zone, the mid-
dle zone, and the bottom zone. Then, assume that there is a vir-
tual scan line passing through the center of a connected compo-
nent. We define a transition as the passing of this line from a
background pixel to a foreground pixel. We record the number of
transitions and their distributions, as shown in Fig. 5.

Figure 5. Examples of vertical transitions on connected components. The

bounding boxes are separated into three equal zones vertically. The vertical

dashed line in the middle is the imaginary line through the connected compo-

nent’s center. And the arrows in the picture show the locations of transitions.

Using the method in [8], for the three examples men-
tioned in Fig. 5, the first Chinese character’s VCR is calculated

IS&T International Symposium on Electronic Imaging 2019
Color Imaging XXIV: Displaying, Processing, Hardcopy, and Applications 087-3



as [00100000 10000000 01000000 00100000]. For the num-
ber 0, its VCR is [01000000 10000000 01000000 00000000].
And the character R’s VCR is [01000000 10000000 00000000
01000000].

Normally, a document contains a large number of text char-
acters. Each of them has its own VCR. Next we calculate the sum
of them as a feature vector for the whole page. The feature vec-
tor is called vertical document vector (VDV), and it can also be
normalized in the way mentioned in [8] to reduce the document
length effect.

Horizontal Document Vector
Based on the method of VCR and VDV, the idea of getting

the horizontal component run (HCR) and horizontal document
vector (HDV) are introduced to detect document pages at 90 or
270 degrees orientation. In HCR and HDV, a connected compo-
nent’s bounding box is separated horizontally with a horizontal
line passing through its center. And the we record the horizontal
transition distributions, as shown in fig. 6.

Figure 6. Examples of vertical transitions on connected components. The

bounding boxes are separated horizontally into three equal zones. The hori-

zontal dashed line in the middle is the imaginary line through the connected

component’s center. The table at the bottom contains the HCRs of the char-

acters.

Zonal Density Vector
We also introduced the zonal density vector (ZDV) as part of

the feature vector based on [9, 10]. The ZDV is obtained through
the zonal density run (ZDR), which reflects the distribution of
foreground pixel densities. The steps to get ZDR are:

(1) Divide a connected component’s bounding box area
equally into 9 (3 × 3) small areas.

(2) For each small area, calculate its foreground pixel density
( f d) follows this equation:

f d =
numForePixel
numAreaPixel

×100 (1)

where numForePixel refers to the number of foreground pixels in
a certain area, and numAreaPixel is the total number of pixels in
the area. Here we multiply by 100 to put the value in range [0,
100]. The small area is iterated first row wise, and then column
wise. Their fds are denoted as f d1, f d2, ..., f d9.

(3) We concatenate all values calculated in (2), to get a ZDR
with 9 elements.

Fig. 7 shows ZDR examples for a Chinese character, the let-
ter ’a’ and the number ’9’.

The ZDV is formed by summing the ZDRs obtained from
all connected components in the document. Since each document

Figure 7. Examples of ZDRs of connected components. Each of the char-

acter’s bounding box in the top is separated equally into 3 parts, and their

pixel densities are listed in the table below.

has different number of text characters, we also need to normalize
the ZDV using following equation:

ZDVnorm =
N

∑
i=1

ZDRi /N (2)

Here, N is the total number of connected components in the
document, and ZDRi is the ZDR of the i-th connected component.

Notice that ZDVnorm is also in range [0,100].

Profile Component Run
So far the features found for a single connected component

are mainly focused on the foreground pixels in its bounding box.
The background areas surrounding the foreground pixels, how-
ever, also contain important information about the character [13].
And this information is very important for a relatively simple-
structured script like Numeral. As a result, the profile component
run (PCR) of a connected component and the profile document
vector (PDV) of a document are utilized to better detect the docu-
ment’s script and orientation.

The PCR is obtained from the four side profiles, which are
are the four background areas in a connected component’s bound-
ing box that surround the foreground pixels. These are the left-
ward, upward, rightward, and downward background areas. The
steps to get the PCR from a connected component are:

(1) Identify the connected component’s bounding box.
(2) On the left edge, identify 5 points on each edge of the

bounding box, namely, the 2 vertices, the middle point, and two
points whose distance from the nearest vertex is 1/6 of the left
edge length.

(3) For each point found in (2), count the number of consec-
utive background pixels before hitting a foreground pixel along
the line which is perpendicular to the left edge.

(4) For each number obtained in (3), multiply it by 100, and
then divide it by the bounding box’s width, to remove the effect
of the connected component’s bounding box size. Denote them as
Pl1,Pl2, ...,Pl5.

(5) Repeat steps (2) - (4) for the other 3 edge. Note that the
denominator for the right edge is also the bounding box’s width,
but for the top and bottom edges the denominator is the bound-
ing box’s height. So we get Pr1,Pr2, ...,Pr5 for the right edge,
Pt1,Pt2, ...,Pt5 for the top edge, and Pb1,Pb2, ...,Pb5 for the bot-
tom edge, as shown in Fig. 8.
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(6) Combine all values obtained in (4) and (5), we will get a
PCR for the connected component, which is

PCR = [Pl1, ...,Pl5,Pr1, ...,Pr5,Pt1, ...,Pt5,Pb1, ...,Pb5] (3)

Figure 8. Examples of PCR of a connected component. The arrow lines

in the figure shows the distance from bounding edges to foreground pixels in

the the 4 side profiles.

The PDV is achieved by summing all PCRs of the document.
In order to reduce the effect of document length, we also need to
normalize it using the following equation:

PDVnorm =
N

∑
i=1

PCRi /N (4)

Here, N is the total number of connected components in the
document, and PCRi is the PCR of the ith connected component.

Notice that PDVnorm is also in range [0,100].
Concatenating all the features from the previous sections, we

have a 93-dimensional feature vector containing VDV, HDV, ZDV
and PDV that represents one single document page. Then the
feature vector will be used in a support vector machine for training
and prediction.

Script Detection Hierarchy
We use support vector machine (SVM) [14] to detect the

script before detecting the orientation. So a script detection hi-
erarchy is built (shown in Fig. 9). It is based on the similarity of
different scripts. First, we treat Numeral and Roman as a group,
and tell them apart from other scripts, which include Devanagari,
Korean, Chinese, and Japanese. Then a model is developed to dis-
tinguish Numeral from Roman. Since Devanagari is a lot different
from Korean, Chinese, and Japanese, we distinguish it first. Then
Korean is identified from Chinese and Japanese. Finally, Chinese
and Japanese are distinguished from each other.

Experiment Result
We collect our own data for training or testing. The scripts

and their corresponding number of scanned images collected are
shown in Table 1.

In this algorithm, Roman script contains English, French,
German, Greek, Italian, Portuguese, Russian, and Spanish. Each
of them has a similar number of pages.

Figure 9. Script Detection Hierarchy.

Table 1: All Scripts and the Number of Pages

Script Page#
Chinese 455

Devanagari 360
Japanese 378

Korean 438
Roman 2,476
Numeral 638
Overall 4,745

Note that pages we collected are all in 0 degree, and by sim-
ple rotations we can have images in 90, 180, and 270 degrees. So
the total number of images in our data set is 4,745×4 = 18,980.

Test Results
We use 3-fold cross-validation to test the accuracy of our

algorithm. Namely, we separate the whole data set into 3 equal-
numbered folders, and use 2 of them for training, and one for test-
ing. And we’ll switch folders used for training and testing. The
accuracy is computed as the average of three testing accuracies.
Images here are all in 200 dpi.

Table 2 shows the cross-validation result of script and orien-
tation detection for all scripts. From this table, we can see that
for script detection, the overall accuracy for all scripts and 4 ori-
entations is 98.2%. The best result is 99.1% with Japanese, while
the lowest accuracy is 96.2% with Numeral. For orientation de-
tection, the overall accuracy for all scripts of all 4 orientations
is 99.2%. The best orientation accuracy is 99.8% with Japanese
script, while the lowest accuracy is 98.3% with the numeral script.

Table 2: Orientation and Script Detection Accuracies for All
Scripts

Script Orientation Accuracy Script Accuracy
Chinese 99.0% 96.8%

Devanagari 99.4% 99.1%
Japanese 99.8% 98.2%

Korean 99.2% 98.3%
Roman 99.4% 98.7%
Numeral 98.3% 96.2%
Overall 99.2% 98.2%
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The Roman script actually is comprised of 8 scripts: English,
French, German, Greek, Italian, Portuguese, Russian, and Span-
ish. Its detection result is got by summing up detection results
of all of these scripts. Table 3 shows detailed detection results
for these 8 scripts. From it we can see that, although Greek and
Russian look quite different from other scripts, they do get fairly
good detection results, with both achieving 99.5% in orientation
accuracy, and 99.1% and 99.2% in script accuracy, respectively.
The lowest orientation accuracy happens with German, at 98.5%,
and the lowest script accuracy happens with Portuguese at 98.3%.
Spanish has the best orientation and script detection accuracies,
with the values being 100% and 99.9%, respectively.

Orientation and Script Detection Accuracies for Roman
Scripts

Script Orientation Accuracy Script Accuracy
English 99.5% 98.9%
French 99.6% 99.8%

German 98.5% 98.9%
Greek 99.5% 99.1%
Italian 99.4% 99.4%

Portuguese 99.1% 98.3%
Russian 99.5% 99.2%
Spanish 100% 99.9%
Overall 99.4% 98.7%

Conclusion
Determining the orientation and script of scanned pages has

important applications for scanned document processing. In this
paper we proposed an algorithm to automatically detect the orien-
tations of scanned pages. We described a series of preprocessing
steps to identify the connected components on the page that con-
tain text characters.We then extracted a set of features from these
connected components that are fed to a hierarchy of SVM classi-
fiers to determine script and orientation. By training and testing
our new algorithm on a set of 18,980 scanned pages, we have
demonstrated very good accuracy.
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